
Parallel Computation of Standard Competition
Rankings over a Sorted Array

Jingyuan Liang

Dept. of Elect. Eng. & Computer Sci.
Cleveland State University

Cleveland, OH, USA

Jonathan Bisnett

Dept. of Elect. Eng. & Computer Sci.
Cleveland State University

Cleveland, OH, USA

Alan Hylton

Space Communications and Navigation
NASA Glenn Research Center

Cleveland, OH, USA

Janche Sang

Dept. of Elect. Eng. & Computer Sci.
Cleveland State University

Cleveland, OH, USA

Chansu Yu

Dept. of Elect. Eng. & Computer Sci.
Cleveland State University

Cleveland, OH, USA

Abstract—The Standard Competition Ranking (SCR) is a com-
monly adopted ranking strategy and has been used in a wide
range of applications, such as statistics, text mining, image
processing, and so on. Though the sequential implementation of
the SCR can be executed in linear time, it is not straightforward
to design parallel algorithms for the SCR. In this paper, our focus
is on the novel use of the parallel prefix computation method for
calculating the SCR on a many-core Graphics Processing Unit
(GPU). We also design a pthreads-based algorithm on a multi-
core CPU which adopts a modified binary search to find the
first item’s rank in each partitioned segment. By integrating the
modified binary search with the prefix computation, we later
design and implement a more efficient hybrid algorithm on the
GPU. The experimental results show that, as compared with the
sequential execution on the CPU, our pthreads-based algorithm
on a 12-core CPU can be roughly 8 times faster, while the hybrid
algorithm on the GPU can achieve more than two orders of
magnitude speedup.

Keywords-Standard Competition Ranking, Parallel Prefix, Multi-
core Computing, Many-core Computing, CUDA

I. INTRODUCTION

Ranking refers to the data transformation by arranging a set of

data items in numerical order and then assigning new values

to denote where in the ordered set they are located. That

is, the smallest data item is given the number 1, the second

smallest item is given the number 2, the third smallest item is

given the number 3, and so on. The numbers 1,2,3,· · · that are

assigned to the various data items are called the ranks. Ranking

is a popular approach to reducing complex information to a

sequence of ordinal numbers. It has been frequently used in

a wide range of applications, such as statistics, text mining,

image processing, sports, etc. [1] [2].

Sometimes there are ties in the data items. This means that

two or more data items are the same, so that there is no strictly

increasing order. When this happens, the Standard Competition

Ranking (SCR) method assigns the same rank number to the

items that are equal and then leaves a gap in the rank numbers.

The number of ranks which are left out in this gap is one less

than the number of items that compared equal. As shown in

the example below, the upper row is a sorted sequence of data

items, while the lower row shows their corresponding rank

numbers:

1.1 2.5 2.5 2.5 4.9 5.5 5.5 9.3
1 2 2 2 5 6 6 8

There are three items with the value 2.5 and hence two rank

numbers 3 and 4 are left out. Note that the ranks of all those

items behind the tied items are unaffected. It can be seen in

the example above, the items 4.9, 5.5, 5.5 and 9.3 are

still ranked 5th, 6th, 6th and 8th, respectively. Furthermore,

if an item is with the rank r, then there are r− 1 items which

are smaller than it. Because of these features, the SCR method

is a commonly adopted ranking strategy.

Therefore, given an ordered set of n items, it is not difficult to

find the rank of each item. Below shows the sequential code

in C. Initially, the smallest item (i.e. data[0]) in the given

sorted array is assigned the rank 1. Next, in the iteration loop,

each data item is compared with its previous one. If equal, its

rank number should be the same as the previous item’s rank.

Otherwise, its rank should be its array index plus 1 due to the

array index in C starts from 0.

rank[0] = 1;
for (int i = 1; i < n; i++) {

if(data[i] == data[i-1])
rank[i] = rank[i-1];

else
rank[i] = i+1;

}

The sequential implementation of the SCR method can be

executed in linear time O(n), where n is the size of the

ordered set. However, it is not straightforward to design

parallel algorithms for computing SCR because the rank of

an item depends on the relationship with its previous ones.

Moreover, to the best of our knowledge, there is no parallel

computing method for SCR. Hence, the goal of this paper is

to design and implement efficient algorithms for computing

SCR of an ordered set on the multi-core CPU and also on the

1243

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00232

many-core GPU platforms.

Recently, modern Graphics Processing Units have been in-

creasingly adopted to accelerate the execution of applications

by using hundreds or thousands of simple multi-threaded cores

[3]. In NVIDIA GPU, a warp of 32 consecutive threads are

bundled together to perform Single Instruction, Multiple Data

(SIMD) parallel operations. To take advantage of the massively

large data parallel computational power provided by a GPU,

our focus is on the novel use of the parallel prefix computation

method for calculating the SCR. Our implementation also uses

the fancy shuffle functions which are supported in modern

GPUs to make the execution even faster [4] [5]. These func-

tions permit exchanging of variables (i.e. registers) between

threads within a warp without using shared memory.

However, the parallel prefix approach is not suitable for being

used on a CPU which has only a few or tens of cores available

[6]. Hence, we design another new algorithm for multi-core

CPU. Our idea is to partition the data into several segments

and each segment is assigned for a pthread to handle. Each

pthread utilizes a modified binary search to find the rank of

the first item in the segment assigned, and then compute the

ranks for the remaining items in the segment. By integrating

this idea with the prefix computation, we later design a hybrid

algorithm on the GPU to further improve the performance.

The experimental results show that, as compared with the

sequential execution on the CPU, our pthreads-based algorithm

on the CPU can be approximately 8 times faster, while the

hybrid algorithm on GPU can achieve at least two orders of

magnitude speedup.

The organization of this paper is as follows. Section II

describes the background and the related work. Section III

goes into details of our algorithms using the multi-core and/or

many-core environments. In Section IV, the experiments and

the results for performance evaluation are presented. A short

conclusion is given in Section V.

II. BACKGROUND AND RELATED WORK

Given a set of n values x0, x1, x2, . . . , xn−1 and a binary

associative operator ⊕, the prefix computation is to generate

the n quantities s0, s1, s2, . . . , sn−1, where:

s0 = x0

s1 = x0 ⊕ x1

s2 = x0 ⊕ x1 ⊕ x2

...

sn−1 = x0 ⊕ x1 ⊕ x2 · · · ⊕ xn−1

For short, above can be rewritten as the chained relationship:

si = si−1⊕xi, for i=1, 2, . . . , n−1 with s0 = x0. Based on this

relationship, a straightforward sequential algorithm for prefix

computation simply traverses the input sequence, computing

the different si, one after the other. For example, if ⊕ is

an addition operation, the prefix computation on the input

array of integers {3,1,0,2,4,3,5,2} would return the output

{3,4,4,6,10,13,18,20}.
Note that the binary operator ⊕ in the prefix computation must

be associative:

(x0 ⊕ x1)⊕ x2 = x0 ⊕ (x1 ⊕ x2) = x0 ⊕ x1 ⊕ x2

Namely, in order to get the number s2, it is not necessary to

compute x0 ⊕ x1 first. Therefore, the original parallel prefix

approach utilizes this property to perform the operations in

parallel. Assuming the number of processors is the same as the

input data size n, where n is power of 2, the parallel algorithm

consists of logn iterations. During each step j, there are n−2j
processors which perform the binary operation ⊕ concurrently

and the indices of the two elements accessed by a processor

are separated by 2j , as shown in the pseudo code in Figure 1.

for j = 0 to logn − 1

for i = 2j to n−1 in parallel
si = si−2j ⊕ si

endfor
endfor

Fig. 1. Pseudo code of the Parallel Prefix Approach

Parallel prefix is an important technique that has been fre-

quently used to parallelize seemingly sequential operations,

typically in O(logn) time [6]. As shown in Figure 2 below,

it only needs 3 iterations to compute a list of 8 values.

Parallel prefix has a wide range of applicability in science

and engineering. One application is solving the list ranking

problem [7]. That is, given a singly linked list, find the

location of each node in the list -- specifically, its distance

from the end of the list. By using parallel prefix as well as

pointer jumping, every list element’s position can be correctly

determined in a logarithmic number of steps [8]. Another in-

teresting application is to simulate the First Come First Served

G/G/1 queuing network [9]. The formulas for calculating the

arrival and departure times have been transformed into the

linear recurrence relations which can be computed efficiently

using parallel prefix.

s[0] s[1] s[3] s[4] s[5] s[6] s[7]s[2]

s[0] s[1] s[3] s[4] s[5] s[6] s[7]s[2]

j = 0

j = 1

j = 2

iterations

Fig. 2. Parallel Prefix Computation

1244

The parallel prefix computation is appropriate for SIMD

parallel computers because its fine-grained parallelism comes

from simultaneous operations across large amounts of data,

rather than from multiple threads of control. With the advance

of hardware technology, a GPU can have hundreds or even

thousands of processing cores. Therefore, it has been used

in recent years for improving the performance of various

computational intensive applications [10] [11]. It consists of

a scalable number of streaming multiprocessors (SMs) and

each SM contains a group of streaming processors (SPs) [12].

The kernel function, which is executed on the device, is

composed of a grid of threads to be executed on the SPs.

More precisely, a grid is divided into a set of blocks and

each block contains multiple warps of threads. Blocks are

distributed evenly to different SMs to run. A warp has 32

consecutive threads and each thread’s lane ID is its index

within a warp, ranging from 0 to 31. The GPU device has

its own off-chip device memory (i.e. global memory) and

hence data needs to be transferred from the host CPU before

executing the kernel function. Furthermore, threads can access

the fast on-chip memory resources, such as shared memory and

registers. These are per-block resources and will be released

when all the threads of the same block finish their executions.

Note that the new shuffle functions, which are available on the

Kepler and later GPUs (Compute Capability 3.0 and above),

allow threads within the same warp to read each other’s

registers. Using the function shfl sync(unsigned mask, int v,

int srcLane) as an example, the caller thread will get the value

of the variable v held by the thread with lane ID srcLane. It

behaves the same as broadcasting if every thread in the warp

copies from the same source lane. For another example, the

function shfl up sync(unsigned mask, int v, int d) will let

the lane k thread read the variable v held by the lane (k − d)

thread.

The ballot sync(unsigned mask, int p) intrinsic function

returns a 32-bit integer in which bit k is set if and only if

the predicate p provided by the thread with lane ID k is non-

zero. Note that the lane ID is the thread’s index within a warp,

ranging from 0 to 31. In other words, the ballot sync()

function collects the predicates from all threads in a warp

into a 32-bit integer and returns this integer to every thread. It

has been used to accelerate the stream compaction task [13].

Another two intrinsic functions brev(unsigned int x) and

ffs(int x) can be used together to examine the ballots. The

former reverses the bit order of an unsigned integer, while the

latter finds the position of the least significant bit set to one

in a 32-bit integer.

III. NEW PARALLEL ALGORITHMS

As mentioned in the earlier section, the calculation of the SCR

seems inherently sequential. However, we can restructure the

problem so that it can be carried out by using the parallel

prefix approach. For each element xi, 0 ≤ i < n, it holds a

2-tuple (di, ri), where di is its datum from the input sorted

array d and ri is its rank which is initialized to be i+ 1. The

binary operator ⊕, which is applied to xi and xj , i < j, is

defined as follows:

xi ⊕ xj

= (di, ri)⊕ (dj , rj)

= if dj == di return (dj , ri)

else return (dj , rj)

More precisely, the operator ⊕ compares the input data ele-

ments di and dj , i < j. If they are equal, the rank of the

element dj will be the same as the rank of di. Otherwise,

its rank remains unchanged. In order to adopt the parallel

prefix method, we have to show that the binary operator ⊕
which is defined above still has the associative property. That

is, repeated application of the binary operation ⊕ produces

the same result regardless of how pairs of parentheses are

inserted in the expression. Table I shows all possible cases for

calculating xa ⊕ xb ⊕ xc, where a < b < c in detail. For

example, if da = db = dc, then the calculations by grouping

xa and xb, first

(xa ⊕ xb)⊕ xc

= (db, ra)⊕ (dc, rc)

= (dc, ra)

and by grouping xb and xc, first

xa ⊕ (xb ⊕ xc)

= (da, ra)⊕ (dc, rb)

= (dc, ra)

yield the same result.

A. Naive Parallel Prefix Algorithm

Our first implementation is a modification to the original

parallel prefix method illustrated in Figure 2. In our modified

algorithm, the ordered array d stores the input data and the

corresponding rank for each element in d will be calculated

in the output array r. We firstly initialize in parallel each

element of the result array to be its index plus 1. During the

iteration steps, the rank copying operation is performed only

when the current data element equals to the data element at

the index of the copying source. Otherwise, the rank remains

unchanged. Figure 3 shows the pseudo code of the modified

ranking algorithm.

The major downside of this algorithm (inherited from the

original parallel prefix algorithm) is that each iteration of the

outer sequential for-loop requires launching a kernel function

on GPU and hence produces more synchronization overhead.

Also in CUDA, it needs to access the whole memory space

multiple times, for both data elements and ranking elements.

Because of the design of CUDA architecture, these memory

accesses generate a major performance penalty. However, it

is a good demonstration showing how the parallel prefix

operations can be used for ranking.

1245

TABLE I
THE ASSOCIATIVE PROPERTY OF xa ⊕ xb ⊕ xc, WHERE a < b < c

case xa ⊕ xb (xa ⊕ xb)⊕ xc xb ⊕ xc xa ⊕ (xb ⊕ xc)

da = db = dc (db, ra) (db, ra)⊕ (dc, rc) = (dc, ra) (dc, rb) (da, ra)⊕ (dc, rb) = (dc, ra)

da = db < dc (db, ra) (db, ra)⊕ (dc, rc) = (dc, rc) (dc, rc) (da, ra)⊕ (dc, rc) = (dc, rc)

da < db = dc (db, rb) (db, rb)⊕ (dc, rc) = (dc, rb) (dc, rb) (da, ra)⊕ (dc, rb) = (dc, rb)

da < db < dc (db, rb) (db, rb)⊕ (dc, rc) = (dc, rc) (dc, rc) (da, ra)⊕ (dc, rc) = (dc, rc)

for i = 0 to n−1 in parallel
ri = i+ 1

endfor

for j = 0 to logn - 1

for i = 2j to n−1 in parallel
if di == di−2j

ri = ri−2j

endfor
endfor

Fig. 3. The Naive Parallel Prefix approach for computing SCR

B. Shuffle Scan

NVIDIA included a prefix sum implementation based on

shfl scan in CUDA examples [14]. In a similar but slightly

improved manner, we adapted it to become a ranking algorithm

and evaluated this algorithm.

First, we do similar initialization for the ranking elements.

Instead of a simple index as the ranking value, we are making

them a tuple of the ranking value and a flag, where the flag

indicates whether the data element at this index is equal to the

previous data element or not. This eliminates accesses to the

data elements in all following steps. Practically, considering

there cannot be more than 230 elements due to memory

limitation here, we combine the ranking value and the flag

into one 32-bit integer by using the lower 31 bits to store the

ranking value and the highest bit for the flag.

Second, we change the addition operation to become either a

copying operation from a previous value or a no-op depending

on the flag. That is, it is a copying (returns left operand) if

the right operand does not have the flag set (meaning the data

element here equals the previous one), or is a no-op (returns

right operand) if the right operand has the flag set (meaning

the data element here does not equal the previous one).

The final change is just to extend the prefix sum operation to

be able to operate on any array size, subject to memory limit.

The original algorithm only works on 65536 elements but this

change is not directly connected to ranking.

float pelm = __shfl_up_sync(0xffffffff, elm, 1);

unsigned int votes = __ballot_sync(0xffffffff, elm!=pelm);

unsigned int votes_rev = __brev(votes&((1<<(laneID+1))-1));

rank = belm_idx + ((32-__ffs(votes_rev)) & 0x1f);

Fig. 4. Finding Ranks via Intrinsic Functions

C. Shuffle and Intrinsic Functions with Modified Binary
Search

This algorithm starts by establishing the idea of a global warp

which in this context is a block of 1024 elements that will all

be processed by a single warp in an iterative process. Naturally,

during the processing if the global warp id is zero, this is the

first group of values and would start with the ranking of 1.

This can be calculated without having to retrieve a value from

a previous group.

Assuming this is not the first global warp, we need to get a

beginning rank for the group. We take the 32 values at the

end of the prior global warp and then use a single shuffle-

up by one position that allows each thread to determine if its

value is different from its predecessor, as shown in Figure 4.

This in turn sets a value of 1 for a difference and a 0 for

the same. The intrinsic function (__ballot_sync) takes

the one or zero from each thread and combines them into an

unsigned 32-bit integer. This unsigned integer directly reflects

where the values have changed in the block of 32 threads. To

find the bits that have changed, the intrinsic function __ffs
can be used, but unfortunately the order of the bits from our

threads is in the wrong order. To correct this short coming, the

intrinsic function __brev is used to reverse the bits in the

ballot integer (MSB <-> LSB). Now that the bits are in the

order necessary to use __ffs, a mask is generated that will

only expose the bits for values in threads below the current

thread position. The value returned by the __ffs function

can then be converted back to determine the thread below the

current one that changed. The position can then be used to set

the ranking for the current thread.

Once this process is complete, if the rank for the last value

in the group of 32 is different from the position of the first

value in the group, a change occurred within the 32 values and

the rank for the last one is the beginning rank for the current

global warp. If the values are the same, the code then moves

into a modified binary search working backwards through the

1246

belm = d[brank];
int low = 0;
int high = brank -1 ;

while (low <= high) {
int m = (low+high) / 2 ;

if (d[m] == belm) { // check first half
high = m - 1;
brank = m;

}
else { // check second half; brank remains the same

low = m + 1;
}

}

Fig. 5. Modified Binary Search

values until it finds the first occurrence of the current value.

For clarification purposes, it should be noted that the modified

binary search continues until the range shrinks to empty, as

shown in Figure 5 . This assures that we have found the first

occurrence of the value we are seeking. The code can then

take that position within the array as the starting rank for the

current global warp.

Now that the beginning rank for the current global warp is

known, the code performs a loop of 32 iterations with each

iteration doing the shuffle-ballot-brev-ffs process for each 32

values then advancing 32 positions and repeating the process

again until the entire 1024-value block is complete.

The advantage of this algorithm is that only a single run

through the entire array is necessary to calculate all the

rankings. The modified binary search allows for a single kernel

to do all the ranking rather than requiring several kernels to

pass over the array and shuffle up the values. The disadvantage

is that the range of the modified binary search becomes larger

as the processing moves closer and closer to the end of the

array.

D. Pthreads with Modified Binary Search on CPU

As mentioned before, it is not suitable to implement parallel

prefix on a CPU which has only a few or tens of cores

available. Hence, we need to design a different algorithm

for multi-core CPU. In this method, the array is broken up

and spread across several independent threads. Therefore,

each thread must find the beginning rank for its block of

values. The modified binary search, as described previously,

works backwards through the values prior to the current value

block, cutting the size in half each time and seeking the first

occurrence of the current value. Also as noted previously, this

is a modified search and will continue until the range is empty.

Once the value is found, the code continues as for the

sequential processing above and marches through the value

block setting the rankings based on the current value compared

to the preceding value.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Recurring Value Probability

Sequential
 4 Threads
 8 Threads
12 Threads
24 Threads

Fig. 6. Execution Time versus Probability for CPU pthreads

IV. EXPERIMENTAL RESULTS

The experiments were conducted on a high-end workstation

sponsored by NASA GRC. This machine, running the Ubuntu

18.04, has a Xeon Silver 4116 CPU (12 cores, 24 threads)

clocked at 3.0 GHz and has 64 GB in total of Registered ECC

server-grade memory. The GPU device used in this computing

platform was the NVIDIA GeForce RTX 2080 Ti, which is

built with evolutionary NVIDIA Turing architecture [15] and

contains 68 streaming multiprocessors (4352 CUDA cores in

total), 11GB GDDR6 memory and 1.65 GHz GPU clock rate.

The ordered values for ranking are generated using a floating-

point recurring probability from 0 to 1 such that 0 will cause

the values to all be different and 1 will cause the values to

all be the same. This allows us to see how each algorithm

behaves based on different distributions of change within the

array of values.

Figure 6 shows the execution timing results gathered when

running the CPU pthreads code against 128 million elements

with probabilities ranging from 0 to 1 in intervals of 0.1. Each

execution timing is the result of 10 executions and extraction

of the lowest execution time. It is important to note that

the evaluation server used was not dedicated entirely to this

evaluation and could have had other activity that may have had

an impact on the performance. Thus, the reason for multiple

executions and taking the lowest value, was to minimize other

factors. A review of these numbers shows that as the number

of threads increase, the execution time drops. Not shown in

the figure is that if we use more than 24 threads, the execution

time will not drop further. This makes sense, since the machine

used for the evaluation has 12 cores with 24 hyper threads.

We also ran the experiment to compare the three approaches

we proposed on the GPU platform. The timing results can

be found in Figure 7. Among the three, the naive approach

performs the slowest because it needs to launch the kernel

function on GPU log(n) times and each kernel invocation

1247

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Recurring Value Probability

naive
shfl_scan based

hybrid

Fig. 7. Execution Time versus Probability for different algorithms on GPU

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

90% 99% 99.9% 99.99% 99.999% 99.9999% 100%

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Recurring Value Probability

naive
shfl_scan based

hybrid

Fig. 8. Execution Time versus High Recurring Probability for different
algorithms on GPU

will access the input and output arrays, while the hybrid

method which utilizes the modified binary search and intrinsic

functions performs the fastest because it only requires one

kernel function call. Note that these three approaches perform

much faster as compared with the timing results on the CPU

in Figure 6,

Another evaluation, as shown in Figure 8, is like the previous

one but focuses on the upper end of the recurring value

probability where the likelihood of the value being the same

as the previous value is much higher. This can present some

difficulties to the various algorithms, because the beginning

ranking for a group of values is not necessarily found near the

current value. This requires some special processing to work

backwards to find the proper beginning rank for the group.

This evaluation also uses 128 million values but looks at the

high end of the probability range starting at 0.9, advancing to

0.99, then 0.999, and so on until 0.999999 and finally 1.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4M 8M 16M 32M 64M 128M

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Number of Elements

Sequential
 4 Threads
 8 Threads
12 Threads
24 Threads

Fig. 9. Execution Time versus Number of Elements for CPU Pthreads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4M 8M 16M 17M 18M 19M

S
pe

ed
 U

p

Number of Elements

4 Threads
 8 Threads
12 Threads
24 Threads

Fig. 10. Speed Up for CPU Pthreads

In another experiment, we measured the pthreads-based al-

gorithm performance by varying the input from 4 million

values to 128 million values, while using the recurring value

probability of 50%. This allows us to see if an algorithm

performs better or worse based on the size or number of values

being ranked. Figure 9 depicts the results running on the CPU.

The corresponding speed-up ratios, which are the ratios of the

sequential time to the parallel time, are shown in Figure 10.

It can be observed that using 24 pthreads can be roughly 8

times faster than the serial execution on the CPU.

A similar experiment was also conducted for the three parallel

prefix-based approaches on the GPU device. Figure 11 and

Figure 12 show the timing results and the speed up ratios,

respectively. It can be seen that our hybrid approach can be

more than 400 times faster than running sequentially on the

CPU.

1248

 0

 0.01

 0.02

 0.03

 0.04

 0.05

4M 8M 16M 32M 64M 128M

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Number of Elements

naive
shfl_scan based

hybrid

Fig. 11. Execution Time versus Number of Elements for algorithms on GPU

 0

 100

 200

 300

 400

 500

 600

4M 8M 16M 32M 64M 128M

S
pe

ed
 U

p

Number of Elements

hybrid
shfl_scan based

naive

Fig. 12. Speed Up for algorithms on GPU

V. CONCLUSION AND FUTURE WORK

The computation of SCR over a sorted array seems inherently

sequential because the rank of an item depends on the rela-

tionship with its previous ones. We restructured the problem

and introduce a new associative binary operation so that the

SCR calculation can be carried out by using the parallel prefix

approach. We presented three implementations on the GPU

many-core computing platform and one parallel implementa-

tion on the CPU multi-core environment. The experimental

results show that the pthreads-based approach on a 12-core

CPU can achieve almost 8 times faster than the sequential

execution. The results on the GPU platform are even more

encouraging. The hybrid scheme which exploits the warp shuf-

fle and some intrinsic functions as well as the modified binary

search method, can achieve more than two orders of magnitude

speedup relative to a serial CPU implementation. Furthermore,

we have extended our ideas to implementing other ranking

strategies, such as Modified Competition Ranking, Fractional

Ranking, etc. [16] and currently are conducting experiments

to evaluate their performance.

ACKNOWLEDGMENT

This research was supported in part by the Summer Faculty

Fellowship and the equipment sponsorship from the NASA

Glenn Research Center.

REFERENCES

[1] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. Wiley, 2003.

[2] G. Heygster, “Rank filters in digital image processing,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 148–164, 1982.

[3] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach, 3rd ed. Morgan Kaufmann Publishers
Inc., 2016.

[4] M. Harris, “CUDA Pro Tip: Do The Kepler Shuffle, PARALLEL
FORALL,” http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-
shuffle/, 2015.

[5] L. S. N. Nunes, J. L. Bordim, K. Nakano, and Y. Ito, “A Memory-
Access-Efficient Implementation of the Approximate String Matching
Algorithm on GPU,” in Proceedings of International International
Symposium on Computing and Networking (CANDAR), 2016.

[6] W. Hillis and G. Steele, “Data Parallel Algorithms,” Comm. ACM,
vol. 29, no. 12, pp. 1170–1183, 1986.

[7] J. C. Wyllie, “The Complexity of Parallel Computations,” PhD thesis,
Cornell University, Ithaca, NY, USA, Tech. Rep., 1979.

[8] M. J. Quinn, Parallel Computing: Theory and Practice, 2nd ed.
McGraw-Hill, 1994.

[9] A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani, “Algorithms for
unboundedly parallel simulations,” ACM Trans. on Computer Systems,
vol. 9, no. 3, pp. 201–221, Aug. 1991.

[10] A. Hylton, G. Henselman-Petrusek, J. Sang, and R. Short, “Tuning
the performance of a computational persistent homology package,”
Software: Practice and Experience, vol. 49, no. 5, pp. 885–905, May
2019.

[11] J. Sang, C. Lee, V. Rego, and C. King, “Experiences with implementing
parallel discrete-event simulation on GPU,” Journal of Supercomputing,
vol. 75, pp. 4132–4149, Aug. 2019.

[12] NVIDIA, CUDA Programming Guide version 10.0 , 2018.

[13] V. Rego, J. Sang, and C. Yu, “A Fast Hybrid Approach for Stream
Compaction on GPUs,” in Proceedings of International Workshop on
GPU Computing and Applications, 2016.

[14] NVIDIA, “CUDA Parallel Prefix Sum with Shuffle Intrinsics
(SHFL Scan),” http://docs.nvidia.com/cuda/cuda-samples/index.html.

[15] E. Kilgariff and H. Moreton and N. Stam and B. Bell , “NVIDIA Turing
Architecture In-Depth,” https://developer.nvidia.com/blog/nvidia-turing-
architecture-in-depth/, 2018.

[16] Wikipedia, “Ranking,” https://en.wikipedia.org/wiki/Ranking.

1249

