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Abstract—A multiplicative inverse (MI) algorithm is used in
several fields, like cryptography algorithms. There are many MIs,
however, these algorithms suffer from using several multiplication
and division operations, which take more execution time than
additions and subtractions. We created a new algorithm called
Clockwise-Displacement (CDMI) by using addition and subtrac-
tion operations in the iterative steps instead of multiplications
and divisions. Additionally, numerous MIs face the undecidable
problem because of the floating-point issue. Whereas, CDMI
tackles this issue by converting the domain from the floating-
point space to integer space. Therefore, CDMI declines the time
consuming to calculate the multiplicative inverse by applying
fewer divisions and multiplications (expensive operations) and
addresses the rounding error issue in some MI Algorithms.

Index Terms—Multiplicative Inverse, Security, Public Key
Techniques, Asymmetric Techniques, Cryptography.

I. INTRODUCTION

Many cryptography algorithms depend on computing the

multiplicative inverse [1], [2], [3]. Therefore, it is crucial to

compute the inverse in less time to increase the performance

of these cryptography algorithms and to lower the CPU usage.

Rivest et al. [1], [4], [5] used multiplicative inverse positive

integer number (d) to compute the encryption key (e, n)

and the decryption key (d, n). The encryption key and the

decryption key are called the public key and the private key,

respectively. e.d ≡ 1mod (1−p)(1−q) , where p, q are prime

numbers and e is a positive integer (1 < e < n) which is a part

of the encryption key. n = p.q and φ(n) = (1 − p)(1 − q).
We can rewrite the formula: e.d ≡ 1modφ(n). φ(n) is a

positive number and is not a prime number. Also, the variables

e and φ(n) are relatively primes, which means that there

is no common divisor number between them except 1 (i.e.,

gcd(e, φ(n)) = 1). We can encrypt a message (M ) to get a

ciphertext (C) using the following formula: C = Me mod n.

To decrypt the ciphertext (C) to get the original message (M ),

we can use M = Cd mod n. Moreover, security is ubiquitous

and MI can be applied in many areas, such as Cyber-Physical

Systems (CPS) [6], web applications [7], [8], [9], [10], or other

domains [11], [12].

Gordon algorithm used two loops with shift operations

to avoid the multiplication and division operations in the

Extended-Euclidean Algorithm [13]; however, it takes several

steps to find the solutions [14]. The Fast Fraction algorithm

suffers from fraction issue by dividing two real numbers inside

iterative steps until we get an integer number [15].

The purpose of this paper is to find the multiplicative

inverse integer number (d) in the formula: e.d ≡ 1 mod φ(n)
in a fast way by reducing the computational time of the

exhausted division and multiplication operations. Our new

algorithm (Clockwise-Displacement) uses only additions and

subtractions in the iterative steps. Additionally, it only uses

the multiplications and the divisions in the first and last steps,

which are not a part of the loop. More particularly, our main

contributions in this paper are:

• To the best of our knowledge, we are one of the first

in using addition and subtraction operations instead of

multiplications and divisions in the iterative parts to im-

prove the time complexity to compute the multiplicative

inverse.

• We address the fraction issue (i.e., the rounding error)

of the Baghdad algorithm by using modulo operation,

having only integer variables in our proposed algorithm.

II. BASELINE METHODS

In this Section, we describe 3 comparative algorithms by

briefing the advantages and disadvantages of these methods.

A. Extended-Euclidean Algorithm

The general idea of this method is to find d that is the

multiplicative inverse of e where d and φ(n) satisfy e.d ≡
1mod (1− p)(1− q). The power of this method is applying a

fast way to search deep, to find the solution as every iteration

divides g by u. The main drawback of the algorithm is that

it uses a large number of variables (i.e., g, i, v, u, q, and t) to

find the solution. The algorithm is described in Algorithm 1,

and an example of the algorithm is shown in Table I. The

multiplicative inverse positive integer number (d) is 611 (i.e.,

d = i+ φ(n) = −229 + 840 = 611).

B. Baghdad Algorithm

This method [14] depends on the formula e.d ≡ 1 mod φ(n)
which means e.d = 1 + k.φ(n) for a positive integer number

k [15]; so, d = 1+k.φ(n)
e where d is a positive integer number.

The algorithm is presented in Algorithm 2. The pros of this

algorithm are: (1) it has a small number of variables; (2) it is

not a complex algorithm. However, Aboud [14] has mentioned
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Algorithm 1: Extended-Euclidean Algorithm.

function Extended Euclidean (e, φ(n))
Input : gcd(e, φ(n)) = 1, where e ∈ Zφ(n)

Output: e−1 mod φ(n), where e−1 = d
provided that d exists

1. let g ← φ(n), i← 0, v ← 1, and u← e
2. While (u > 0) perform:

q ← � gu� , t← g − q ∗ u , g ← u , u← t
t← i− q ∗ v , i← v , v ← t

3. if (i < 0) then i← i+ φ(n)
4. compute: d← i
return d

TABLE I: An Example of Extended-Euclidean Algorithm.

Given : φ(n)← 840, e← 11. The output : d← 611.
Step g i v u q t
init 840 0 1 11 0 0
1 11 1 -76 4 76 -76
2 4 -76 153 3 2 153
3 3 153 -229 1 1 -229
4 1 -229 840 0 3 840

that the method suffers from large values of e because the

calculation of d adds accumulative large fraction numbers

(1/e) in every iterative step. As a consequence of the fraction

issue, the algorithm may not return the multiplicative inverse

(d); in this case, the algorithm faces the infinite loop issue,

since the integer condition of the loop is unreachable. In the

Extended-Euclidean algorithm, there are no fraction decimals

that make the method scalable for large values of e; therefore,

it returns a correct value of d if exists.

Algorithm 2: Baghdad Algorithm.

function baghdad (e, φ(n))
Input : gcd(e, φ(n)) = 1, where e ∈ Zφ(n)

Output: e−1 mod φ(n), where e−1 = d
provided that d exists

1. d← 1
e

2. Repeat:

d← d+ φ(n)
e

Until: d is integer

return d

Table II shows an example of the algorithm where there

is no output because the algorithm goes in an endless loop

without satisfying the condition (d is an integer number) to

break the loop. This algorithm is undecidable [16] even when

there is a solution for given inputs. In step 8, the algorithm

should have found the solution; however, d is still not an

integer number with a fraction (0.000061).

C. Fast Fraction Algorithm

This algorithm [15] depends on the formula e.d ≡
1 mod φ(n) as the Baghdad algorithm [14]. The Fast Fraction

algorithm uses several division operations to quickly find the

multiplicative inverse. The key advantage of this algorithm is

TABLE II: An example of the Baghdad Algorithm.

Given : φ(n)← 840, e← 11. There is no output.
Step d The result of the condition

1 76.454552 d is not integer
2 152.818192 d is not integer
3 229.181824 d is not integer
4 305.545471 d is not integer
5 381.909119 d is not integer
6 458.272766 d is not integer
7 534.636414 d is not integer
8 611.000061 d is not integer
9 687.363708 d is not integer

10 763.727356 d is not integer
11 840.091003 d is not integer
... ... d is not integer

that it needs fewer steps to find d. However, this method also

suffers from large values of e since it gives a large number of

decimal points (fraction issue) for the variable r. In this case,

the fast fraction algorithm goes in an endless loop without

returning back the result (i.e., undecidable problem). The

details are explained in Algorithm 3.

Algorithm 3: Fast Fraction Algorithm

function fast fraction (e, φ(n))
Input : gcd(e, φ(n)) = 1, where e ∈ Zφ(n)

Output: e−1 mod φ(n), where e−1 = d provided that

d exists

1. sf ← (φ(n)+1) mod e
e , df ← φ(n) mod e

e , i← 1
4. if (sf = 0), then return no solution

5. Repeat:

r ← i−sf
df , i← i+ 1

Until: r is integer

6. d← 1+φ(n).(r+1)
e

return d

Table III contains an example of the Fast Fraction Algo-

rithm. From the last step r = 7, the multiplicative inverse

integer number (d) is 611 (i.e., d = 1+840∗(7+1)
11 = 611). The

algorithm finishes the loop quickly in 3 steps.

TABLE III: An example of the Fast Fraction Algorithm.

Given : φ(n)← 840, e← 11. The output : d← 611.
Step sf df r The result of the condition

1 0.454545 0.363636 1.5 r is not integer
2 0.454545 0.363636 4.25 r is not integer
3 0.454545 0.363636 7 r is integer

III. METHODOLOGY

A. Clockwise-Displacement Algorithm

Our method addresses two issues. First, CDMI solves the

issue of adding numerous fractions in the iterative process

that we have described in the Baghdad and the Fast Fraction

Sections. Second, it is faster than these two algorithms by

using only additions and subtractions in the iterative steps

instead of division and multiplication operations. The division

and multiplication operations are expensive. One of the fastest

multiplication algorithm [17], [18] is called Fürer which takes
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Fig. 1: A demo of how modular arithmetic works like a clock

in the Clockwise-Displacement Algorithm starting from step

(a) ending with step (h). Our clock has 11 ticks (e = 11).

O(n log n . 2O(log n)) for multiplying two n-integer numbers,

comparing to addition operations with time complexity θ(n).
Because of this, our method is faster than the other algo-

rithms for small numbers of input e except for the Extended-

Euclidean algorithm using some inputs. However, our new

algorithm may take several iterations to find the ideal i that is

important to compute d for some large values of e. In this case,

it is slower than the Extended-Euclidean method. Algorithm 4

describes the steps in more detail.

Algorithm 4: Clockwise-Displacement Algorithm.

function clockwise displacement (e, φ(n))
Input : gcd(e, φ(n)) = 1, where e ∈ Zφ(n)

Output: e−1 mod φ(n), where e−1 = d
provided that d exists

1. Δ← φ(n) mod e, i← 0,m← 1
2. Repeat:

m← m+Δ, if m ≥ e then m← m− e
i← i+ 1

Until: m = 0
3. d← 1+i.φ(n)

e
return d

B. An Example of the Clockwise-Displacement Algorithm

This algorithm finds the solution in 8 iterations as it is

presented in Table IV. In the last step, the value of i is equal

to 8, where m = 0 gives d = i.φ(n)+1
e which means d is an

integer number. So, d = 8∗840+1
11 = 6720+1

11 = 611. Even it

takes 8 iterations as the Baghdad algorithm should have done,

but it finishes faster as it is shown in Section IV since it uses

mainly the addition and subtraction operations in the iterative

part of this algorithm.

Fig. 1 illustrates how the displacement Δ with modulus

operator makes finding the solution as a clock of 11 numbers

simpler and as it moves 4 jumps (Δ = 4) for each step in

a clockwise rotation. m = 5 in the first iteration (a). After

jumping according (Δ = 4), m = 9. After the 8th iteration,

m = 0, that reaches the end of the loop.

C. Proof of the Clockwise-Displacement Algorithm

It is known that (a + b) mod x = (a mod x +
b mod x) mod x. Also, (a.b) mod x =

TABLE IV: An example of the Clockwise-Displacement Algo-

rithm. Given : φ(n)← 840, e← 11. The output : d← 611.
Step Δ m

1 4 5
2 4 9
3 4 2
4 4 6
5 4 10
6 4 3
7 4 7
8 4 0

(a mod x . b mod x) mod x.

First, we need to show that the multiplicative inverse is

d = 1+i.φ(n)
e when m is zero. In the iteration part (step 2)

of Algorithm 4, we compute m ← (m + Δ) mod e that is

equivalent to the addition statement m ← m + Δ and the if

statement (if m ≥ e then m← m−e) since Δ← φ(n) mod e
(step 1) gives Δ ∈ Ze. Therefore, the addition and the if

statements are the simplified form of modulus (e). After the

ith iteration, it can be represented by m ← (1 + i.Δ) mod e
gives m ← (1 + i.(φ(n) mod e)) mod e gives m ← (1 +
i.φ(n)) mod e. So, 1 + i.φ(n) is the multiples of e since

(m = 0). At step 4, d← 1+i.φ(n)
e is an integer number. Thus,

d is the multiplicative inverse, since e.d ≡ 1 mod φ(n) gives

d = 1+i.φ(n)
e [14].

Second, we prove our algorithm by induction. If d is the

multiplicative inverse of e, then:

• e.d ≡ 1 mod φ(n)

• d ← 1+C.φ(n)
e where C is a constant positive integer

number [14].

• gcd(e, φ(n)) = 1.

• e, d ∈ Zφ(n), where φ(n) is a positive integer number.

Base case: the first iteration (i = 1 and m = 0), we have:

d = 1+1.φ(n)
e = 1+φ(n)

e → e.d = 1 + φ(n) true

Inductive step: assume it is true for k iterations and m = 0:

d = 1+k.φ(n)
e → e.d = 1 + k.φ(n) true

Then, for the (k + 1)th iteration (i = k + 1 and m = 0):

d = 1+(k+1).φ(n)
e → e.d = 1 + (k + 1).φ(n) true, since

k + 1 is a constant and a positive integer number.

IV. EXPERIMENTS AND RESULTS

A. Experiments

We used in our experiments a sample of inputs as shown

in Table V. d values are between 7 and 907 and φ(n) values

are less than or equal 8 digits (between 34200 and 98962380).

We ran each algorithm on the dataset 10 times and computed

the execution time. We removed the maximum and minimum

execution time from our results and computed the average of

the rest running times.

TABLE V: A sample of inputs
e φ(n) e φ(n) e φ(n)

7 18648036 97 50172 191 8795304
11 393520 107 18648036 197 20007108
23 98962380 109 18648036 907 18648036
89 34200 131 18648036
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Fig. 2: Average Execution Time (”μs”).

TABLE VI: Total time to run the algorithms. The bold font

shows the best result.
Algorithm Total Average Time (μs)
Extended-Euclidean 5.125
Baghdad > 100.000
Fast Fraction Algorithm > 100.000
CDMI 4.500

B. Results

We ran our experiments using different input values (e
and φ(n)) as shown in Table V. The x-axis in Fig. 2 rep-

resents the values of e while the y-axis shows the average

execution time (”μs”) for all algorithms. CDMI found the

multiplicative inverse in less than (1μs) for different values of

e. The Extended-Euclidean method was performed similarly

to CDMI. Whereas, our algorithm outperformed all baseline

algorithms in the total running time for all inputs as shown in

Fig. 2. This improvement is because we accelerate the execu-

tion time of the algorithm by depending more on addition and

subtraction arithmetic operations and only use the modulus,

multiplications, and divisions in the first and the last steps.

Additions and subtractions have less time complexity than

multiplications and divisions. In other words, no multiplication

and division operations are used in the iterative steps while

other algorithms applied heavily to the multiplication and

division operations in their loops. Table VI shows that our

algorithm took the least total average time (4.500μs). The

Baghdad algorithm went in an endless loop for all examples

except for the second inputs (e = 11, φ(n) = 393520),

while the Fast Fraction algorithm faced the endless loop for

several inputs (e.g., e = 23). Our algorithm and the Euclidean

algorithm found the solution in a reasonable time without

any fraction issue. However, the other algorithms got stuck

in infinite loops. This is because the Clockwise-Displacement

and the Euclidean algorithm do not use real variables (i.e., no

fractions) to find the multiplicative inverse d.

V. CONCLUSION

Finding multiplicative inverse can be calculated by dif-

ferent methods. We compare our algorithm (Clockwise-

Displacement) with the based methods to compute the

multiplicative inverse. Our algorithm performs similar to

the Extended-Euclidean algorithm in the experiments, and

CDMI outperforms other baseline methods. This is because

our algorithm uses the addition and subtraction operations (less

expensive than the multiplication and division operations) in

the iterative steps without any fraction to find the multiplicative

inverse. Using addition and subtraction operations addresses

the Baghdad and Fast Fraction methods issue (the infinite

loop issue) and improve the performance. Additionally, our

algorithm aims to address the fraction issue by converting

the domain from the floating-point space into integer space.

Furthermore, cryptography recommends using small values of

e for security reasons [1], [19], [14]. For future work, we will

study the Fast Fraction and other algorithms to improve their

performance and address their fraction issues.
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