
Incremental Contract-based Verification of Software
Updates for Safety-Critical Cyber-Physical Systems

Yosab Bebawy∗, Houssem Guissouma†, Sebastian Vander Maelen∗, Janis Kröger‡, Georg Hake‡, Ingo Stierand∗,
Martin Fränzle‡, Eric Sax†, Axel Hahn‡

∗R&D Transportation Division, OFFIS e.V., Oldenburg, Germany
†Institute for Information Processing Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany

‡Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{yosab.bebawy, sebastian.vander.maelen, ingo.stierand}@offis.de, {houssem.guissouma, eric.sax}@kit.edu

{janis.kroeger, georg.hake, martin.fraenzle, axel.hahn}@uni-oldenburg.de

Abstract—Software updates are indispensable for the con-
tinuous development of Cyber Physical Systems (CPS): They
allow for low-cost bug-fixing, fast adaptation to new or changing
environments, or adding new functionality throughout the CPS’s
life-cycle. Due to the urgent need for some safety-critical updates,
their verification and validation may need to happen as fast as
possible without loss of quality. For this reason, incremental
checks targeting specifically the introduced changes and their
impact on the system are essential as they speed up the vali-
dation process. In this paper, we introduce a concept for such
an incremental verification for different types of updates by
using contract-based design and verifying the integration of the
introduced changes by checking their compliance with the con-
tractually agreed assumptions and guarantees. We demonstrate
our approach by applying two update types to an Adaptive Cruise
Control (ACC) system and verifying the impact of the changes
within the environment of the changed module(s).

Index Terms—Contract-based Design, Incremental Verifica-
tion, Change Impact Analysis, Software Updates

I. INTRODUCTION

The development of software modules in safety-critical

Cyber-Physical Systems (CPS) is facing numerous challenges

due to their complexity and deep integration of computing

and communication parts. An example of the complexity of

today’s systems can be found in the automotive sector. Today’s

cars can either include a high number of ECUs [1] interacting

with each other constantly or utilize common resources for

different kinds of functionality [2]. Communication is either

realized on-chip, i.e. via multiprocessor system-on-chip, or

via physical communication buses. In order to handle the

complexity of designing such systems, contract-based design

has been introduced as an efficient formal verification method

for CPS [3]. Contracts provide the developers of a system con-

figuration with formal specifications for each module and their

composition into a system. For this purpose, the requirements

for each module and for the system as a whole are described

by a set of assumptions about the respective environment

of the module and by guarantees which have to be fulfilled

by the module under the defined assumptions. Due to the

safety-critical nature of most CPS, thorough verification and

This work has been funded by the German Federal Ministry of Education
and Research (BMBF) in the project Step-Up!CPS (Förderkennzeichen:
01IS18080-).

validation activities are an essential part of their development

and maintenance processes. Unfortunately, when maintaining

safety-relevant software modules during operation, regular

software updates become necessary to fix errors, optimize pro-

cesses or extend functionality. Moreover, updates can help to

extend the lifespan of a system, making it more cost-efficient

and adapting it to changing environments. In the automotive

field for example, the frequency of software updates over the

air is expected to rise significantly [4]. Hence, the test effort

should be optimized towards more agility without negatively

influencing the quality of the software.

With contract-based design as formal verification method

specifying the correct interaction between modules and en-

abling continuous verification throughout the development

process, we introduce an approach that utilizes contracts to

verify the incremental changes applied by an update. As unit

of incremental change, we use the notion of deltas, from which

we derive an impact analysis process considering different

update types (perfective, corrective, adaptive). We validate our

approach with a case study from the automotive domain.

II. STATE-OF-THE-ART

A. Contract-Based Design

The term contract and contract-based design was used in

many publications in the past [5] [6]. For further information,

we refer to the Contracts for System Design book [7]. The

general idea is to assign contracts to components which are

designed to operate in a specified environment and generate

a specified output. Assuming that the component is working

in the specified environment, it is guaranteed that it fulfills

the specified output. This leads to the notion of contract as

a pair C = (A,G), where A are the assumptions regarding

the component’s environment (i.e. inputs) while G are the

guarantees that are related to the output of the component.

In this work, we consider three categories of contracts

assigned to different viewpoints of the system: functional, tim-

ing and safety contracts. We focus on contract-based Virtual

Integration Testing (VIT), where contracts are used to check

refinement steps between system models in a model-based

design approach [3]. This allows the system to be virtually

1708

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00318

integrated with its subsystems equipped with multi-viewpoint

contracts [3].

A system has the possibility to be in different operational

modes. Hence, a system may have different functionality or

timing behavior in each mode. To model this behavior by using

contract-based design, we need mode-dependent contracts,

which have different assumptions or guarantees depending on

the selected mode. Hence, a regular contract C is not sufficient

and we need to use the concept of extended contracts inspired

from [8], [9]. In addition to the normal assumptions and guar-

antee pairs (A,G), we extend C with one or more conditional

assumption guarantee pairs (B,H). In the following, we call

conditional contract pairs as mode pairs. Unlike the normal

pairs which must always be satisfied, this is not mandatory

for the mode pairs. However, there is a condition that if an

assumption from a mode contract holds, the corresponding

guarantee must also hold. Formally, the extended contract C′

results as following:

C′ = (A,G, {(B1, H1), . . . , (Bn, Hn)}) (1)

With regard to the modes of a system, the concept of extended

contracts allows the normal assumption-guarantee pairs to

express the pre- and post-conditions that must hold for all

modes and the conditional pairs to express mode-dependent

functionalities or timing specifications. This gives us a better

structure of contract for modes and allows us to contractify the

allowed transitions within a specific mode. Adding or updating

a mode should also made be easier.

B. Update Types

In general, software and hardware updates or upgrades can

be differentiated. However, we are focusing only on software

updates in this work. We define an update U of one CPS

as a change of its embedded software through modifying

one or more of its software modules. Based on the change

categorization proposed in [10], we differentiate three update

types. These are the corrective update for fixing bugs, the

perfective one for improving the functionality according to

different criteria such as performance, and the adaptive update.

TABLE I
UPDATE TYPES: CORRECTIVE, PERFECTIVE, ADAPTIVE

Update type Corrective Perfective Adaptive

Trigger
design incon-
sistency

safety issue,
comfort

new features,
environment

Implementation
Change

yes yes yes

Contract Change no only guarantees yes

Example
wrong output
value

improving exe-
cution time

adding object
detection

The latter type adds new functionality to the system to adapt

to changing working conditions or to new customer demands.

Depending on the update type, changes on different levels

need to be introduced to the Module Under Update (MUU),

which can influence the rest of the system architecture. This

may require additional changes to other modules directly

or indirectly related to the MUU. Table I summarizes the

difference between the three update types.

III. RELATED WORK

In the area of incremental verification, Johnson et al. and

Bu et al. presented processes that allow the re-verification

of module-based software systems after a change, such as

additions, modifications or the removal of a module [11], [12].

Rothenberg, Dietsch and Heizmann use trace abstraction, an

approach built on automata, in their work [13]. Moreover,

Juhasz presents a verification approach that uses local theorem

evidence for each point in the program instead of for the entire

program and shares the results of the local results on request

[14]. Cheng and Tisi present an approach based on a modeling

language that divides contracts into sub-targets and provides

verification results for the sub-problems [15].

Focusing more on the formal verification methodology, the

authors of [16] introduce practical requirements when defining

the scope of formal verification. In [17], Heitmeyer et al.

utilize a Software Cost Reduction (SCR) tabular method to

verifiy the system specifications.

Finally, Change Impact Analysis (CIA) is an activity that

aims at reducing that effort by identifying the necessary re-

verification effort. Oertel et al. present in [18] an approach

which guarantees to keep system integrity while performing

changes. The authors of [19] present a case study which

analyses how much time is spent on CIA. Ultimately, in [20],

a layered framework is introduced, that allows tracking the

impact of changes at all levels of abstraction.

Our approach differs from the mentioned works in that

we i) map three different dimensions using multi-viewpoint

contracts (functional, time and safety) within the model-

based design, ii) virtually test their integrity, and iii) do this

incrementally for each type of update.

IV. APPROACH FOR SAFE UPDATES

A. Model-based Design and Contracts Elicitation

Any system under design must be defined via a set of

requirements. All defined requirements are transferred into

system contracts that will be refined during the next phases

of the design process. The function architecture definition

takes place by a functional decomposition of the functions at

subsequent granularity levels. All (sub)functions are annotated

with (sub)contracts based on the top-level requirements and

top-level contracts. In order to check in this phase whether the

refinement and correctness of the composition of the functions

holds, we perform a VIT using the tools MULTIC [21] for

timing and OCRA [22] for functional aspects.

Based on the function architecture, the safety assessment of

the system takes place. Therefore, the first step is to perform

a Hazard and Risk Analysis (HARA) in order to identify all

possible hazards resulting from possible failures. The second

step is to perform a risk assessment for the identified hazards

specifying the likelihood or frequency of a hazard occurring,

as well as the severity of its consequences. The third step is

1709

to identify the safety requirements that are needed to avoid

or to mitigate the identified hazards. In the end of the design

process, safety requirements must be satisfied by the technical

realization of the system. They hence put constraints on

how to decompose the function architecture, and on possible

partitioning schemes in the logical and software design phase.

The function architecture then is extended by integrating

safety mechanisms in the logical decomposition step based

on the findings from the safety analysis. The inclusion of

a safety mechanism to the function architecture leads to the

addition of components and/or to extensions in the component

functionality. These changes must also be reflected by the

contracts and the resulting system has to be re-verified.

The logical decomposition also includes the mapping of

the individual functions to modules. Our module definition

is similar to the definition of a software component (SWC)

in AUTOSAR [23], where a SWC exclusively uses interfaces

that are provided by the operating system. This makes the

SWC ready for deployment on different platforms. We use the

notion of a module to identify the boundaries of an updatable

component. The module combined with contracts can help us

to reduce the verification and validation efforts when updating

a component.

B. Incremental Verification for different Update Types

If a system is put together from individual components,

care must be taken to ensure that the individual parts are

compatible and there are no conflicts in their interaction as

a whole. Therefore, attention must be paid to the influence

that the replacement of a module has on the interaction of the

overall system. This includes the timing of each component

(timing failure), functional dependencies (e.g. deadlocks) or

the load and sequence of memory accesses. In addition, there

are indirect interactions between the modules that are not

obvious w.r.t energy consumption or heat dissipation. For this

reason, safety standards, such as IEC 61508, require that the

individual modules are sufficiently independent of each other

so that a change due to an update does not have a negative

effect on safety-relevant functions of the overall system [24],

[25]. Therefore, our approach is based on two major concepts.

On the one hand, the concept of modularizing the individual

components, which can be combined into a complete system

according to a set of integration rules. On the other hand,

we annotate the modules with contracts and thus formalize

the composition so that the change introduced by an update

can be controlled formally and tracked. The resulting modular

system design with attached contracts provides properties such

as high cohesion, low coupling, well-defined interfaces and

information hiding [26], which we can use to assess the impact

of each type of update (cf. section II-B). Assuming a contract-

based system description with well-defined boundaries, the

introduced change for an update can be one or a combination

of the following delta types:

Interface change ΔI: An interface (input or output port)

is modified, deleted or added to the component. This can be

necessary to extend the functionality of the MUU for feeding

in additional information containing sensor or actuator data or

communication messages from other modules. This change is

typically made for adaptive updates.

Contract change ΔC: Changing one or more contracts,

deleting, or adding new ones. This change is typically made

for adaptive and perfective updates.

Implementation change ΔImpl: The implementation

in the form of a behavioral model or a structure of sub-

components is adjusted. This change is typically made for

corrective updates, i.e. bug-fixes.

Figure 1 represents the three described delta types for an

exemplary component with one input, one output, and a list

of three contracts {C1, C2, C3}.

in out
S1

S3S2

{C1, C2, C3}

in
out

S1

S3S2

{C1, C2, C3}

in out
S1

S3S2

{C1', C2', C3}

in out
S1

S3S2

{C1, C2, C3}

in1
S4

interface
change contract

change

implementation
change

Fig. 1. Delta types in a contract-based design approach for CPS updates

We define an update U as the sum of deltas Δ at a

certain abstraction level of the k affected components. Each

Δ has three dimensions according to the three types of change

described above (cf. Fig. 1). This is expressed by the formula

in Eq. 2. The motivation of using deltas as a unit of change

is their ability to represent spatial and temporal variability at

the same time such as used for software product lines [27].

In addition, the modularity aspect of contract-based design

facilitates the traceability and quantification of changes.

U =
∑
k

Δ =
∑
k

⎛
⎝

ΔI
ΔC

ΔImpl

⎞
⎠ (2)

In a first step, the introduced delta Δ for the MUU is used

to determine the impact on dependent components at various

granularity levels within the system hierarchy. Since, in the

worst case, all sub-components of an overall system can be

directly or indirectly dependent on each other, the dependency

on the affected components is first identified in order to reduce

the search space. Since an update can change the number

of affected modules, the search space can only be identified

after the final description of the update. Then, it is possible to

carry out the impact analysis by following the process steps

in Figure 2.

An update is usually triggered by a request from customers,

stakeholders or developers to either fix, optimize, extend or

delete a specific system functionality. The update team must

then check whether the system is designed to be updated

and equipped with the required infrastructure that allows the

1710

Fig. 2. Impact analysis and incremental verification for software updates

system to receive an update (e.g. update interface, over-the-

air-update module) or not. In case of an updatable system,

the update team must investigate the description of the re-

quested update, so that they can identify the set of changes

(e.g interface, contract, implementation) that are needed to

update a certain component within the system. Based on the

update type, the impact analysis process is branched into

two tracks. The corrective update track is pursued without

contracts change, where the team must check whether there

is a possibility to change the implementation of the compo-

nent or not. If yes, the update is accepted and the process

of updating the component starts in the ”perform update”

process, else the update is rejected and the impact analysis

is ended. On the other hand, the perfective/adaptive update

track starts with performing a VIT in which the compatibility

and consistency of the overall system can be determined on a

formal level, without implementation and solely on the basis of

the contracts. The value ranges of the respective contracts (in

our case only the delta to the previous state) are run through

and influences on dependent modules within the system are

measured. Based on the measured influences, the affected

components must be updated too and their set of changes, i.e.

deltas, must be identified and adjusted so that the dependent

components become compatible and consistent again. Those

steps are iterated starting from the component level up to the

system level or vice versa if necessary. However, the iteration

can be interrupted at any granularity level in case that (i) there

is a dependent component that can not be updated due to

unreachability or copyrights reasons (ii) a VIT is successfully

terminated when the composition of a set of components

contracts within the same granularity level refine their top-

level contract.

Since different levels of abstractions are usually used in a

top-down refinement process, we focus on the level of the

smallest updatable components, which we define as MUUs.

The conducted incremental verification checks are mainly

dependent on the type of the update; this is explained below.

1) Violated contracts as input for corrective update:
We assume that a corrective update of one component M
introduces one or more deltas with changes only in the

implementation of the corresponding contract(s). This means

that the interfaces and contracts of the MUU stay the same.

In this work, we introduce the implementation changes based

on violated contracts only. Those contract violations are part

of the feedback data within the update life-cycle model. For

N affected contracts {C1, ·, CN}, only those contracts are

checked for the updated module using unit testing techniques.

Depending on the degree of modularity of the used contract-

based design environment, regression tests may be required

to make sure that the introduced changes didn’t lead to other

unforeseen errors. For this purpose, state of the art regression

testing techniques, such as described in [28], can be used.

Also, and to make sure that no inconsistencies happened

between the stages of unit testing and components integration,

incremental satisfaction checks using simulation or a digital-

twin representation are conducted as further validation step.

2) Incremental virtual integration check: Static and dy-

namic verification techniques are used for the realization of

VIT whenever there is a change of contracts ΔC �= 0. Static

checks use formal verification techniques based on a static

representation of the system, however dynamic ones rather

use a simulation to monitor the corresponding contracts at

run-time. We assume an update of a component M changing

or adding a contract C′. The composibility of M based

on C′ within the system is verified incrementally at design

time by checking whether the changes in the composition of

the component with its environment (horizontal contracts) as

well as the its refinement relations to the higher components

(vertical contracts) hold or not.

V. CASE STUDY

A. Use Case Description

We consider an Adaptive Cruise Control (ACC) with a

collision avoidance extension as described in [29]. The ACC

is designed to provide two operational modes regarding its

functionality Cruise and Follow. In the Cruise mode, a con-

stant velocity set by the driver is maintained by the car. This

is the case when there is no slower lead car in front of the ego

vehicle. If this condition does not hold, the system switches to

the Follow mode and controls the distance in order to match a

desired safe distance. To ensure that the system always keeps

the safe distance, we extend our mode concept by an additional

Safety Critical mode. In this mode, the system performs an

emergency brake when the critical distance is violated in a way

that makes an emergency action necessary. For the reaction

time, we assume that the whole ACC system should not need

more than 400 ms to calculate the inputs for the powertrain

actuators after receiving inputs from the sensors.

B. System Architecture

1) Software components: The ACC system is composed of

a set of interconnected components and sub-components each

with a dedicated functionality (see Figure 3). This modular

system architecture facilitates the realization of the intended

use case description introduced in section V-A. It includes the

following components on the system level:

1711

Fig. 3. Component diagram of the studied ACC system

ACCwSP (ACC with Sensor Processing): This is the main

subsystem which contains the Sensor Processing (Module 1)

and the ACCwCA (ACC with Collision Avoidance) compo-

nents. Sensor Processing receives the radar detection points

and their corresponding time stamps. Then, it processes and

analyzes them so that they become ready to be read by the

following modules. The ACCwCA component is realized by

the composition of ACC (Module 2), which calculates the

acceleration control value (accRef) based on the sensor inputs

and the parameters h and vset, Collision Avoidance (Module

3), which outputs a status (on/off) and a deceleration value

for the maximum applicable deceleration by full brake, and

a Switching Logic (Module 4) component. Switching Logic
implements a simple multiplexing by forwarding the ACC
output when the system is in the Cruise or Follow mode, and

the Collision Avoidance output when the system is in the Safety
Critical mode.

Powertrain: a simplified model of the powertrain control of

a vehicle including a Motor Controller (Module 5) calculating

the torque command for the engine based on the value of the

switch and accRef, a Brake Controller (Module 6) providing

the braking system with a brake command and a Transmis-
sion Controller (Module 7), which provides the gear shifting

system with a gear command.

For the system specification, we defined a list of require-

ments based on existing standards such as ISO 15622 and

other published works on ACC systems and associated them

to the categories Timing, Functional, and Safety.

2) Functional Requirements: We transformed the list of the

functional requirements of the component ACCwCA, which we

consider in the following as the top-level system of interest

for the contract analysis, into four guarantees GT
1 , · · · , GT

4 ,

while the environmental requirements are transformed into

assumptions AT
1 , · · · , AT

4 . Based on the decomposition of

ACCwCA (cf. Figure 3) and the contracts at system level,

we defined further contracts at the interfaces of the sub-

components in the same way as described in [30].

3) Timing Requirements: All components above described

of the ACC system model require timing analysis. Hence, the

individual components are annotated with timing contracts,

i.e. specifications, which serves as a guiding strategy when

designing and realizing them. In Figure 4, we show the

timing scheme for the ACC components, following our main

requirement from section V-A that the ACC system shall

not induce more than 400 ms delay between receiving the

inputs and generating the outputs. Refinement, consistency

and compatibility checks for the contracts were successfully

verified at this step by performing a VIT in MULTIC that

uses a simulation-based verification method for contract-based

timing checks.

Fig. 4. Timing Requirements of the ACC Components

C. Perfective Update Scenario
A perfective update Uperf , as introduced in section II-B,

is used to optimize the execution time of the ACC system

and consequently improve the quality of the system response.

Since we assume a change in the execution time of the system,

our focus will lie on the analysis of the timing contracts and

the components that realize them.

Fig. 5. ACC System Timing Diagram after the Perfective Update

1) Possible Update Reasons: A perfective update is usually

performed when it is necessary to optimize the system timing

so that a positive slack can be introduced. A positive slack can

be used either to introduce a new system functionality within

the slack or to perform an early execution of the subsequent

components. For the ACC system, we assume that we want

to perform a perfective update with which we can save 20

ms from the total system execution time. That means, we can

derive the corresponding change in the system timing contract,

i.e. a ΔC that leads to ΔImp, with which the execution time

is reduced from 400 ms to 380 ms. Therefore, the impact of

the change on the whole system and its components must be

investigated in a top-down approach throughout the different

granularity levels.

1712

TABLE II
IMPACT ANALYSIS RESULTS AT DIFFERENT GRANULARITY LEVELS

2) Impact Analysis and Incremental Verification: Starting

from the request to perform the perfective update Uperf and

the assumption that the update is applicable to the system,

we have investigated the update prerequisites, i.e. reducing

the execution time for the system by 20 ms. Accordingly,

we have determined that the ACC system’s timing contract

must be changed as well as the implementation of the system

component, i.e. ΔC and ΔImp at granularity level 1, as

shown in Figure 5 and Table II. Since ΔC �= 0, we identified

the need for performing a VIT between two consecutive

granularity levels within the ACC system. Such a check will

help us to reflect the top-level component’s changes to its

subcomponents as well as to determine the set of changes that

the subcomponents may need in order to make the system

consistent again. It is performed as follows:

VIT checks at granularity levels 2 and 1: At this step,

the VIT checks whether the composition of ACCwSP and

Powertrain timing contracts at granularity level 2 in Figure

4 are still refining the new timing contract of the ACC system

at granularity level 1 in Figure 5. Obviously, the VIT reports

a violation due to the inconsistency between the subcontracts

and the top-level one. Therefore, there is a need to reflect the

changes to the subcomponents and determine the deltas for

them. We assume that the Powertrain component can not be

updated due to unreachability or copyrights reasons. Hence,

we can keep the changes for the ACCwSP component and

determine the need to change its contract ΔC as well as its

implementation ΔImp (see Figure 5).

VIT checks at granularity levels 3 and 2: Following the same

procedure, the VIT checks the refinement between Sensor
Processing, ACCwCA and ACCwSP. It reports a violation

due to inconsistencies between components. At this level, we

assume that the Sensor Processing component can not be

updated due to unreachability or copyrights reasons. Hence,

we can keep the changes for ACCwCA and determine its

needed changes: ΔC and ΔImp (see Figure 5).

VIT checks at granularity levels 4 and 3: Similarly, the

VIT reports a violation at this granularity. Hence, the changes

of ACCwCA must be reflected by its subcomponents, namely

the ACC, the Collision Avoidance and the Switching Logic
components. We assume that the implementation of Switching
Logic stays the same. Hence, the changes of the ACCwCA
component will be reflected by ACC and Collision Avoidance

only. That means both components require a change in their

timing contracts and their implementation. On the other hand,

the Switching Logic component will require only a change

to its contract assumptions as its expectation regarding the

behavior of the previous components has changed.

Table II summarizes the results of the impact analysis. When

analysing the results, one can conclude that the behaviour

of the ACC system can be updated in case that we update

both the ACC and Collision Avoidance components as well as

changing the Switching Logic contract at granularity level 4.

This conclusion holds as long as we consider the ACCwCA,

ACCwSP and ACC system do not have any other dedicated

functionalities than the considered ones. Consequently, we

can argue that the verification of the implemented update

Uperf can be accomplished by verifying the composition and

the behavior of the components at granularity level 4 only,

while there is no need to verify the components at the higher

granularites.

D. Corrective Update Scenario
We consider a corrective update Ucorr triggered by a vio-

lation of one functional contract specifying a threshold value

for the acceleration command acc of the ACC component (cf.

Figure 3). The violation leads to deceleration values which

are higher than the specified threshold in the corresponding

contract. In order to avoid the resulting strong braking, which

may lead to passenger inconvenience, a change in the imple-

mentation of the ACC module is made.
1) Possible Update Reasons: The main reasons for correc-

tive updates are as described in Table I an arising inconsistency

during the design process or not verifying specific assump-

tions during testing. As shown in [30], the inconsistencies

may occur during the refinement of the design towards the

realization in code, or because of overlooking an assumption or

a guarantee during development. In addition, as testing every

possible situation in which the system can exist is impossible

and very time-consuming, unexpected behavior of the system

may occur during usage due to untested situations. Contract

violations can be detected by run-time monitors run on a

specific CPS middleware.
2) Impact Analysis and Incremental Verification: As the

contracts should stay the same after the update (ΔC = 0), the

only required change is to adapt the implementation of ACC. In

order to fix the issue of too high deceleration values, we check

the component’s implementation change possibility according

to Figure 2. Then, we derive a corresponding change ΔImpl
by adding a saturation block to the used Simulink model

directly after the PID controller. The introduced additional

block bounds the input to the lower limit value −3.0m s−2

without changing the parameters of the PID controller. After

applying the change to the implementation model, we con-

duct satisfaction checks considering the old module’s bug by

running a system simulation and checking the results.

VI. DISCUSSION AND CONCLUSION

In this work, we show an approach to incrementally check

evolving CPS by applying contracts. Based on the ACC use

1713

case, we demonstrate that the validation process for changed

modules can be accelerated by limiting the extent of the

respective update to only those system areas that are affected

by the change and have to be re-verified. This saves the need to

re-test the entire system. By using a contract-based integration

method combined with the notion of deltas Δ, it is possible

to examine the composition of the overall system, both top-

down and bottom-up, at different levels of granularity, to

detect integration problems, and to formally validate and verify

them. Although several publications, e.g. [7] [16], investigated

thoroughly the use of contracts and formal verification for veri-

fying and validating embedded systems, they did not show how

to use those approaches for efficient incremental checks, which

we cover for the important case of safety-critical software

updates. Other works suggesting approaches for incremental-

verification such as [11] and [12] did not explicitly target the

integration into an incremental development process. That is

why we introduced the impact analysis process with focus on

its incremental verification part.

The approach presented in this work provides improved

incremental verification through the use of contracts and

reduces the use of formal description methodology. Moreover,

contracts provide an acceptable level that is applicable and

understandable to practitioners and can easily be adapted to

changing requirements. In future work, this approach shall be

further pursued and expanded by monitoring the contracts also

during operation and by delivering data from the field back to

the system integrator. It can also be extended to product-lines

by enabling the verification of variants.

REFERENCES

[1] M. Staron, “Automotive software architectures,” Automot. Softw. Archit,
pp. 33–39, 2017.

[2] Y. Dajsuren and M. v. den Brand, “Automotive Software Engineering:
Past, Present, and Future,” in Automotive Systems and Software Engi-
neering: State of the Art and Future Trends, Y. Dajsuren and M. van den
Brand, Eds. Cham: Springer International Publishing, 2019, pp. 3–8.

[3] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
dr. frankenstein: Contract-based design for cyber-physical systems*,”
European Journal of Control, vol. 18, no. 3, pp. 217 – 238, 2012.

[4] H. Guissouma, H. Klare, E. Sax, and E. Burger, “An empirical study
on the current and future challenges of automotive software release
and configuration management,” in 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Aug 2018,
pp. 298–305.

[5] B. Meyer, “Applying ’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[6] B. Meyer, “Touch of class: Learning to program well using object
technology and design by contract,” Springer, 2009.

[7] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
and K. G. Larsen, “Contracts for system design,” Foundations and
Trends in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–400,
2018.

[8] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson, “Strong and Weak
Contract Formalism for Third-party Component Reuse,” in Proceedings
of the 24th IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW’13). IEEE Computer Society, 2013,
pp. 359–364.

[9] I. Sljivo, J. Carlson, B. Gallina, and H. Hansson, “Fostering Reuse
within Safety-critical Component-based Systems through Fine-grained
Contracts,” in Proceedings of the International Workshop on Critical
Software Component Reusability and Certification across Domains
(CSCR’13), 2013.

[10] E. Geisberger and M. Broy, agendaCPS: Integrierte Forschungsagenda
Cyber-Physical Systems. Springer-Verlag, 2012, vol. 1.

[11] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental verification
framework for component-based software systems,” in Proceedings of
the 16th International ACM Sigsoft Symposium on Component-Based
Software Engineering - CBSE ’13. Vancouver, British Columbia,
Canada: ACM Press, 2013, p. 33.

[12] L. Bu, S. Xing, X. Ren, Y. Yang, Q. Wang, and X. Li, “Incremental
Online Verification of Dynamic Cyber-Physical Systems,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), Mar.
2019, pp. 782–787.

[13] B.-C. Rothenberg, D. Dietsch, and M. Heizmann, “Incremental Veri-
fication Using Trace Abstraction,” in Static Analysis, A. Podelski, Ed.
Cham: Springer International Publishing, 2018, vol. 11002, pp. 364–382.

[14] U. Juhasz, “Incremental Verification,” Doctoral Thesis, ETH Zurich,
2016.

[15] Z. Cheng and M. Tisi, “Incremental Deductive Verification for Relational
Model Transformations,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). Tokyo, Japan:
IEEE, Mar. 2017, pp. 379–389.

[16] Y. Umezawa and T. Shimizu, “A formal verification methodology for
checking data integrity,” in Design, Automation and Test in Europe,
2005, pp. 284–289 Vol. 3.

[17] C. L. Heitmeyer, “Formal methods for specifying, validating, and
verifying requirements.” J. UCS, vol. 13, no. 5, pp. 607–618, 2007.

[18] M. Oertel and A. Rettberg, “Reducing re-verification effort by
requirement-based change management,” in Embedded Systems: Design,
Analysis and Verification, G. Schirner, M. Götz, A. Rettberg, M. C.
Zanella, and F. J. Rammig, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 104–115.

[19] M. Borg, J. L. de la Vara, and K. Wnuk, “Practitioners’ perspectives
on change impact analysis for safety-critical software–a preliminary
analysis,” in International Conference on Computer Safety, Reliability,
and Security. Springer, 2016, pp. 346–358.

[20] M. Ring, J. Stoppe, C. Luth, and R. Drechsler, “Change impact analysis
for hardware designs from natural language to system level,” in 2016
Forum on Specification and Design Languages (FDL). IEEE, 2016,
pp. 1–7.

[21] W. Damm, G. Ehmen, K. Grüttner, P. Ittershagen, B. Koopmann, F. Pop-
pen, and I. Stierand, “Multi-layer time coherency in the development
of adas/ad systems: Design approach and tooling,” in Proceedings of
the Workshop on Design Automation for CPS and IoT (DESTION’19).
ACM New York, NY, USA, 04 2019, pp. 20–30.

[22] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A tool for checking the
refinement of temporal contracts.” Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, 11 2013.

[23] “Autosar Adaptive Platform,” https://www.autosar.org/standards/adaptive-
platform, accessed: 2019-09-04.

[24] M. Moestl and R. Ernst, “Cross-Layer Dependency Analysis for Safety-
Critical Systems Design,” in ARCS 2015 - The 28th International
Conference on Architecture of Computing Systems. Proceedings, 2015,
pp. 1–7.

[25] IEC, “IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems,” 1998.

[26] J. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y. Oakshott,
“The who, where, how, why and when of modular and incremental
certification,” in 2nd IET International Conference on System Safety
2007, vol. 2007. London, UK: IEE, 2007, pp. 135–140.

[27] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer, “Evolving delta-
oriented software product line architectures,” in Large-Scale Complex IT
Systems. Development, Operation and Management, R. Calinescu and
D. Garlan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 183–208.

[28] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, “Regression
testing in an industrial environment,” Commun. ACM, vol. 41, no. 5, p.
81–86, May 1998.

[29] S. Vakili, “Design and formal verification of an adaptive cruise control
plus (acc+) system,” Ph.D. dissertation, 2015.

[30] H. Guissouma, S. Leiner, and E. Sax, “Towards design and verification
of evolving cyber physical systems using contract-based methodology,”
in 2019 International Symposium on Systems Engineering (ISSE), 2019,
pp. 1–8.

1714

