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Abstract—Convolutional neural networks (CNNs) have become
a classic approach to solving challenging computer vision prob-
lems. Much of its success is due to its ability to discover optimal
filters that capture non-trivial spatial relationships in data. Other
vital components include advances in optimization, regulariza-
tion, and overfitting prevention strategies. However, recently,
researchers have observed closely the connections between what
CNNs learn in the layers that capture low-level features and
filter-banks such as Gabor filters. Gabor filters have been used
in computer vision tasks long before CNNs were popularized with
good performance. This paper presents a review of the literature
concerning approaches that involve both Gabor filters and CNNs.
We pay close attention to successes and opportunities for future
research in the intersection of these two computer vision tools.

Index Terms—convolutional neural networks, deep learning,
Gabor filters, object recognition, image processing

I. INTRODUCTION

It is interesting how human beings are able to recognize an

object. First, our eye perceives the image of an object. Then,

the brain extracts the details from the image and aggregates

a concise result from those details. This intricate process of

object recognition simply goes unnoticed as our eyes and

brain coordinate in such a subtle way. Because the researchers

are fascinated by this, object recognition has been a highly

contemplated topic in the field of computer vision for decades.

Although researchers have already explored its vast range

of topics, there is still room for improvement. The progress

may be gradual, but with the advent of new and improved

algorithms and technologies, the progress seems inevitable.

Talking about image processing, it is impossible to skip over

Gabor filters. In the field of image processing, it has garnered

well reputation regarding its use. The very concept our eye

depends on to detect an object is recognizing the shape and

structure of the object based on the texture segmentation, and

this segmentation is the main essence of Gabor filters. Various

research has shown its efficient usage in different scenarios [1],

[2], [3], [4], [5], [6], [7].

But in the last decade, Convolutional Neural Networks

(CNNs) have been favored extensively over Gabor filters.

Although the usage of CNN dates back to the late 1990s [8],

it has again burst into the scene since the early 2010s, and

this can be hugely credit to the initial effort of Krizhevsky,

Stuskever, and Hinton [9]. Since their work, many variations of

the model has been approached in many different sectors [10],

[11], [12], [13], [14], [15].

Because of the technical limitation, in the past, CNN was

not considered as the de-facto model. But, now with the

availability of surging computation power in Central Process-

ing Unit (CPU), Graphics Processing Unit (GPU), and even

in cloud computing, the limitation has been alleviated, and

this has certainly favored CNN. And why not? It does not

require one to have the expertise of parameters of Gabor

filters. It learns through its way through all the learning space,

optimizing itself to give the desired result. But, granted the

power of CNN in self-optimization, we believe the essence of

the Gabor filter not to be forgotten. There have been some

research done, forming the bond between these two powerful

models [16], [17], [18] and it has resulted in some pretty

interesting result to look upon. These results have made us

ponder upon the different possibilities that it could lead to.

With the presented summary of all the research over the past

decade, we certainly hope to motivate the reader to pursue

research in the intersecting fields of CNNs and Gabor filters

and its symbiotic relationship.

The rest of the paper is organized as follows: Section II

discusses Gabor filters and their existing use across different

fields. Then we will be talking about CNNs, its basic concept,

different variations of its model, and its effective use in a

variety of sectors in Section III. Then, Section IV addresses

how Gabor filters and CNNs have been used to augment the

productivity of learning process. Finally, Section V presents

a brief discussion and concluding remarks are drawn in

Section VI.

II. GABOR FILTER

A Gabor filter, derived from Gabor elementary functions

(GEF), is a linear filter used for a multitude of image process-

ing applications for texture analysis, edge detection, feature

extraction, etc. As a band-pass filter, the Gabor filter enables

the extraction of patterns at the specified certain frequency and

orientation of the signal. Therefore this resulting property of

transforming texture differences into detectable filter-output

discontinuities at texture boundary has established itself to

mimic the functionality of the visual cortex [1], [2], [3].

While the concept of Gabor elementary function was initially

presented by Hungarian-British physicist Dennis Gabor [19],

it was later extended to 2-D filters by Daugman [20].

In basic terms, a Gabor elementary function (GEF) can

be thought of as a Gaussian being modulated by a complex
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Fig. 1. Different Gabor filters with different values for λ, θ and γ. Different
parameters will change filter properties.

sinusoid, where the Cosine and Sine waves generate the real

and imaginary component. GEF can be formulated as:

g(x, y) = exp

(
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′2 + γ2y′2

2σ2

)
exp

(
i

(
2π
x′

λ
+ ψ

))
(1)

where (x′, y′) = (x cos θ + y sin θ,−x sin θ + y cos θ) repre-

sents rotated spatial-domain rectilinear coordinates; λ repre-

sents the wavelength of the sinusoidal factor, θ represents the

orientation of the normal to the parallel stripes of a Gabor

function, ψ is the offset, σx and σy characterizes the spatial

extent and bandwidth of the filter. Most of the time a sym-

metric filter (σx = σy) will suffice for texture segmentation,

but when the texture contains texels not arranged in square

lattice, asymmetric filters (σx �= σy) could be useful [1]. This

asymmetric nature is given by γ �= 1, where γ is the spatial

aspect ratio:

γ =
σx
σy
. (2)

Since a single Gabor filter can only be responsible for a

certain feature, a multitude of Gabor filters is necessary to

yield meaningful features. As shown by Jain et al. [3] a

multitude of features computed over different spatial orien-

tations and frequencies was necessary to yield a successful

segmentation of an image with complex background. Because

of its reputation in texture segmentation, Gabor features have

also been popular in the automated defect detection of textured

materials [21], [22], [7]. But, since the Gabor filter only gives

out texture features, an algorithm that yields a meaningful

result from those features is necessary. Kumar and Sherly [21],

used a multi-channel filtering scheme, while Jing et al. [22]

used Kernel Principal Component Analysis upon the extracted

features along with the OTSU threshold method to give a high

defect detection rate. Correspondingly, Li et al. [7] used Pulse

Coupled Neural Network (PCNN) giving a detection accuracy

of around 98.6%
Over the years, the Gabor filter has seen its use in a variety

of applications. Li et al. [7], proposed a method for road

detection using Gabor filter. They effectively demonstrated

the robustness of Gabor filters by detecting roads in various

lighting conditions (night, entering tunnel, and shadowing).

Their proposed methods consisted of two steps: locating

vanishing-point based on soft voting scheme upon dominant

texture orientations, and then detecting the road lane ahead

of the vehicle via edge detection method, while effectively

constraining the search of lane mark using the vanishing point.

El-Sayed et al. [23] proposed an authentication mechanism

based on the identification of retinal features. They efficiently

used the Gabor filter to segment the retinal blood-vessel,

and then ran SVM was upon the resulting feature pattern

for feature matching. They claim this method to be stable

regarding multiple and rotary shifts of digital retina images,

and their test result corroborates their claim as they were able

to achieve an accuracy of around 96.9%.

In their research, Gornale et al. [24] showed an interesting

way of identifying gender-based on features gathered from

Discrete Wavelet Transform (DWT) and Gabor based feature.

When most of the research was focusing on facial features,

this was a pretty interesting method as it was able to achieve

97% accuracy.

In 2016, Rizvi et al. [25] demonstrated the use of Gabor

features for object detection. Aided with Gabor filters, the

feedforward Neural Network model was able to an accuracy

of 50.71%, which was comparable to that of CNN (52.15%).

This was interesting as it was able to achieve such accuracy

in less amount of training time.

Avinash et al. [26], argued about the failure of previously

employed methods in a real-time application for detection of

lung cancer in early stages. They proceed on to propose the

usage of Gabor filter along with Marker driven watershed seg-

mentation technique on Computed Tomography (CT) images

to overcome the hurdle.

Continuing on Gabor filters, Daamouche et al. [27] pro-

posed an unsupervised method of application of Gabor fil-

ters and morphological operators for building detection on

remotely sensed images.

Over the years, the Gabor filter has seen its heavy usage

in the extraction of facial features. In 2016, Hemalatha and

Sumathi [28] proposed the Median and Gabor filters along

with Histogram Equalization as a combined preprocessing

method, for yielding a better-enhanced image. They argue that

their technique will lead to a color-normalized, noise-reduced,

edge-enhanced, and contrast illuminated image.

In the same fashion, Lefkovits et al. proposed the use of

Gabor filters to aid detection of the eye and its openness [29].

Their methodology primarily consisted of using the Gabor

filter to detect the eye which was aided with Viola-Jones face

detection [30] to speed up the process and a self-created face

classifier based on Haar features to lower false positive of

detection rate.

Around the same time, Pumlumchiak and Vittayakorn [31]

presented a novel framework for facial expression recognition.

Their method primarily consisted of extraction of Gabor filter

responses as facial features, mapped upon feature subspace

using the joint framework of Principal Component Analysis
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(PCA), Principle Components (PCs) removal, and Linear Dis-

criminant Analysis (LDA). Their experimental result shows to

outperform existing baselines, and thus substantiating that the

weighted neighbor to be a good approach at classifying facial

expressions to 4 different classes: anger, surprise, happiness,

and neutral.

However, Mahmood et al. [32] went with a different ap-

proach in tackling the facial expression recognition task. Their

method comprised of a combined Radon transform and Gabor

transform for facial feature extraction, fed towards a fused-

classifier approach in the form of Neural Network over Self-

Organized Maps (SOM). On classification over 6 different

expressions - surprise, anger, sadness, disgust, happiness, and

fear, an accuracy of 84.87% was obtained over two public

datasets, on average.

Rather than using Standard Gabor Filter Ensemble (SGFE)

of varying scale and orientation, Low et al. [33] proposed

a Condensed Gabor Filter Ensemble (CGFE) in which have

the diversified traits of multiple SGFE are condensed into a

single one. Their method of self-cross convolving the pre-

selected Gabor filters exhibit to outperform the state of the

art face descriptors Linear Binary Pattern (LBP) variants:

Discriminant Face Descriptor (DFD) [34] and Compact Binary

Face Descriptor (CBFD) [35].

Nava et al. [36], in 2012, proposed a new filtering scheme,

Log-Gabor, designed to eliminate the non-uniform coverage

in Fourier domain produced by Gabor filter, and thus strongly

correlating with Human Visual System (HVS). In 2017, Nunes

et al. [5], expanded on this filtering scheme and proposed a

local descriptor called multi-spectral feature descriptor (MFD),

designed specifically to work with images acquired over dif-

ferent frequencies across the electromagnetic spectrum. Upon

evaluation, it was found to be computationally efficient while

maintaining the same precision and recall as the extant state-

of-the-art algorithms.

The feature point matching method presented by Liu

et al. [37] for infrared and visible image matching also

effectively utilizes Log-Gabor for generating the descriptors.

This method based upon the Log-Gabor filters and Distinct

Wavelength Phase Congruency(DWPC) effectively helps in

matching non-linear images with different physical wave-

length, and the experiment results corroborate it, as this

method outperformed traditional approaches: edge-oriented

histogram descriptor (EHD), phase congruency edge-oriented

histogram descriptor (PCEHD), and log-Gabor histogram de-

scriptor (LGHD), in infrared and visible images by 50%.

In the case of image segmentation, the Gabor filter is always

the one to look up to, and Premana et al. [6] demonstrated

this by using just simple, yet powerful K-Means clustering

algorithm to segment the object from its complex background

with the aid of Gabor filter responses. Fan et al. [38] pro-

posed a novel woven fabric recognition method based on

a similar concept. They proposed the utilization of Gabor

filter to determine the orientation of texture at yarn cross-

ing points segmented with K-means clustering and gradient

accumulation. This segmentation capability of the Gabor fil-

Fig. 2. An illustration of architecture of CNN with convolutional layers,
pooling layers and dense layers.

ter is further demonstrated by Gargi Srivastava and Rajeev

Srivastava [39] as they propose a novel method for salient

object detection. Combined with the foreground saliency map

formed from backgroundness score via minimum directed

backgroundness and segmented images obtained from Gabor

filters, this method utilizes an objectness criterion to choose

the segment containing the salient object. Although failing in

some conditions, this method effectively outperforms state-of-

the-art algorithms (evaluated by PR-curve, F-Measure curve,

and Mean Absolute Error upon 8 different public datasets).

Recently, in 2019, Khaleefah et al. [40] proposed an in-

teresting method to combat the deformations in paper images

formed by extant scanners. Their novel Automated Paper Fin-

gerprinting (APF) utilized the combined effort of Gabor filters

and Uniform Local Binary Patterns (ULBP) for extracting both

local and global information for better texture classification.

Their evaluation effectively highlights the need for Gabor

filter as the combined approach was able to outperform the

standalone ULBP system by 30.68%.

III. CONVOLUTIONAL NEURAL NETWORK

In the field of image processing, many consider Convo-

lutional Neural Network (CNN) to be state-of-the-art. CNN

represents a family of statistically learning models which is

primarily based upon the convolution operation of images with

filters leading to feature-mapping layers. In a similar fashion

to any other Neural Network (NN) models, it is biologically

inspired by visual neuroscience theory. Hubel and Wiesel [41],

found out that in a cat’s visual cortex there are simple cells

and complex cells present which fire in response to certain

properties of visual sensory inputs. While the simple cell

showed a response to simple, low-level spatial features like

the orientation of edges, complex cells exhibited more spatial

invariance. And, the architecture of CNN is similar to that -

a hierarchical multi-layer network where receptive layers are

designed to capture some specific peculiarity of the image

while the following layers build upon that to create more

abstract features.

A general CNN consists of some combinations of convolu-

tion layers, pooling layer, activation layer, and dense (fully-

connected) layer, but modification can be seen according to

the application in-hand like the addition of dropout layer,

normalization layer, etc. for issues like overfitting, uniformity,

etc. CNN is trained usually via backpropagation [42] in

which the weight is updated using variation gradient descent
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Fig. 3. Visual representation of 64 convolutional kernels of size 9×9×3
learned by the first convolutional layer on the 32×32×3 input images.

like Stochastic Gradient Descent (SGD), Mini-batch Gradient

Descent, etc. [43].

CNN is not new in the field. It has seen its fair share

back in the 1990s too. Cun et al. [42] effectively utilized the

model for recognizing handwritten zip codes to constrain the

error rate to 1%, while Lawrence et al. [8] and Rivas and

Chacon [44] effectively demonstrated the capability of CNN

in face recognition by outperforming Karhunen-Loeve (KL)

transform and Multi-Layer Perceptron (MLP). But it was the

work of Krizhevsky et al. [9] that brought CNN back into

the limelight. AlexNet made a significant stride in the field of

image recognition as it effectively demonstrated that a deeper

model is much better than a wider model. With a margin

of 10.9% compared to the second-placed model, it won the

ILSVRC-2012 competition. Following the success of AlexNet

various deeper models like Residual Networks (ResNets) [45],

GoogleNet [46], VGGNet [47], etc. has came into existence,

and also various research like object recognition [48], [49],

[50], [51], 3D object detection [52], [53], pedestrian detec-

tion [13], learning scene gist [54], etc. has been conducted.

CNN generally outperforms other supervised learning algo-

rithms when it comes to image processing. In [48], researchers

confirmed CNN outperforms Support Vector Machine (SVM)

while automating the task of image analysis coming from the

satellite. Szarvas et al. [13] showed that CNN is able to reduce

the False Positive Rate (FPR) to less than 1
5 of SVM when

trained on pedestrian images with complex background and

subject, and they mainly attributed this to the optimization of

feature representation by CNN. Likewise, regarding the multi-

class object recognition problem, Hayat et al. [55] showed

that a 5-layered CNN was able to achieve 90.12% accuracy,

which completely outperformed different classical bag-of-

words (BOW) approaches. Similarly, Zulkeflie et al. [51]

evaluates AlexNet, basic CNN, and Bag of Features (BoF)

with Speeded-Up Robust Feature (SURF) and SVM classifier,

and found out that AlexNet and basic CNN model outperforms

BoF model. Looking at all this research, it can be seen that

most of the time, the general CNN model suffices for the task

at hand, sometimes some tweaks may be necessary, and it

may be concerning the complexity of task, accuracy, memory

requirements, etc.

In 2014, Kawano and Yanai [12] integrated conventional

hand-crafted image features, namely, Fisher Vectors with His-

togram of Oriented Gradients (HOG) and Color patches, with

the convolutional features, boosting the accuracy to 72.6% in a

100-class food dataset. It completely outperformed the existing

best accuracy rate - which was at 59.6%.

Biologically inspired, Wu et al. [54] proposed integration

of scene’s gist for object recognition improvement, similar to

how humans foveate on an object and incorporate periphery

information to aid object recognition. Coined as GistNet,

their model consisted of two CNN models - a fovea sub-

network for object recognition and a periphery sub-network

for contextual modulation. With VGG-16 as a baseline, their

approach improved the accuracy by 50% for certain object

recognition while increasing the size by only 5%.

Kumar and Sherly [49] fine-tuned the last two layers of

a pre-trained VGG-16 CNN model and trained on their aug-

mented data to avoid overfitting due to lack of training data.

This approach led them to an accuracy of 81.6%, which is

good considering the scarcity of training data.

Talking about overfitting and data deficiency, as a supervised

learning approach, CNN needs a large amount of data in order

to boost its performance and generalization. While transfer

learning could be done to deviate from the need for an

expensive labeling process, Dosovitskiy et al. [56] proposed a

discriminative unsupervised feature learning approach. Train-

ing the network to discriminate between surrogate classes,

created by applying a variety of transformations to a randomly

sampled seed image path, led it to outperform extant state-of-

the-art unsupervised methods. With regard to the context and

argument, this novel approach is certainly to look up to.

Over the years, CNN has seen its fair share of use as

a feature extractor too [57], [58], [52], [59], [60]. Upon

evaluation of AlexNet and VGGNet, researchers in [58]

showcased that not only the final fully-connected layers but

the intermediate layers too, can act as a source of features to

enhance recognition performance. Similarly, Chen et al. [57]

also ascertained that different layers in CNN could engender

features suitable for the detection of different aspects of place

recognition task.

In 2015, Wang et al. [52], proposed the use of CNN along

with SVM, where CNN acts as the feature extractor and SVM

as the classifier, for 3D object recognition. In their proposed

approach, they first converted depth modality into 3 channels,

and then fine-tuned two pre-trained Caffe models [61], in order
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to extract representative sparse features from color (RGB) and

depth (RGB-D) images, finally to be used by SVM classifier.

On experimentation, this approach yielded 91.35% accuracy,

much better than the state-of-the-art and also CNN model

trained solely on RGB images from the RGB-D object dataset.

Similarly, Schwarz et al. [53] proposed the use of a pre-

trained CNN model as a feature extractor, in conjunction

with SVM classifier for RGB-D object recognition its pose

estimation. Their approach incorporated depth features by

rendering objects from canonical views and coding metric

distance from the object center with the color scheme, making

it well suitable for CNN to extract meaningful features.

Continuing on 3D object recognition, Gao et al. [62]

proposed pairwise Multi-View CNN (coined as PMV-CNN),

designed to explicitly deal with lack of training samples while

also maintaining latent complementary information from dif-

ferent views explored via view pooling. Their novel approach

used a pair of CNN in order to jointly learn the visual features

from multiple views and optimize towards object recognition.

Since Spiking Neural Network (SNN) based architecture

is energy efficient when used in conjunction with spike-

based neuromorphic hardware,Cao et al. [59] proposed a novel

approach for converting CNN into an SNN in order to map

into spike-based hardware. When training the tailored CNN,

this approach gets exposed to the learning capability of CNN,

and while transferring the learned weight of the tailored CNN

back to SNN, it becomes energy efficient and compatible

with spike-based neuromorphic hardware. Regarding real-time

object recognition, they found this approach to be energy

efficient than Field Programmable Gate Array (FPGA)-based

implementation of CNN by two orders of magnitude.

As shown by all these aforementioned research, while CNN

has established as the state of the art for object recognition,

it can be expanded to recognition in real-time too. Upon

implementation of CNN on FPGA, Ahn [63] was able to

achieve 170,000 classifications per second and scale-invariant

object recognition from a 720×480 video stream at a speed

of 60 fps. Similarly, Radovic et al. [64] proposed the use

of YOLO - a CNN based open-source object detection and

classification platform - for classification of the object on

real-time video feed obtained form Unmanned Aerial Vehicles

(UAV).

In [14], Maturana and Scherer proposed a 3D CNN archi-

tecture, coined VoxNet, that integrated a volumetric occupancy

grid representation with 3D CNN for real-time object detec-

tion. This representation enabled full utilization of information

coming from range sensors, ultimately boosting performance

to labeling hundreds of instances per second. Inspired by [14],

Garcia-Garcia et al. [65] proposed the use of density occu-

pancy grids as the inner representation for input data in a

model coined PointNet. When integrated with the 3D CNN

model, this approach significantly boosted the performance.

Expanding upon [14], Zhi et al. [15] proposed LightNet - a

lightweight volumetric 3D CNN. Their compact model was

computationally efficient that VoxNet, while a combination

of different kinds of auxiliary learning tasks made it less

vulnerable to overfitting.

Likewise, Huang and You [66] introduced a 3D point cloud

labeling scheme based on 3D CNN. Representation based on

only voxelized data made it straightforward. While complica-

tions like exceeding memory usage, biased classification, etc.

could exist, they did present solutions for handling such data.

In [60], Fang et al. devised a novel approach Improved

Faster Regions with CNN Features (IFaster R-CNN) to address

the generalization issue while detecting objects on construction

sites in real-time. Their approach was also based upon the use

of CNN as base feature extractor from images, which then with

the use of Region Proposal Network (RPN) to concurrently

predict object bounds and objectness scores at a particular

position, fed the extracted regional proposals were fed into

Fast R-CNN module for detection. With detection speed at

real-time at 0.101 s per image and accuracy of about 91% and

95% for worker and excavator respectively, they completely

outperformed extant state-of-the-art by an average of 50%.

Du et al. [67] experimented with a six-degree-of-freedom

(6-DOF) robot arm with a gripper, their proposed method

successfully yielded an accuracy of 98.44% for the stereo

vision-based object recognition and manipulation. Their hy-

brid algorithm comprised of an adaptive network-based fuzzy

inference system (ANFIS) for the eye-to-hand calibration and

R-CNN for object detection.

While accuracy has been the most important aspect re-

searchers looked up to, there has been considerable research

done to boost the speed of recognition too [11], [10], [68].

The authors of [11] were able to considerably drop the error

rates in fewer epochs when trained using their fast, fully

parameterizable GPU based CNN.

Similarly, with regard to speed, Anwar et al. [10] pro-

posed fixed-point optimization for reducing the number of

parameters. They effectively quantized layers of pre-trained

high precision networks using L2 error minimization based

on layerwise sensitivity on word-length reduction. Their ap-

proach not only significantly reduced memory usage but also

generalized the model.

As 3D object detection is computationally demanding, Xu

et al. [68] proposed Volumetric Accelerator (VOLA) for the

memory-efficient representation of the 3D volumetric object.

With a reduction in memory usage, they purport their rep-

resentation model to be better in terms of speed, and their

experimental result advocates it as their VOLA-based CNN

performed 1.5 times faster than the original LeNet.

IV. GABOR AND CNN

Judging from all these research it can be clearly seen that

both Gabor filter and CNN can act as an excellent feature

extractor. However as seen in previous research [12], [54],

CNN can skip over some of the valid specific information

and hence, can immensely benefit when complemented with

other manual features. Since Gabor has been defined to extract

all sorts of features [31], [29], [5] in a different domain, this

makes it a well-suited candidate to complement CNN, and in

fact, a lot of research have shown so [69], [18], [4], [70].
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In conjunction with Gabor filter features, Yao et al. [69]

found that CNN yielded a 1.26% boost in accuracy when

employed for object recognition in the natural scene. With

an accuracy of 81.53%, it outperformed standalone CNN

marginally and significantly outperformed the Bag-of-Words

model with Scale Invariant Feature Transform (SIFT). In the

same manner, Hosseini et al. [4] utilized the Gabor filter

responses to boosting the accuracy of CNN for classification

based on age and gender. Zadeh et al. [71], also noted the

boost in speed and accuracy when Gabor filter features were

incorporated with CNN for fast facial emotion recognition.

The visualization of Gabor filters and first convolutional

layers of CNN shows that they are quite alike, and it was

confirmed by Krizhevsky et al. [9] that when trained on real

images deep CNN the first convolutional layers to be similar to

Gabor filters. Motivated by this fact, Alekseev and Bobe [72]

modified the architecture where the first layer of CNN was

constrained to fit the Gabor function. Upon experimentation

with different datasets, it was found to yield the same or even

better accuracy with significant improvement in convergence.

Inspired by traditional local Gabor binary patterns, Jiang and

Su [70] proposed Gabor Binary Layer (GBL) as an alternative

for the first layer of the CNN model. GBL - composed of a

module of predefined Gabor filters with different shape and

orientation and a module of fixed randomly generated binary

filters - when experimented with different CNN models gave

a better performance than the state-of-the-art CNNs.

In a similar fashion, Luan et al. [16] extended the concept

to multiple layers CNN. Coined as Gabor Convolutional Net-

works (GCN), their network comprised of predefined Gabor

filters of different scale and orientation in multiple layers.

Proposed to enhance the robustness of the model against

image transitions, scale changes, and rotations, their model

significantly enhanced performance over the baseline model

while simultaneously reducing the training complexity too.

Built upon GCN, Liu et al. [17] proposed a new learn-

ing model, Hybrid Gabor Convolutional Network (HGCN).

While [16] focused on accuracy, [17] went for memory

efficiency. With hybrid binarized input and Gabor Binarized

Filters (GBFs) in an end-to-end framework, HGCN was able

to reduce memory usage by a factor of 32 while maintaining

accuracy due to usage of GCN.

Molaei et al. [18] also initialized the first layer of CNN with

predefined Gabor filters for effective Left Ventricle segmenta-

tion. Due to the robust nature of the Gabor filter, the model

increased the performance in terms of specificity and sensitiv-

ity. In 2020, Molaei and Shiri Ahmad Abadi [73], expanded the

model to maintain the structure of the Gabor filter during the

training process. When compared with different initialization

methods, it significantly outperformed all, even when dealing

with noisy data and a lesser amount of training data.

V. DISCUSSION

Gabor filters are an established methodology to capture

image properties using frequency-domain theory that has

direct feature extraction properties in the spatial domain.

Clearly, over the years Gabor filters were the method of choice

for general purpose feature extraction on image-based object

recognition tasks. However, when CNNs were designed to lear

any sort of filter, which includes the set of all possible Gabor

filters, then researchers quickly abandoned its use in favor of

optimal filter design through CNNs.

Recenlty, with the stability of CNNs researchers are now

looking closely at what CNNs are learning and have desired to

investigate how CNNs work and why. The research presented

here, points out the direct possible relationship between CNNs

and Gabor filters and calls researcher to pay attention to this

new and exciting area. The work presented here summarizes

research conducted using Gabor filters in conjunction with

CNNs to improve accuracy.

The research includes both CNNs and Gabor filters have

shown promising results when the filter parameters are guided

through back-propagation; however, this literally removes a

CNNs ability to arbitrarily destroy a filter if that is what is

needed to find a local minima. Therefore, it must be worth

noting that the ability for a CNN to fully alter a filter’s design

must be kept as this has bee proven to be one of its mayor

benefits.

However, we claim that to the best of our knowledge there

are no algorithms that initialize CNNs with Gabor filters and

let them be freely modified with back-propagation, rendering

Gabor filters as an initial tool that may or may not need to be

forced into the network. Although, deeper convolutional layer

can develop the ability to ignore and alter the information

given by Gabor filters, these modification have exponential

complexity in terms of the amount of updates that are required.

VI. CONCLUSION

CNNs have become the preferred method for computer

vision problems aiming for classification, clustering, and other

image analysis tasks. However, general-purpose object recog-

nition tasks often seem to yield low-level features closely

related to Gabor filters.

The literature examined shows that when Gabor filters have

been used in computer vision tasks, performance is often

superior compared to other approaches that do not use such

an approach. The computational expense of calculating Gabor

filters is negligible, having constant-time complexity, O(1),
implying easy acquisition and deployment.

For these reasons, researchers have recently combined the

Gabor filter theory and CNNs. The results have been positive

in specific computer vision tasks, allowing gradient descent

techniques to update specific subsets of the set of parameters

of the Gabor filters, {γ, λ, θ}, in order to use the pseudo-

optimal collection of filters.

However, existing approaches have a number of issues that

have not been explored and that we will tackle in further

research. First, restricting Gabor filters as the only thing that

a CNN can use might be severely limiting the potential of

a CNN to alter the structure, even so slightly, of a Gabor

filter in order to maximize performance, or even completely

destroy the spatial shape of an existing, under-performing,
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filter. Second, current studies combining Gabor filters and

CNNs have not shown a conclusive relationship between the

use of Gabor filters and the convergence of a CNN, which is

crucial to understanding the added computational cost of using

Gabor filters as opposed to using randomly generated uniform

white noise, which is the traditional approach. Third, while the

evidence that CNNs and Gabor filters together are successful

in very specific computer vision tasks, there is no sufficient

evidence that Gabor filters can provide a significant advantage

in general object recognition tasks. We intend to tackle these

and other consequential issues in our on-going research.
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[5] C. F. G. Nunes and F. L. C. Pádua, “A local feature descriptor based on
log-gabor filters for keypoint matching in multispectral images,” IEEE
Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1850–1854,
2017.

[6] A. Premana, A. P. Wijaya, and M. A. Soeleman, “Image segmentation
using gabor filter and k-means clustering method,” in 2017 International
Seminar on Application for Technology of Information and Communi-
cation (iSemantic), 2017, pp. 95–99.

[7] Z. Li, H. Ma, and Z. Liu, “Road lane detection with gabor filters,”
in 2016 International Conference on Information System and Artificial
Intelligence (ISAI), 2016, pp. 436–440.

[8] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back, “Face recog-
nition: a convolutional neural-network approach,” IEEE Transactions on
Neural Networks, vol. 8, no. 1, pp. 98–113, 1997.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[10] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 1131–1135.

[11] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

[12] Y. Kawano and K. Yanai, “Food image recognition with deep
convolutional features,” in Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, ser. UbiComp ’14 Adjunct. New York, NY, USA:
Association for Computing Machinery, 2014, p. 589–593. [Online].
Available: https://doi.org/10.1145/2638728.2641339

[13] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata, “Pedestrian
detection with convolutional neural networks,” in IEEE Proceedings.
Intelligent Vehicles Symposium, 2005., 2005, pp. 224–229.

[14] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 922–
928.

[15] S. Zhi, Y. Liu, X. Li, and Y. Guo, “Lightnet: A lightweight 3d
convolutional neural network for real-time 3d object recognition,”
in Proceedings of the Workshop on 3D Object Retrieval, ser. 3Dor
’17. Goslar, DEU: Eurographics Association, 2017, p. 9–16. [Online].
Available: https://doi.org/10.2312/3dor.20171046

[16] S. Luan, C. Chen, B. Zhang, J. Han, and J. Liu, “Gabor convolutional
networks,” IEEE Transactions on Image Processing, vol. 27, no. 9, pp.
4357–4366, 2018.

[17] C. Liu, W. Ding, X. Wang, and B. Zhang, “Hybrid gabor convolutional
networks,” Pattern Recognition Letters, vol. 116, pp. 164 – 169, 2018.

[18] S. Molaei, M. Shiri, K. Horan, D. Kahrobaei, B. Nallamothu, and
K. Najarian, “Deep convolutional neural networks for left ventricle
segmentation,” in 2017 39th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp.
668–671.

[19] D. Gabor, “Theory of communication,” J. Inst. Elec. Eng. (London),
vol. 93, pp. 429–457, 1946.

[20] J. Daugman, “Uncertainty relation for resolution in space, spatial fre-
quency and orientation optimized by two-dimensional visual cortical
filters,” J. Opt. Soc. Amer. A., vol. 2, 1985.

[21] A. Kumar and G. K. H. Pang, “Defect detection in textured materials
using gabor filters,” IEEE Transactions on Industry Applications, vol. 38,
no. 2, pp. 425–440, 2002.

[22] J. Jing, X. Fang, and P. Li, “Automated fabric defect detection based
on multiple gabor filters and kpca,” International Journal of Multimedia
and Ubiquitous Engineering, vol. 11, no. 6, pp. 93–106, 2016.

[23] M. A. El-Sayed, M. Hassaballah, and M. A. Abdel-Latif, “Identity
verification of individuals based on retinal features using gabor filters
and svm,” Journal of Signal and Information Processing, vol. 7, 2016.

[24] S. Gornale, A. Patil, and V. C., “Fingerprint based gender identification
using discrete wavelet transform and gabor filters,” International Journal
of Computer Applications, vol. 152, no. 4, 2016.

[25] S. T. H. Rizvi, G. Cabodi, P. Gusmao, and G. Francini, “Gabor filter
based image representation for object classification,” in 2016 Interna-
tional Conference on Control, Decision and Information Technologies
(CoDIT), 2016, pp. 628–632.

[26] S. Avinash, K. Manjunath, and S. S. Kumar, “An improved image pro-
cessing analysis for the detection of lung cancer using gabor filters and
watershed segmentation technique,” in 2016 International Conference
on Inventive Computation Technologies (ICICT), vol. 3, 2016, pp. 1–6.

[27] A. Daamouche, D. Fares, I. Maalem, and K. Zemmouri, “Unsupervised
method for building detection using gabor filters,” in Special issue of
the 2nd International Conference on Computational and Experimental
Science and Engineering (ICCESEN 2015), vol. 130, 2016.

[28] G. Hemalatha and C. P. Sumathi, “Preprocessing techniques of facial
image with median and gabor filters,” in 2016 International Conference
on Information Communication and Embedded Systems (ICICES), 2016,
pp. 1–6.

[29] S. Lefkovits, L. Lefkovits, and S. Emerich, “Detecting the eye and its
openness with gabor filters,” in 2017 5th International Symposium on
Digital Forensic and Security (ISDFS), 2017, pp. 1–5.

[30] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, 2001, pp. I–I.

[31] T. Pumlumchiak and S. Vittayakorn, “Facial expression recognition
using local gabor filters and pca plus lda,” in 2017 9th International
Conference on Information Technology and Electrical Engineering (ICI-
TEE), 2017, pp. 1–6.

[32] M. Mahmood, A. Jalal, and H. A. Evans, “Facial expression recognition
in image sequences using 1d transform and gabor wavelet transform,” in
2018 International Conference on Applied and Engineering Mathematics
(ICAEM), 2018, pp. 1–6.

[33] C. Low, A. B. Teoh, and C. Ng, “Multi-fold gabor filter convolution
descriptor for face recognition,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 2094–
2098.
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