
Reasoning Heuristics for the Theorem-Proving
Platform Rodin/Event-B

Jacobus Gideon Ackermann
School of Computing

College of Science, Engineering and Technology
University of South Africa

Florida, South Africa

linear.transformation@gmail.com

John Andrew van der Poll
Graduate School of Business Leadership (SBL)

University of South Africa
Midrand, South Africa

vdpolja@unisa.ac.za

(contact author)

Abstract—Developments in formal- and mathematical logic;
and computing the past couple of decades have paved the way
for the automation of deductive reasoning. However, despite
theoretical and technological advances in computing, the rapid
growth in the search space for complex proofs where the reasoner
explores the consequences of irrelevant information, remains
problematic. The challenge of a combinatorial explosion of the
search space can in many cases be addressed by heuristics.
Consequently, in this paper we investigate the extent to which
heuristics may usefully be applied in discharging complex set-
theoretic proof obligations using the hybrid reasoning environ-
ment, Rodin/Event-B. On the strength of our experiments, we
develop a set of heuristics to aid the theorem-proving environment
in finding proofs for set-theoretic problems which could not be
obtained using the default settings. A brief exposition of related
work in this area is presented towards the end of the paper.

Index Terms—Automated Reasoning, Event-B/Rodin, Formal
specification, Set theory, Theorem proving, Z

I. INTRODUCTION

Many of the specification- and modelling languages that

achieved industrial success over the past couple of years are

based on mathematical set theory and formal logic. Examples

of these are Z [1], the B-method [2] from which the Atelier

B development environment stems, and Event-B [3]. The

advantage of using a formal specification language in software

development is in reasoning formally about the properties

of the resultant system at an early stage of development.

Discharging proof obligations that arise from these formal

specifications is a tedious and error prone activity, in fact as

stated by Abrial it is “foolish (and error prone) for the simple

reason that it is common to have thousands of such proofs”

[3, page xviii].

Set-theoretic constructs are ubiquitous in software specifi-

cations as may be observed in a classic Z specification of a

telecommunications network by Carroll Morgan [4].

TN
reqs, cons : PCON
avail : PPHONE

cons ⊆ reqs
cons ∈ disjoint
(
⋃

cons) ⊆ avail

where PHONE is a basic type [PHONE] and a connection is

defined as a set of phones, i.e. CON == PPHONE. One of

the numerous operations that may be defined on the state TN,

is:

HangUp
ΔTN

reqs′ = reqs \ {c : cons | ph? ∈ c}

resulting in a proof obligation (PO) that it is possible for

HangUp to activate a connection (enabling a user that has

been waiting for a connection), i.e.

∃ HangUp • (cons′ \ cons) �= ∅)

Reasoning about the properties of complex set-theoretic ex-

pressions for example in the above specification, e.g. power

sets, distributed unions (
⋃

) and the like is hard. Set theory is

inherently hierarchical — a set may be an element of a larger

set which may in turn be an element of an even larger set and

so forth. These set-theoretic structures are usually expressed

in first-order logic, which in itself compounds the problem of

discharging proof obligations arising from specifications using

an automated reasoner.

Set-theoretic reasoners often derive large sets of conse-

quences; these contain numerous formulae starting from the

initial set of axioms. Theorem-provers may spend a lot of

time exploring the consequences of relevant information, only

to abandon (backtrack) the current branch of a deep search

tree and pursue another branch, thereby running into the well-

known combinatorial explosion problem of large search spaces

[5]. Examples of such nested structures appear in the proofs

that follow in this work. Examples of these challenges and

attempts to prune a large space to assist an automated reasoner

may be observed in [6, page 156], [7] and [8].

Of particular importance is to automate the identification

and subsequent discharging of these proof obligations, i.e.

employ an automated reasoner instead of an interactive one.

The use of well-designed heuristics appears to hold some

promise in this regard. The value of heuristics was identified as

early on as 1955 during the development of the “Logic Theory

1800

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00332

Machine” [9, page 12], [10]. In 1960 it was predicated by Hao

Wang that “strategies in the search for proofs, or what are often

called heuristic methods, would gradually become part of the

subject matter of inferential analysis” [11, page 220]. Even

nowadays the need for intelligent heuristics to appropriately

prune a large search space and guide an automated reasoner is

is evident in work preceding our research, e.g. [6, page 156]

and [7].

The layout of the paper follows: Following the introduction

our research methodology is given in Section II. A brief

overview of the Rodin/Event-B reasoner used in our work

is given in Section III. The proof obligations for which the

reasoning environment failed to find a proof using just the

default settings, together with appropriate heuristics to remedy

these are presented in Section IV. Related work is presented

in Section V and conclusions and pointers for further work in

this area are given in Section VI.

II. RESEARCH METHODOLOGY

Our research methodology follows the research onion of

Saunders et al. [12]. As per the 1st layer of the onion, our

philosophy is essentially positivist, since the proofs to the

proof obligations below follow the rules of first-order logic

and mathematical set theory. At layer 2, the research approach

is inductive, since proofs of the theorems are established

using the heuristics derived. The methodological choice is

quantitative, since set-theoretic constructs are derived and

execution times are stated precisely. It should be noted that

quantitative research is usually associated with Likert scale

questionnaires involving surveys, but in out work we view

mathematical set theory with associated proof theory as being

quantitative. The strategy followed is both experimental (proof

attempts) and case studies, being the specific proof obligations

attempted, viewed as cases. The time horizon is cross-sectional

since the research reported on in this paper was performed over

a period of 24 months. The data collection and procedures

followed as part of the techniques are conceptual, i.e. no

humans other than the researchers were involved.

III. RODIN/EVENT-B

The B-method stems from the Z specification language and

inspired the integration of the Event-B formal method and

a development environment, Rodin/Event-B. Like Z, Event-B

is a state-based formal method designed by Jean-Raymond

Abrial [3] [13]. Its basic mathematical underpinnings are

integer arithmetic, first-order logic, and a typed set theory.

While Z and to a large extent Event-B were designed to

be formal specification tools (refer Section I), the Rodin soft-

ware suite [14] embodies an entire development environment

beyond the specification phase. It supports the construction

of specifications in B, as well as the subsequent verification

referred to as Event-B models. Rodin is open source and is

based on an Eclipse platform 1, providing “core functionality

for syntax analysis and proof-based verification of Event-B

1http://www.eclipse.org/

models” as per the Rodin user manual [15, page 9]. In essence,

Rodin [14] allows for a seamless integration of modelling,

reasoning, and ultimate refinement activities.

One of the basic constructs in Rodin is the ’context’

and once a formula is included in a Rodin context, the

proof-obligation component, called a proof-obligation man-

ager (POM) generates any proof obligations (POs) to be

discharged. The POM subsequently tracks the progress of all

proof attempts using the available proof rules.

Instead of applying individual proof rules, Rodin tactics are

used to construct and manage proofs. A tactic may either be

applied automatically (via predefined lists of tactics known

as tactic profiles) or interactively in the theorem-proving user

interface (UI). Owing to the preference to obtain automated

proofs we would attempt to minimise the amount of interaction

with the reasoner.

Finally, should the reasoner fail to discharge a PO through

the use of simplification and rewrite rules, one or more of

Rodin’s built-in reasoners are invoked. The standard Rodin

installation includes the NewPP prover, but additional plug-in

provers can be installed. Three popular plug-ins found to be

useful by the researchers are provers from the Atelier B tool

suite, namely, ML and PP, the model checker ProB, and the

SMT (Satisfiability Modulo Theories) provers CVC3, CVC4,

veriT and Z3.

Next we turn to the main part of this paper, namely,

developing heuristics for failed proof attempts using just the

Rodin default strategies. It should be noted that versions of

the proofs reported on in this paper stems from research in

[16]. Further details on the proof attempts may be observed

in [16].

IV. REASONING HEURISTICS

A. Apply the Default Auto Tactic with SMT

Having installed the SMT solver plug in, two Rodin auto

tactics may be selected. These are the Default Auto Tactic
Profile and the Default Auto Tactic with SMT. Upon starting

off, the default is the Default Auto Tactic Profile. This tactic

supports our sentiment of searching for automated proofs,

using the basic settings first. That said, our first example

illustrates a shortcoming in the basic settings, and illustrates

the advantage in applying the Default Auto Tactic with SMT.

Consider the set ControlValues and the function HasCon-
trolValues defined as:

ControlValues ⊆ Z (1)

HasControlValues ∈ P(P(Z)) → BOOL (2)

∀X • X ⊆ P(Z) ⇒
(HasControlValues(X) = TRUE

⇔ (∃ x • x ∈ X ∧ ControlValues ⊆ x)) (3)

HasControlValues is a Boolean-valued function (defined on

a family of sets of integers), evaluating to TRUE iff a member

set of the argument contains ControlValues.

1801

If we, for example, enumerate ControlValues
= {0, 1, 2, 3, 4, 5}, then Rodin’s Default Auto Tactic
Profile fails to find a proof for the theorem

HasControlValues({{x • x ∈ N | x + 1},
{x • x ∈ Z | 3 ∗ x + 1}, {x • 3 ∗ x + 1 = 0 | x}})

= FALSE (4)

If we, however, resort to the Default Auto Tactic with SMT,

then the CVC4 prover is invoked and finds a proof almost

immediately.

Based on these findings we define our first heuristic2:

Heuristic #1: Should the default tactic fail to find a

proof, then enable Rodin’s Default Auto Tactic with SMT
and adjust the Timeout for the SMT auto-tactic to 0.15

seconds.

Note that owing to the above heuristic, Rodin’s Default Auto
Tactic with SMT was adopted for all subsequent proofs in this

paper.

B. Apply model-checking ProB

Consider the following power set:

P({{0}, {1}, {0, 2}, {1, 2}})
=

{∅, {{0}}, {{1}}, {{0, 2}}, {{1, 2}}, {{0}, {1}}, {{0},
{0, 2}}, {{0}, {1, 2}}, {{1}, {0, 2}}, {{1}, {1, 2}},
{{0, 2}, {1, 2}}, {{0}, {1}, {0, 2}}, {{0}, {1}, {1, 2}},
{{0}, {0, 2}, {1, 2}}, {{1}, {0, 2}, {1, 2}}, {{0}, {1},
{0, 2}, {1, 2}}}

(5)

An attempt at using the default auto and post tactic profiles

as recommended by our 1st heuristic to discharge (5), yields no

proof. Since the theorem involves set instantiation, we employ

ProB, Rodin’s model-checking component and a proof is found

in less than 2 seconds.

ProB could also discharge corresponding proof attempts of

sets containing up to 12 elements in less than 2 seconds. (Note

that the power set of a 12-element set contains 212 = 4, 096
elements). None of the other Rodin reasoners were able to

prove such theorems. Promising results using ProB in model-

checking work was likewise reported by [17].

The above results lead us to the following heuristic:

2The time-out value of 0.15 seconds was obtained empirically. If the time-
out value is lower, the Default Auto Tactic with SMT is unable to prove
significantly many more theorems than the Default Auto Tactic Profile. When
the time-out value is too high, the time required to build a workspace becomes
prohibitive.

Heuristic #2: Apply model-checking through ProB
when the proof obligation involves the enumeration of set-

theoretic elements and all the other Rodin provers fail

to find a proof.

C. Apply equality
In line with the Zermelo-Fraenkel (ZF) Axiom of Exten-

tionality [18] in (6),

(∀A)(∀B)((∀ x)(x ∈ A ↔ x ∈ B) → (A = B)) (6)

Rodin caters for two subset options for rewriting an equal-

ity: Rewrite the set-theoretic equality from left-to-right, and

rewrite it from right-to-left. Naturally, applying the apply
equality rule substitutes either side of the equation with the

other throughout the proof sequent. If we apply the equality

rewrite rule to α = β, then we have the following options:

• Apply equality from left to right: Substitute all occur-

rences of α with β (i.e. eliminate α from the sequent);

and

• Apply equality from right to left: Substitute all oc-

currences of β with α (thereby eliminating β from the

sequent).

Consider showing a theorem follows from an axiom as

follows (A and B are constants; axm denotes an axiom and

thm indicates a theorem):

axm1 A ⊆ Z ∧ B ⊆ Z

thm2 P (A ∪ B) = P (A) ∪ P (B)

⇔ A ⊆ B ∨ B ⊆ A (7)

The reasoner fails to prove (7), neither directly, nor with

interactive user assistance. Consequently, we provided Rodin

with additional information:

axm1 A ⊆ Z ∧ B ⊆ Z

thm2 ∀X, Y • X ⊆ Z ∧ P (X ∪ Y) = P (X) ∪ P (Y)

⇒ X ∪ Y ∈ P (X) ∪ P (Y) (8)

thm3 P (A ∪ B) = P (A) ∪ P (B)⇔ A ⊆ B ∨ B ⊆ A

The additional information allowed Rodin to obtain a quick

proof of (7). We should note, however, that the system could

not prove (8) directly — the proof attempt terminated having

generated the following sequent:

P(X ∪ Y) = P(X) ∪ P(Y) � X ∪ Y ∈ P(X) ∪ P(Y).

A trained set-theorist could identify at this point that the

following is needed:

P(X ∪ Y) = P(X) ∪ P(Y) ⇒ X ∪ Y ∈ P(X) ∪ P(Y)

⇒ X ∪ Y ∈ P(X ∪ Y) (9)

1802

By interacting with the reasoner we substitute P(X) ∪ P(Y)
with P(X ∪ Y), achieved in Rodin via applying Equality from
right to left. Having applied the rule, Rodin generated sequent

(9), whereafter the ML prover was invoked and produced a

proof.

From the above results we derive:

Heuristic #3: Apply Equality to formulae with the set

equality operator. Check for useful substitutions or

simplifications when trying both Apply equality from left
to right and Equality from right to left.

D. Set equality rewrites

As indicated above, applying the Set equality rewrites rule

divides a proof obligation containing a set equality into two

subset proof obligations.

Consider showing that the distributed intersection of the

power set of a non-empty set, say A is equal to the power

set of the distributed intersection of A (an exercise in [18,

page 33]).

Written in Event-B notation we obtain:

axm1 A ⊆ P (Z) ∧ A �= ∅

thm2 P (∩(A)) = ∩({X • X ∈ A | P(X)}) (10)

Rodin failed to find a proof for (10). Since a set-theoretic

equality is involved, we can invoke the interactive set equality

rewrite proof rule. Rewriting from left to right yields the PO:

P (∩(A)) ⊆ ∩({X • A | P(X)}), (11)

Theorem (11) was then quickly discharged by the PP prover.

However, the right to left subproof,

∩({X • X ∈ A | P(X)}) ⊆ P (∩(A)), (12)

was harder to discharge.

To obtain a proof of (12) we had to invoke a sequence of

interactions. These involved applying the Remove Inclusion,

Remove Membership, and the Quantifier Instantiation (note

Remove Inclusion and Remove Membership rewrite rules are

discussed in Section IV-F, while the Quantifier Instantiation
rule is presented in Section IV-E) rules to arrive at the

following sequent:

X ∈ A
x0 ∈ x
s ∈ A

(∃X • X ∈ A ∧ P(X) = P(s)) ⇒ x ∈ P(s)
x0 ∈ s

The PP prover subsequently discharged theorem (12), lead-

ing to our next heuristic.

Heuristic #4: For formulae involving set equality, apply

the Set equality rewrites rule to obtain two subset proofs

to discharge separately.

E. Quantifier Instantiation

It is often natural to use function symbols, generally known

as functors to encode information in terms, for example,

when describing an integer as a successor or as a sum.

However, terms built up with the aid of functors are more

complex, especially those with variables as arguments. This

poses challenges to reasoners e.g. [7] owing to difficulties with

unification. Consequently, a specifier may decide to replace

one or more quantified variables in a formula with correctly

typed variables, expressions or constants, in an attempt to

avoid nested functors. Both universally- and existentially quan-

tified variables can be instantiated and in the case of an

existentially quantified variable appearing in the scope of a

universal quantifier, such variable becomes a Skolem function.

Consider set {{x • x ∈ Z | 3 ∗ x}} and suppose we wish

to prove the set has property HasControlValues, stating

a family of sets must contain at least one member set, say S,

such that S contains a set of control values.

HasControlValues is defined as:

∀X • X ∈ P (P (Z))⇒
(HasControlValues(X) = TRUE

⇔
(∃ x • x ∈ X ∧ ControlValues ⊆ x))

(13)

In other words, for ControlValues = {x • x ∈ Z | 6 ∗ x}, we

want to show that

ControlValues = {x • x ∈ Z | 6 ∗ x}
⇒ HasControlValues({{x • x ∈ Z | 3 ∗ x}}) = TRUE

Rodin failed to find a proof, and upon inspecting the proof

attempt it was noticed that the input formulae omitted the

specification of HasControlValues:

ControlValues = {x • � | 6 ∗ x}
HasControlValues({{x • � | 3 ∗ x}}) = TRUE

By applying the lasso operator (presented in Section IV-G),

the required list of input formulae was obtained:

ControlValues = {x • � | 6 ∗ x}
HasControlValues ∈ P(P(Z))→ BOOL
HasControlValues ∈ P(P(Z)) �→ BOOL

{{x • � | 3 ∗ x}} ∈ dom(HasControlValues)
∀X • HasControlValues(X) = TRUE
⇔ (∃ x • x ∈ X ∧ (∀ x0 • 6 ∗ x0 ∈ x))

HasControlValues({{x • � | 3 ∗ x}}) = TRUE

1803

Rodin still failed to find a proof with the settings and

heuristics presented above.

The Rodin environment, however, embeds a theorem-

proving UI to cater for (e.g.) the instantiation of variable X
in the final hypothesis of the sequent. Hence, instantiating

[X := {{x • � | 3 ∗ x}}], led to the proof sequent:

ControlValues = {x • � | 6 ∗ x}
HasControlValues ∈ P(P(Z))→ BOOL
HasControlValues ∈ P(P(Z)) �→ BOOL

{{x • � | 3 ∗ x}} ∈ dom(HasControlValues)
∀ x • ¬ x = {x • � | 3 ∗ x} ∨ (∃ x0 • ¬ 6 ∗ x0 ∈ x)

HasControlValues({{x • � | 3 ∗ x}}) = TRUE

Having applied the above instantiation, both the SMT

provers, CVC4 and Z3 found a proof. Therefore, we arrive

at:

Heuristic #5: Attempt quantifier instantiation to simplify

formulas. Quantifiers can often be instantiated with

Skolem constant symbols and definitions already present

in the sequent.

F. Remove Inclusion and Remove Membership

Despite our interest in automated approaches, interactive

approaches may often be the only feasible way to find proofs

(refer for example the discussion in Section V on Related

work). Hence, in this section we consider some term-rewriting

approaches for subset- or set-membership proofs.

The following rewrite rules are discussed in this section:

• Remove inclusion: The subset relation is replaced by its

underlying first-order definition, i.e. we replace X ⊆ Y
with (∀ x)(x ∈ X ⇒ x ∈ Y); and

• Remove membership: The definition of elementhood is

used to rewrite set-theoretic membership.

The proof attempts in Section IV-D revealed that theorem

(10) could be discharged once we applied the rewriting rules

Remove Inclusion and Remove Membership. In this section

we consider sequences of interactive rules necessary to prove

(10), the offending part restated below for ease of reference.

∩({X • X ∈ A | P(X)}) ⊆ P (∩(A)) (14)

Rodin was unable to discharge (14), but an application of

the Remove inclusion rule in the UI produces the sequent:

X ∈ A
x ∈ ∩(X • X ∈ A | P(X))

x ∈ P(∩(A))
The reasoner still failed to find a proof, implying the

need for additional actions. A sequence of interactive rule

applications was called for:

First apply Remove Membership

X ∈ A
x ∈ ∩(X • X ∈ A | P(X))

x ⊆ ∩(A)
Next, Remove Inclusion:

X ∈ A
x ∈ ∩(X • X ∈ A | P(X))

x0 ∈ x
x0 ∈ ∩(A)

Third, apply Remove membership again:

X ∈ A
x ∈ ∩(X • X ∈ A | P(X))

x0 ∈ x
s ∈ A
x0 ∈ s

Finally, x ∈ ∩(X • X ∈ A | P(X)) in the input could be sim-

plified through a further application of Remove membership:

X ∈ A
x0 ∈ x
s ∈ A

(∀ s)(((∃X)(X ∈ A ∧ P(X) = s))⇒ x ∈ s)
x0 ∈ s

Next, the universally quantified variable ([s := P(s)]) can

be instantiated:

X ∈ A
x0 ∈ x
s ∈ A

((∃X)(X ∈ A ∧ P(X) = P(s)))⇒ x ∈ P(s)
x0 ∈ s

All the Rodin provers, except for ML could discharge the

final proof obligation, leading to:

Heuristic #6: When appropriate, apply the rules of Remove
Inclusion and Remove Membership to simplify formulae.

G. Using Lasso

In the search for a proof, one can upload all available axioms

and theorems as input, or one can load only those deemed

necessary for the proof attempt. This may be preferred, since

irrelevant information may lead a reasoner astray [7]. In this

regard Rodin’s lasso operation allows for adding additional,

backup hypotheses usually having identifiers in common with

the goal. The Hot-list strategy described by Wos and Pieper

[19] in relation to resolution-based reasoning has a similar

aim.

To illustrate the use of lasso, we constructed two Rodin

contexts:

• A base context specifying a function f :

CONTEXT LassoBaseContext
CONSTANTS

f

1804

AXIOMS

axm1: f ∈ P (Z)× P (Z)→{0, 1}
axm2:

∀X, Y • {X, Y} ⊆ P (Z) ∧ X ∩ Y �= ∅⇔
f (X
→ Y) = 1

END

• A lemma thm5 and a theorem about f as a derived

context:

CONTEXT LassoDerivedContext
EXTENDS BaseContext
AXIOMS

thm5: 〈theorem〉 {2, 4, 6, 8, 10} ∩ {x • x ∈
Z | x ∗ x} �= ∅

Lemma

thm6: 〈theorem〉 f ({2, 4, 6, 8, 10}
→ {x•x ∈
Z | x ∗ x}) = 1

END

Rodin’s POM generated the following PO for thm6:

¬ {2, 4, 6, 8, 10} ∩ {x • � | x ∗ x} = ∅

f ({2, 4, 6, 8, 10} �→ {x • � | x ∗ x}) = 1

Since the definition of f is absent from the list of hypotheses,

Rodin failed to find a proof. Hence we augmented the list of

hypotheses through the lasso operator, allowing the reasoner

to find a proof:

¬ {2, 4, 6, 8, 10} ∩ {x • � | x ∗ x} = ∅

f ∈ P(Z)× P(Z)→{0, 1}
f ∈ P(Z)× P(Z) �→ Z

{2, 4, 6, 8, 10} �→ {x • � | x ∗ x} ∈ dom(f)
∀X, Y • X ∩ Y = ∅ ⇒ f (X �→ Y) = 0
∀X, Y • ¬ X ∩ Y = ∅ ⇒ f (X �→ Y) = 1

f ({2, 4, 6, 8, 10} �→ {x • � | x ∗ x}) = 1

The universal quantifier in the last hypothesis was replaced,

i.e. it was instantiated

∀X, Y • ¬ X ∩ Y = ∅ ⇒ f (X �→ Y) = 1,

with [X := {2, 4, 6, 8, 10}, Y := {x • � | x ∗ x}] to produce

a quick proof, suggesting:

Heuristic #7: Apply the lasso operator when all other

heuristics fail.

H. Constants

In this secion we present two logically equivalent Rodin

contexts — context SetTheory Simple and SetTheory.

Context SetTheory Simple contains no constants:

CONTEXT SetTheory Simple
AXIOMS

thm1: 〈theorem〉 inter({{1, 2, 3}, {2, 3, 4}}) =
{2, 3}

END

Neither the default auto tactic nor the default auto tactic

with SMT profiles managed to discharge the proof obligation

generated for thm1. But, since the PO involves set enumer-

ations, the ProB model checker found a proof in interactive

mode.

Our next context SetTheory defines two constants: A =
{1, 2, 3} and B = {2, 3, 4}:

CONTEXT SetTheory
CONSTANTS

A

B

AXIOMS

axm1: A = {1, 2, 3} ∧ B = {2, 3, 4}
thm2: 〈theorem〉 inter({A,B}) = {2, 3}

END

With the above definitions, the PO for thm2 is discharged

using the default auto tactic profiles. With the exception of

ML, all the provers, namely, PP, CV3, CV4, veriT, and Z3

managed to find a proof, leading to our final heuristic:

Heuristic #8: Use constants for set-theoretic objects to assist

the proof attempt and reduce duplication of definitions.

V. RELATED WORK

The seminal work by C.A.R. Hoare on axiomatic prin-

ciples for modern programming [20] and his retrospective

analyses some 40 years later [21] deserve special mention.

The landmark papers by Alan Robinson [22] [23] in many

ways enabled the construction of resolution-based automated

reasoners of which the OTTER reasoner [24] is a well-known

example, later succeeded by Prover-9 [25]. The use of the

Vampire automated reasoner in discharging POs arising from

set-theoretic specifications, similar to the work in this paper

appears in [26].

Work on establishing reliable tool support by combining

the reasoning capabilities of Rodin/Event-B with the strong

theoretical foundations of Isabelle/HOL was done by Matthias

Schmalz [27]. Research on the automation of Rodin/Event-

B proofs using a technique called rippling whereby proofs

are automated using meta-level guidance, following by proof

correction for an otherwise interactive environment like

Rodin/Event-B is presented by Lin et al. [28].

Further afield, significant work on the interactive Pathfinder

model checker mainly under the auspices of the NASA Ames

Research Centre was done by Lindstrom, Mehlitz and Visser

[29], amongst others.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented eight heuristics to aid with

discharging set-theoretic POs using the Rodin/Event-B envi-

ronment. Each heuristic was illustrated with an example for

which Rodin failed to find a proof when the Default Auto
Tactic Profile was in effect. Our 1st heuristic illustrated that

the powerful SMT provers have the potential to facilitate

the finding of automated proofs. However, we constructed

1805

additional examples that failed to be discharged using the

Default Auto Tactic Profile or Default Auto Tactic with SMT
profiles. These proof obligations could only be discharged dur-

ing Rodin’s interactive mode, or by restructuring the context

(e.g., introducing constants), thereby adhering to our goal of

finding automated proofs.

Future work in this area may include an investigation

into identifying heuristics that target the individual inference

mechanisms of the different Rodin reasoners, owing to a

specifier’s preference for a specific inference mechanism.

The current suite of provers encompass a wide variety of

inference mechanisms, such as resolution (NewPP and PP),

term rewriting (ML), model checking (ProB) and Satisfiability

Modulo Theories via CVC3, CVC4, veriT and Z3. The Rodin

environment holds much promise as a competitive environ-

ment for reasoning about the correctness of industrial-sized

software specifications. Intelligent 4IR interfaces to assist with

the application of heuristics should be developed.

REFERENCES

[1] D. Lightfoot, Formal specification using Z. Macmillan Press, 1991.
[2] J.-R. Abrial, The B Book: Assigning Programs to Meanings. Cambridge,

England: Cambridge University Press, 1996.
[3] ——, Modeling in Event-B: System and software engineering. Cam-

bridge University Press, 2010.
[4] C. C. Morgan, “Specification of a Communication System,” in Dis-

tributed Computing Systems: Synchronisation, Control, and Communi-
cation, Y. Paker and J.-P. Verjus, Eds. Academic Press, 1983, pp. 93
– 108.

[5] E. L. Lusk, “Controlling redundancy in large search spaces: Argonne-
style theorem proving through the years,” in International Conference on
Logic for Programming Artificial Intelligence and Reasoning. Springer,
1992, pp. 96–106.

[6] A. Bundy, “A survey of automated deduction,” in Artificial intelligence
today. Springer, 1999, pp. 153–174.

[7] P. S. Steyn, “Validating reasoning heuristics using next generation theo-
rem provers,” MSc dissertation, University of South Africa, 2009.

[8] J. A. van der Poll, “Formal methods in software development: A road
less travelled,” South African Computer Journal, no. 45, pp. 40–52, Jul.
2010.

[9] A. Newell and H. Simon, “The logic theory machine–a complex infor-
mation processing system,” IRE Transactions on Information Theory,
vol. 2, no. 3, pp. 61–79, 1956.

[10] D. Mackenzie, “The automation of proof: A historical and sociological
exploration,” IEEE Annals of the History of Computing, vol. 17, no. 3,
pp. 7–29, 1995.

[11] H. Wang, “Proving theorems by pattern recognition I,” Communications
of the ACM, vol. 3, no. 4, pp. 220–234, 1960.

[12] M. Saunders, P. Lewis, and A. Thornhill, Research methods for business
students, 8th ed. Harlow: Pearson Education, 2019.

[13] J.-R. Abrial, “The Event-B modelling notation,” wiki.event-b.org, 2007.
[14] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and

L. Voisin, “Rodin: An open toolset for modelling and reasoning in Event-
B,” STTT, vol. 12, no. 6, pp. 447–466, 2010.

[15] Rodin User’s Handbook, Deploy Project, 2012.
[16] J. G. Ackermann, “Evaluating Reasoning Heuristics for a Hybrid

Theorem-Proving Platform,” MSc dissertation, School of Computing,
College of Science, Engineering and Technology, University of South
Africa, 2018.

[17] T. Hörne and J. A. van der Poll, “Planning as model checking: The
performance of proB vs NuSMV,” in Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries:
riding the wave of technology. ACM, 2008, pp. 114–123.

[18] H. B. Enderton, Elements of set theory. Academic Press, 1977.
[19] L. Wos and G. W. Pieper, “The Hot List Strategy,” Journal of

Automated Reasoning, no. 22, pp. 1 – 44, 1999. [Online]. Available:
https://doi.org/10.1023/A:1005909914693

[20] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[21] ——, “Retrospective: An Axiomatic Basis for Computer Programming,”
Communications of the ACM, vol. 52, no. 10, pp. 30 – 32, October 2009.

[22] J. A. Robinson, “A Machine-Oriented Logic Based on the Resolution
Principle,” Journal of the Association for Computing Machinery, vol. 12,
no. 1, pp. 23 – 41, January 1965.

[23] ——, “Automatic Deduction with Hyper-Resolution,” International
Journal of Computer Mathematics, vol. 1, no. 3, pp. 227 – 234, 1965.

[24] W. W. McCune, OTTER 3.0 Reference Manual and Guide, Argonne
National Laboratory, Argonne, Illinois, August 1995, aNL-94/6.

[25] ——, Prover9 and Mace4, Current version: 2009-11A. [Online].
Available: https://www.cs.unm.edu/ mccune/prover9/manual/2009-02A/

[26] P. Steyn and J. A. van der Poll, “Validating reasoning heuristics using
next-generation theorem-provers,” in Modelling, Simulation, Verification
and Validation of Enterprise Information Systems (MSVVEIS-2007), In
conjunction with ICEIS 2007, Funchal, Madeira, Portugal, June 2007,
pp. 43–52.

[27] M. Schmalz, “Formalizing the logic of Event-B,” Doctor of Sciences,
ETH ZURICH, 2012.

[28] Y. Lin, A. Bundy, G. Grov, and E. Maclean, “Automating Event-B
invariant proofs by rippling and proof patching,” Formal Aspects of
Computing, vol. 31, no. 1, pp. 95 – 129, 2019.

[29] G. Lindstrom, P. Mehlitz, and W. Visser, “Model checking real time
Java using Java PathFinder,” 10 2005, pp. 444–456.

1806

