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Abstract — New open box and nonlinear system model of Ultra High 

Frequency Sigmoid and Sine Artificial Higher Order Neural 

Network (UGS-HONN) is presented in this paper. A new learning 

algorithm for UGS-HONN is also developed from this study. A time 

series data modeling system, UGS-HONN Simulator, is built based 

on the UGS-HONN system models too. Test results show that 

average error of UGS-HONN system models are closing to zero (10-

6). The average errors of Polynomial Higher Order Neural Network 

(PHONN), Trigonometric Higher Order Neural Network (THONN), 

and Sigmoid polynomial Higher Order Neural Network (SPHONN) 

models are from 2.8128% to 4.9076%.   It means that UGS-HONN 

system models are 2.8128% to 4.9076% better than PHONN, 

THONN, and SPHONN models.   
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I. INTRODUCTION AND MOTIVATIONS 
 

Artificial Higher Order Neural Network (HONN) has a lot 
of applications in different areas. Barron, Gilstrap, and Shrier 
[1] develop polynomial and neural networks for analogies and 
engineering system modeling applications. An, Mniszewski, 
Lee, Papcun, and Doolen [2] test a learning procedure, based on 
a default hierarchy of high-order neural networks, which 
exhibited an enhanced capability of generalization and a good 
efficiency to learn to read English. Mao, Selviah, Tao, and 
Midwinter [3] design a holographic high order associative 
memory system in holographic area. However, all studies above 
use traditional artificial neural network models - black box 
models that did not provide users with a function that describe 
the relationship between the input and output. The first 
motivation of this paper is to develop nonlinear “open box” 
neural network system models that will provide rationale for 
network’s decisions, also provide better results. 

Lopez-Franco, Alanis, Arana-Daniel, and Lopez-Franco [4] 
study a recurrent higher order neural network (RHONN) to 
identify the plant model of discrete time nonlinear systems, 
under the assumption that all the state is available for 
measurement. Then the Extended Kalman Filter (EKF) is used 
to train the RHONN. The applicability of this scheme is 
illustrated by identification for an electrically driven 
nonholonomic mobile robot. Traditionally, system modeling of 
mobile robots only considers its kinematics. It has been well-
known that the actuator dynamics is an important part of the 
design of the complete robot dynamics. However, most of the 

reported results in literature do not consider all parametric 
uncertainties for mobile robots at the actuator level. This is due 
to the system modeling problem would become extremely 
difficult as the complexity of the system dynamics increases 
and when the mobile robot model includes the uncertainties of 
the actuator dynamics as well as the uncertainties of the robot 
kinematics and dynamics. 

Ding [5] uses high order Hopfiled network, as an expansion 
of traditional Hopfield network, to solve combinatorial 
optimization problems. In theory, compared with low order 
network, high order network has better properties, such as 
stronger approximation property and faster convergence rate. In 
this paper we focus on how to use high order network to system 
model combinatorial optimization problems. Firstly, the high 
order discrete Hopfield Network is introduced, then we discuss 
how to find the high order inputs of a neuron. Finally, the 
construction system method of energy function and the neural 
computing algorithm are presented 

Fallahnezhad and Yousefi [6] suggest that precise insertion 
of medical needle as end-effecter of robotic or computer-aided 
system model into the biological tissue is an important issue 
which should be considered in different operations such as brain 
biopsy, prostate brachytherapy and percutaneous therapies. 
Proper understanding of the whole procedure leads to a better 
performance by operator or system modeling. In this study, the 
authors use a 0.98mm diameter needle with a real-time 
recording of force, displacement, and velocity of needle 
through biological tissue during in-vitro insertions. Using 
constant velocity experiments from 5mm/min up to 
300mm/min the data set for the force-displacement graph of 
insertion gathered. Tissue deformation with a small puncture 
and a constant velocity penetration are the two first phases in 
needle insertion process. Direct effects of different parameters 
and their correlations during the process, is being modeled 
using a polynomial neural network. The authors develop 
different networks in 2nd and 3rd orders to model two first phases 
of insertion, separately. Modeling accuracies were 98%, and 86% 
in phase 1 and 2, respectively. 

Gupta, Bukovsky, Homma, Solo, and Hou [7] provide 
fundamental principles of higher order neural units (HONUs) 
and higher order neural networks (HONNs) for system 
modeling and simulation. An essential core of HONNs can be 
found in higher order weighted combinations or correlations 
between the input variables and HONU. Except the high quality 
of nonlinear approximation of static HONUs, the capability of 
dynamic HONUs for modeling of dynamic systems is shown 
and compared to conventional recurrent neural networks when 
a practical learning algorithm is used. Also, the potential of 
continuous dynamic HONUs to approximate high dynamic-
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order systems is discussed as adaptable time delays can be 
implemented.  

Granger and Bates [8] researched the combination of 
forecasts. Granger and Weiss [9] showed the importance of 
cointegration in the modeling of nonstationary economic series. 
Granger and Lee [10] studied multi-cointegration. Granger and 
Swanson [11] further developed multi-cointegration in studying 
of cointegrated variables. The second motivation of this paper 
is to develop a new nonlinear HONN model, which average 
error should reach to 0.0000% (10-6). 

Psaltis, Park, and Hong [12] studied higher order associative 
memories and their optical implementations. Redding, 
Kowalczyk, Downs [13] developed constructive high-order 
network algorithm. Zhang, Murugesan, and Sadeghi [14] 
developed a Polynomial Higher Order Neural Network 
(PHONN) model for data simulation. The idea first extended to 
PHONN Group models (Zhang, Fulcher, and Scofield, [15]), 
then to Trigonometric Higher Order Neural Network (THONN) 
models for data simulation (Zhang, Zhang, and Keen, [16]). 
Zhang, Zhang, and Fulcher [17] studied HONN group model 
for data simulation.  By utilizing adaptive neuron activation 
functions, Zhang, Xu, and Fulcher [18] developed a neuron 
adaptive HONN. Zhang and Fulcher [19] provide detail 
mathematics for THONN models.    Zhang [20] published a 
HONN book, where all 22 chapters focused on artificial higher 
order neural networks for economics and business.  Zhang [21] 
found that HONN can simulate non-continuous data with better 
accuracy than SAS NLIN (non-linear) models.   Zhang [22] 
developed Ultra High Frequency Trigonometric Higher Order 
Neural Networks, in which model details of UCSHONN (Ultra 
High Frequency Cosine and Sine Higher Order Neural 
Network) was given. Two other books of HONN have been 
edited by Zhang [23] [24], in which the HONN application 
examples in computer science, computer engineering, 
modeling, and simulation areas are collected. The third 
motivation of this paper is to develop a new nonstationary data 
modeling system by using new generation computer techniques 
that will improve the accuracy of the data simulation.  

 
The contributions of this paper will be: 

 

• Review the history of how open box and nonlinear 

HONN models have been developed (section I). 

• Present a new open box and nonlinear model – UGS-

HONN (Section II), which average error could be close 

to zero (10-6). 

• Based on the UGS-HONN models, build a time series 

modeling system – UGS-HONN simulator (Section III). 

• Develop the UGS-HONN learning algorithm and weight 

update formulae (Section IV). 

• Shows that UGS-HONN can do better than PHONN, 

THONN, and SPHONN models. (Section V). UGS-

HONN average error can reach to 0.0000% (10-6). 

II.   MODELS OF UGS-HONN 

The Nyquist–Shannon sampling theorem, after Harry 
Nyquist and Claude Shannon, in the literature more commonly 
referred to as the Nyquist sampling theorem or simply as the 
sampling theorem, is a fundamental result in the field of 

information theory, telecommunications, and signal processing. 
Shannon's version of the theorem states:[25] 

If a function x(t) contains no frequencies higher than B 
hertz, it is completely determined by giving its ordinates at a 
series of points spaced 1/(2B) seconds apart. In other words, a 
band limited function can be perfectly reconstructed from a 
countable sequence of samples if the band limit, B, is no greater 
than ½ the sampling rate (samples per second). 

Modeling and predicting time series data, the new 
nonlinear models of UGS-HONN should have twice as high 
frequency as that of the ultra-high frequency of the time series 
data. To achieve this purpose, a new model should be 
developed to enforce high frequency of HONN in order to 
make the simulation and prediction error close to zero.  

Figure 1 shows the UGS-HONN Architecture. This model 
structure is used to develop the model learning algorithm, 
which make sure the convergence of learning. This allows the 
deference between desired output and real output of UGS-
HONN close to zero. Formula 1, 2, and 3 are for UGS-HONN 
model 2, 1 and 0 respectively. Model 2 has three layers of 
weights changeable. Model 1 has two layers of weights 
changeable. And model 0 has one layer of weights changeable. 

For models 2, 1 and 0, Z is the output while x and y are the 
inputs of UGS-HONN. ckj

o is the weight for the output layer, 
ckj

hx and ckj
hy are the weights for the second hidden layer, and 

ck
x and cj

y are the weights for the first hidden layer. Functions 
sigmoid and sine are the first hidden layer nodes of UGS-
HONN. The nodes of the second hidden layer are multiplication 
neurons. The output layer node of UGS-HONN is a linear 
function of fo(neto) = neto, where neto equals the input of output 
layer node. UGS-HONN is an open neural network model, each 
weight of HONN has its corresponding coefficient in the model 
formula, and each node of UGS-HONN has its corresponding 
function in the model formula. The structure of UGS-HONN is 
built by a nonlinear formula. It means, after training, there is 
rationale for each component of UGS-HONN in the nonlinear 
formula. 
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 Figure 1. UGS-HONN Architecture 
 

Formula 1: 
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Formula 4: 
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Formula 4 is Sigmoid and Sine Artificial Higher Order 

Neural Network model. The only different between Formula 1 
and Formula 4 is that, in Formula 1, the Sine function has j 
integer in it. It is sinj(cj

y*j*y). But in Formula 4, the sine 
function has no j integer in it. That is sinj(cj

y*y).  
For formula 1, 2, and 3, values of k and j ranges from 0 to 

n, where n is an integer. Based on the Nyquist–Shannon 
sampling theorem, the UGS-HONN model can simulate high 
frequency data, when n increases to a big number. This 
property of the model allows it to easily simulate and 
predicate high frequency time series data, since both k and j 
increase when there is an increase in n. Because of the integer 
j, Formula 1 of UGS-HONN can simulate ultra-high frequency 
data and let average error of UGS-HONN reaches to 0.0000%. 
This is the key reason why UGS-HONN is better than other 
tradition HONN models of PHONN, THONN, and SPHONN. 
This is also the reason why average errors of tradition HONN 
usually are 2 to 5 %. It is very hard to reach zero of average 
error for PHONN, THONN, and SPHONN. 

 

III. UGS-HONN TIME SERIES MODELING SYSTEM 

 
The UGS-HONN simulator is written in C language, runs 

under X window on Sun workstation, based on previous work 
by Zhang, Fulcher, Scofield [11].  A user-friendly GUI 
(Graphical User Interface) system has also been incorporated.  
When you run the system, any step, data or calculation can be 
reviewed and modified from different windows during 
processing. Hence, changing data, network models and 
comparing results can be done very easily and efficiently. UGS-
HONN simulator GUI is shown in Figure 2. 
 

 

 
 

Figure 2. UGS-HONN Simulator 

IV. LEARNING ALGORITHM OF UGS-HONN 

Learning Algorithm of UGS-HONN Model can be 
described as followings. The 1st hidden layer weights are 
updated according to: 
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Where: 

ck
x = 1st hidden layer weight for input x 

k = kth neuron of first hidden layer 

cj
y = 1st hidden layer weight for input y 

j = jth neuron of first hidden layer 

 = learning rate (positive & usually < 1) 

Ep = error 

t = training time 

The equations for the kth or jth node in the first hidden 
layer are: 
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Where:   

bx

k
 and by

j= output from the 1st hidden layer neuron   

                   (= input to 2nd hidden layer neuron) 

fx and fy= 1st hidden layer neuron activation function 

x and y = input to 1st hidden layer 
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Where: 

i
k j  = output from 2nd hidden layer (= input to the output 

neuron) 
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Where: 

Z is output of HONN. 

 

The total error is the sum of the squared errors across all 
hidden units, namely: 
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Where: 

d is actual output of HONN 

For sigmoid function and sine function as in the first layer 
of HONN: 
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The gradient (
x

kp cE  / ) is given by: 
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By combining above formulae, the learning algorithm for 

the 1st hidden layer weights of x input neuron are: 
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Using the above procedure, the learning algorithm for the 
1st hidden layer weights of y input neuron is: 
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V. TIME SERIES DATE MODELING USING UGS-

HONN 
 
This paper uses the monthly Canadian dollar and USA 

dollar exchange rate from November 2008 to December 2009 
as the test data for UGS-HONN models. This paper also uses 
the monthly Australian dollar and USA dollar exchange rate 
from November 2008 to December 2009 as the test data for 
UGS-HONN models. Rate and desired output data, Rt, are from 
USA Federal Reserve Bank Data bank. Input1, Rt-2, are the data 
at time t-2. Input 2, Rt-1 are the data at time t-1. The values of 
Rt-2, Rt-1, and Rt are converted to a range from 0 to 1 and then 
used as inputs and output in the UGS-HONN model. UGS-
HONN model 1b is used. The test data of UGS-HONN orders 
6 for using 10,000 epochs are shown on the tables.  

 

VI. CONCLUSION 
 
This paper develops the details of a open box and nonlinear 

higher order neural network models of UGS-HONN. This paper 
also provides the learning algorithm formulae for UGS-HONN, 
based on the structures of UGS-HONN. This paper uses UGS-
HONN simulator and tests the UGS-HONN models using high 
frequency data and the running results are compared with 
Polynomial Higher Order Neural Network (PHONN), 
Trigonometric Higher Order Neural Network (THONN), and 
Sigmoid polynomial Higher Order Neural Network (SPHONN) 
models. Test results show that average error of UGS-HONN 
models are 0.0000% and the average error of Polynomial 
Higher Order Neural Network (PHONN), Trigonometric 
Higher Order Neural Network (THONN), and Sigmoid 
polynomial Higher Order Neural Network (SPHONN) models 
are from 2.8128% to 4.9076%.   It means that UGS-HONN 
models are 2.8128% to 4.9076% better than PHONN, THONN, 
and SPHONN models.   
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