2020 International Conference on Computational Science and Computational Intelligence (CSCI)

Parallel Computation of Standard Competition
Rankings over a Sorted Array

Jingyuan Liang
Dept. of Elect. Eng. & Computer Sci.
Cleveland State University
Cleveland, OH, USA

Janche Sang
Dept. of Elect. Eng. & Computer Sci.
Cleveland State University
Cleveland, OH, USA

Abstract—The Standard Competition Ranking (SCR) is a com-
monly adopted ranking strategy and has been used in a wide
range of applications, such as statistics, text mining, image
processing, and so on. Though the sequential implementation of
the SCR can be executed in linear time, it is not straightforward
to design parallel algorithms for the SCR. In this paper, our focus
is on the novel use of the parallel prefix computation method for
calculating the SCR on a many-core Graphics Processing Unit
(GPU). We also design a pthreads-based algorithm on a multi-
core CPU which adopts a modified binary search to find the
first item’s rank in each partitioned segment. By integrating the
modified binary search with the prefix computation, we later
design and implement a more efficient hybrid algorithm on the
GPU. The experimental results show that, as compared with the
sequential execution on the CPU, our pthreads-based algorithm
on a 12-core CPU can be roughly 8 times faster, while the hybrid
algorithm on the GPU can achieve more than two orders of
magnitude speedup.

Keywords-Standard Competition Ranking, Parallel Prefix, Multi-
core Computing, Many-core Computing, CUDA

[. INTRODUCTION

Ranking refers to the data transformation by arranging a set of
data items in numerical order and then assigning new values
to denote where in the ordered set they are located. That
is, the smallest data item is given the number 1, the second
smallest item is given the number 2, the third smallest item is
given the number 3, and so on. The numbers 1,2,3, - - that are
assigned to the various data items are called the ranks. Ranking
is a popular approach to reducing complex information to a
sequence of ordinal numbers. It has been frequently used in
a wide range of applications, such as statistics, text mining,
image processing, sports, etc. [1] [2].

Sometimes there are ties in the data items. This means that
two or more data items are the same, so that there is no strictly
increasing order. When this happens, the Standard Competition
Ranking (SCR) method assigns the same rank number to the
items that are equal and then leaves a gap in the rank numbers.
The number of ranks which are left out in this gap is one less

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00232

Jonathan Bisnett
Dept. of Elect. Eng. & Computer Sci.
Cleveland State University
Cleveland, OH, USA

1243

Alan Hylton
Space Communications and Navigation
NASA Glenn Research Center
Cleveland, OH, USA

Chansu Yu
Dept. of Elect. Eng. & Computer Sci.
Cleveland State University
Cleveland, OH, USA

than the number of items that compared equal. As shown in
the example below, the upper row is a sorted sequence of data
items, while the lower row shows their corresponding rank
numbers:

1.1
1

2.
2

5 2.

2

5 2.

2

5 4.

5

9 5.

6

5 5.

6

5 9.

8

3

There are three items with the value 2.5 and hence two rank
numbers 3 and 4 are left out. Note that the ranks of all those
items behind the tied items are unaffected. It can be seen in
the example above, the items 4.9, 5.5, 5.5and 9.3 are
still ranked 5th, 6th, 6th and 8th, respectively. Furthermore,
if an item is with the rank r, then there are r — 1 items which
are smaller than it. Because of these features, the SCR method
is a commonly adopted ranking strategy.

Therefore, given an ordered set of n items, it is not difficult to
find the rank of each item. Below shows the sequential code
in C. Initially, the smallest item (i.e. data[0]) in the given
sorted array is assigned the rank 1. Next, in the iteration loop,
each data item is compared with its previous one. If equal, its
rank number should be the same as the previous item’s rank.
Otherwise, its rank should be its array index plus 1 due to the
array index in C starts from 0.

rank([0] = 1;
for (int i = 1; 1 < n; i++) {
if (data[i] == data[i-1])
rank[i] = rank[i-1];
else
rank[i] = 1i+1;

}

The sequential implementation of the SCR method can be
executed in linear time O(n), where n is the size of the
ordered set. However, it is not straightforward to design
parallel algorithms for computing SCR because the rank of
an item depends on the relationship with its previous ones.
Moreover, to the best of our knowledge, there is no parallel
computing method for SCR. Hence, the goal of this paper is
to design and implement efficient algorithms for computing
SCR of an ordered set on the multi-core CPU and also on the

many-core GPU platforms.

Recently, modern Graphics Processing Units have been in-
creasingly adopted to accelerate the execution of applications
by using hundreds or thousands of simple multi-threaded cores
[3]. In NVIDIA GPU, a warp of 32 consecutive threads are
bundled together to perform Single Instruction, Multiple Data
(SIMD) parallel operations. To take advantage of the massively
large data parallel computational power provided by a GPU,
our focus is on the novel use of the parallel prefix computation
method for calculating the SCR. Our implementation also uses
the fancy shuffle functions which are supported in modern
GPUs to make the execution even faster [4] [5]. These func-
tions permit exchanging of variables (i.e. registers) between
threads within a warp without using shared memory.

However, the parallel prefix approach is not suitable for being
used on a CPU which has only a few or tens of cores available
[6]. Hence, we design another new algorithm for multi-core
CPU. Our idea is to partition the data into several segments
and each segment is assigned for a pthread to handle. Each
pthread utilizes a modified binary search to find the rank of
the first item in the segment assigned, and then compute the
ranks for the remaining items in the segment. By integrating
this idea with the prefix computation, we later design a hybrid
algorithm on the GPU to further improve the performance.
The experimental results show that, as compared with the
sequential execution on the CPU, our pthreads-based algorithm
on the CPU can be approximately 8 times faster, while the
hybrid algorithm on GPU can achieve at least two orders of
magnitude speedup.

The organization of this paper is as follows. Section II
describes the background and the related work. Section III
goes into details of our algorithms using the multi-core and/or
many-core environments. In Section IV, the experiments and
the results for performance evaluation are presented. A short
conclusion is given in Section V.

II. BACKGROUND AND RELATED WORK

Given a set of n values xg,x1,Z2,...,2,—1 and a binary
associative operator @, the prefix computation is to generate
the n quantities sg, s1, So, . . ., Sp—1, Where:

Sop = 2o
S1 :Io@xl

szzmo@x1®x2

Sp—1 =20DT1 DT - BTp—1

For short, above can be rewritten as the chained relationship:
S$; = Si_1®Dx;, fori=1,2,...,n—1 with sg = x. Based on this
relationship, a straightforward sequential algorithm for prefix
computation simply traverses the input sequence, computing
the different s;, one after the other. For example, if @ is

an addition operation, the prefix computation on the input
array of integers {3,1,0,2,4,3,5,2} would return the output
{3,4,4,6,10,13,18,20}.

Note that the binary operator @ in the prefix computation must
be associative:

(o@z1)Baa=00P (1 Do) =20 D1 P2

Namely, in order to get the number so, it isS not necessary to
compute xg @ x first. Therefore, the original parallel prefix
approach utilizes this property to perform the operations in
parallel. Assuming the number of processors is the same as the
input data size n, where n is power of 2, the parallel algorithm
consists of logn iterations. During each step j, there are n—27
processors which perform the binary operation & concurrently
and the indices of the two elements accessed by a processor
are separated by 27, as shown in the pseudo code in Figure 1.

for j = 0 to logn — 1
for i = 2/ to n—1 in parallel
8i = Si—25 D s
endfor
endfor

Fig. 1. Pseudo code of the Parallel Prefix Approach

Parallel prefix is an important technique that has been fre-
quently used to parallelize seemingly sequential operations,
typically in O(logn) time [6]. As shown in Figure 2 below,
it only needs 3 iterations to compute a list of 8 values.
Parallel prefix has a wide range of applicability in science
and engineering. One application is solving the list ranking
problem [7]. That is, given a singly linked list, find the
location of each node in the list —— specifically, its distance
from the end of the list. By using parallel prefix as well as
pointer jumping, every list element’s position can be correctly
determined in a logarithmic number of steps [8]. Another in-
teresting application is to simulate the First Come First Served
G/G/1 queuing network [9]. The formulas for calculating the
arrival and departure times have been transformed into the
linear recurrence relations which can be computed efficiently
using parallel prefix.

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7]
iterations

j=0 ® & & & & &
j=1 & & O O o o

j=2 £e£®

s[0] s[1] s[2] s[3] s[4] s[S] s[6] s[7]

Fig. 2. Parallel Prefix Computation

The parallel prefix computation is appropriate for SIMD
parallel computers because its fine-grained parallelism comes
from simultaneous operations across large amounts of data,
rather than from multiple threads of control. With the advance
of hardware technology, a GPU can have hundreds or even
thousands of processing cores. Therefore, it has been used
in recent years for improving the performance of various
computational intensive applications [10] [11]. It consists of
a scalable number of streaming multiprocessors (SMs) and
each SM contains a group of streaming processors (SPs) [12].
The kernel function, which is executed on the device, is
composed of a grid of threads to be executed on the SPs.
More precisely, a grid is divided into a set of blocks and
each block contains multiple warps of threads. Blocks are
distributed evenly to different SMs to run. A warp has 32
consecutive threads and each thread’s lane ID is its index
within a warp, ranging from O to 31. The GPU device has
its own off-chip device memory (i.e. global memory) and
hence data needs to be transferred from the host CPU before
executing the kernel function. Furthermore, threads can access
the fast on-chip memory resources, such as shared memory and
registers. These are per-block resources and will be released
when all the threads of the same block finish their executions.

Note that the new shuffle functions, which are available on the
Kepler and later GPUs (Compute Capability 3.0 and above),
allow threads within the same warp to read each other’s
registers. Using the function __shfl_sync(unsigned mask, int v,
int srcLane) as an example, the caller thread will get the value
of the variable v held by the thread with lane ID srcLane. It
behaves the same as broadcasting if every thread in the warp
copies from the same source lane. For another example, the
function __shfl_up_sync(unsigned mask, int v, int d) will let
the lane k thread read the variable v held by the lane (k — d)
thread.

The __ballot_sync(unsigned mask, int p) intrinsic function
returns a 32-bit integer in which bit & is set if and only if
the predicate p provided by the thread with lane ID k is non-
zero. Note that the lane ID is the thread’s index within a warp,
ranging from O to 31. In other words, the __ ballot_sync()
function collects the predicates from all threads in a warp
into a 32-bit integer and returns this integer to every thread. It
has been used to accelerate the stream compaction task [13].
Another two intrinsic functions __brev(unsigned int x) and
__ ffs(int x) can be used together to examine the ballots. The
former reverses the bit order of an unsigned integer, while the
latter finds the position of the least significant bit set to one
in a 32-bit integer.

ITII. NEW PARALLEL ALGORITHMS

As mentioned in the earlier section, the calculation of the SCR
seems inherently sequential. However, we can restructure the
problem so that it can be carried out by using the parallel
prefix approach. For each element x;, 0 < i < n, it holds a
2-tuple (d;,r;), where d; is its datum from the input sorted

1245

array d and r; is its rank which is initialized to be 7 + 1. The
binary operator @, which is applied to x; and x;, i < j, is
defined as follows:

Z; EB {ZL’]'

(di,ri) @ (dj,rj)

if d; ==d; return (d;,r;)

else return (d;,7;)

More precisely, the operator & compares the input data ele-
ments d; and dj;, i < j. If they are equal, the rank of the
element d; will be the same as the rank of d;. Otherwise,
its rank remains unchanged. In order to adopt the parallel
prefix method, we have to show that the binary operator &
which is defined above still has the associative property. That
is, repeated application of the binary operation & produces
the same result regardless of how pairs of parentheses are
inserted in the expression. Table I shows all possible cases for
calculating z, @ zp @ ., where a < b < ¢ in detail. For
example, if d, = dp = d,, then the calculations by grouping
z, and xp, first

(Ta © Tp) ® T
= (dp,7a) @ (de,7c)
= (dc,7a)

and by grouping z; and z., first

T @ (zp B)
= (da,7a) ® (de,70)
= (des7a)

yield the same result.

A. Naive Parallel Prefix Algorithm

Our first implementation is a modification to the original
parallel prefix method illustrated in Figure 2. In our modified
algorithm, the ordered array d stores the input data and the
corresponding rank for each element in d will be calculated
in the output array r. We firstly initialize in parallel each
element of the result array to be its index plus 1. During the
iteration steps, the rank copying operation is performed only
when the current data element equals to the data element at
the index of the copying source. Otherwise, the rank remains
unchanged. Figure 3 shows the pseudo code of the modified
ranking algorithm.

The major downside of this algorithm (inherited from the
original parallel prefix algorithm) is that each iteration of the
outer sequential for-loop requires launching a kernel function
on GPU and hence produces more synchronization overhead.
Also in CUDA, it needs to access the whole memory space
multiple times, for both data elements and ranking elements.
Because of the design of CUDA architecture, these memory
accesses generate a major performance penalty. However, it
is a good demonstration showing how the parallel prefix
operations can be used for ranking.

TABLE I

THE ASSOCIATIVE PROPERTY OF 4 ® Ty ® T¢, WHERE a < b < ¢

case [2o ®ap | (Ta D xp) D xC [y ® e | zq @ (v, ® xc)
do = dy =dc “ (db"r‘a) ‘ (db"r'a) 52 (dmrc) = (dmra) “ (dcﬂ"b) ‘ (dayra) D (dcﬂ’b) = (dcﬂ’a)
o =dy <dc [[(dp,ma) | (db,7a) ® (de,re) = (de,re) [[(desre) | (dayra) @ (de,7e) = (de,sre)
do <dp =dc [(dp,rp) [(dp,7) ® (de,me) = (de,) [[(deyrp) | (dayra) ® (de,1b) = (de, 1p)
do <dy <dc [(dp,rp) [(dp,7p) ® (de,1e) = (deyre) [[(deyre) | (dayra) @ (de, 1) = (de,re)
float pelm = __shfl _up_sync(Oxffffffff, elm, 1);

for i = 0 to n—1 in parallel
ri =14+ 1
endfor

for 7 = 0 to logn - 1
for i = 2/ to n—1 in parallel
if di == d;_y
Ty = Tij—92i
endfor
endfor

Fig. 3. The Naive Parallel Prefix approach for computing SCR

B. Shuffle Scan

NVIDIA included a prefix sum implementation based on
shfl_scan in CUDA examples [14]. In a similar but slightly
improved manner, we adapted it to become a ranking algorithm
and evaluated this algorithm.

First, we do similar initialization for the ranking elements.
Instead of a simple index as the ranking value, we are making
them a tuple of the ranking value and a flag, where the flag
indicates whether the data element at this index is equal to the
previous data element or not. This eliminates accesses to the
data elements in all following steps. Practically, considering
there cannot be more than 23° elements due to memory
limitation here, we combine the ranking value and the flag
into one 32-bit integer by using the lower 31 bits to store the
ranking value and the highest bit for the flag.

Second, we change the addition operation to become either a
copying operation from a previous value or a no-op depending
on the flag. That is, it is a copying (returns left operand) if
the right operand does not have the flag set (meaning the data
element here equals the previous one), or is a no-op (returns
right operand) if the right operand has the flag set (meaning
the data element here does not equal the previous one).

The final change is just to extend the prefix sum operation to
be able to operate on any array size, subject to memory limit.
The original algorithm only works on 65536 elements but this
change is not directly connected to ranking.

1246

unsigned int votes __ballot_sync (Oxffffffff, elm!=pelm);

unsigned int votes_rev _ _brev(votes& ((1<<(lanelD+1))-1));

rank

= belm_idx + ((32-__ffs(votes_rev)) & 0x1f);

Fig. 4. Finding Ranks via Intrinsic Functions

C. Shuffle and Intrinsic Functions with Modified Binary
Search

This algorithm starts by establishing the idea of a global warp
which in this context is a block of 1024 elements that will all
be processed by a single warp in an iterative process. Naturally,
during the processing if the global warp id is zero, this is the
first group of values and would start with the ranking of 1.
This can be calculated without having to retrieve a value from
a previous group.

Assuming this is not the first global warp, we need to get a
beginning rank for the group. We take the 32 values at the
end of the prior global warp and then use a single shuffle-
up by one position that allows each thread to determine if its
value is different from its predecessor, as shown in Figure 4.
This in turn sets a value of 1 for a difference and a O for
the same. The intrinsic function (__ballot_sync) takes
the one or zero from each thread and combines them into an
unsigned 32-bit integer. This unsigned integer directly reflects
where the values have changed in the block of 32 threads. To
find the bits that have changed, the intrinsic function __ ffs
can be used, but unfortunately the order of the bits from our
threads is in the wrong order. To correct this short coming, the
intrinsic function __brev is used to reverse the bits in the
ballot integer (MSB <-> LSB). Now that the bits are in the
order necessary to use ___ffs, a mask is generated that will
only expose the bits for values in threads below the current
thread position. The value returned by the _ ffs function
can then be converted back to determine the thread below the
current one that changed. The position can then be used to set
the ranking for the current thread.

Once this process is complete, if the rank for the last value
in the group of 32 is different from the position of the first
value in the group, a change occurred within the 32 values and
the rank for the last one is the beginning rank for the current
global warp. If the values are the same, the code then moves
into a modified binary search working backwards through the

belm d[brank];
int low = 0;
int high brank -1 ;

while (low <= high) {
int m (low+high) / 2 ;

if (d[m]
high
brank

== belm)
m - 1;
m;

{ // check first half

}
else { // check second half;
low = m + 1;

brank remains the same

}

Fig. 5. Modified Binary Search

values until it finds the first occurrence of the current value.
For clarification purposes, it should be noted that the modified
binary search continues until the range shrinks to empty, as
shown in Figure 5 . This assures that we have found the first
occurrence of the value we are seeking. The code can then
take that position within the array as the starting rank for the
current global warp.

Now that the beginning rank for the current global warp is
known, the code performs a loop of 32 iterations with each
iteration doing the shuffle-ballot-brev-ffs process for each 32
values then advancing 32 positions and repeating the process
again until the entire 1024-value block is complete.

The advantage of this algorithm is that only a single run
through the entire array is necessary to calculate all the
rankings. The modified binary search allows for a single kernel
to do all the ranking rather than requiring several kernels to
pass over the array and shuffle up the values. The disadvantage
is that the range of the modified binary search becomes larger
as the processing moves closer and closer to the end of the
array.

D. Pthreads with Modified Binary Search on CPU

As mentioned before, it is not suitable to implement parallel
prefix on a CPU which has only a few or tens of cores
available. Hence, we need to design a different algorithm
for multi-core CPU. In this method, the array is broken up
and spread across several independent threads. Therefore,
each thread must find the beginning rank for its block of
values. The modified binary search, as described previously,
works backwards through the values prior to the current value
block, cutting the size in half each time and seeking the first
occurrence of the current value. Also as noted previously, this
is a modified search and will continue until the range is empty.

Once the value is found, the code continues as for the
sequential processing above and marches through the value
block setting the rankings based on the current value compared
to the preceding value.

1247

‘Sequemié\ -
12 F 4 Threads]
b 8 Threads ------
12 Threads &
24 Threads
1k S 4
A —
e T
s e ™~
& o8| A 1
£ s
o A
E //
= —
s 0.6 | Bl
5
2
£
w
04 q
L *- R 4
g g X
I I I I I I I I I I I

10% 20% 30% 40% 50% 60%

Recurring Value Probability

70% 80% 90% 100%

Fig. 6. Execution Time versus Probability for CPU pthreads

IV. EXPERIMENTAL RESULTS

The experiments were conducted on a high-end workstation
sponsored by NASA GRC. This machine, running the Ubuntu
18.04, has a Xeon Silver 4116 CPU (12 cores, 24 threads)
clocked at 3.0 GHz and has 64 GB in total of Registered ECC
server-grade memory. The GPU device used in this computing
platform was the NVIDIA GeForce RTX 2080 Ti, which is
built with evolutionary NVIDIA Turing architecture [15] and
contains 68 streaming multiprocessors (4352 CUDA cores in
total), 11GB GDDR6 memory and 1.65 GHz GPU clock rate.

The ordered values for ranking are generated using a floating-
point recurring probability from O to 1 such that 0 will cause
the values to all be different and 1 will cause the values to
all be the same. This allows us to see how each algorithm
behaves based on different distributions of change within the
array of values.

Figure 6 shows the execution timing results gathered when
running the CPU pthreads code against 128 million elements
with probabilities ranging from O to 1 in intervals of 0.1. Each
execution timing is the result of 10 executions and extraction
of the lowest execution time. It is important to note that
the evaluation server used was not dedicated entirely to this
evaluation and could have had other activity that may have had
an impact on the performance. Thus, the reason for multiple
executions and taking the lowest value, was to minimize other
factors. A review of these numbers shows that as the number
of threads increase, the execution time drops. Not shown in
the figure is that if we use more than 24 threads, the execution
time will not drop further. This makes sense, since the machine
used for the evaluation has 12 cores with 24 hyper threads.

We also ran the experiment to compare the three approaches
we proposed on the GPU platform. The timing results can
be found in Figure 7. Among the three, the naive approach
performs the slowest because it needs to launch the kernel
function on GPU log(n) times and each kernel invocation

0.09 -
naive —+—
shfl_scan based +
0.08 |- ybrid ---%--- /
/
/
0.07 - /A
/
/
. 006 / q
3 /
& /
£ /
S 005f / g
£ 4
I; P " —
S 004 1
H
£
o003 E
0.02]
0.01 -]
f RRRREREEE S B S SRR KooK
o L ! ! ! i ! i ! i f !
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Recurring Value Probability
Fig. 7. Execution Time versus Probability for different algorithms on GPU
0.09 —
ve —+—
shfl_scan based A
hybrid -+ %--- .
0.08 /]
-
0.07 - _— E
— "
. 0.06 |- o i
o -
3 -
4 -
S 005 — q
E —
=
§ 004f E
2
2
O 003 F E
0.02 -]
0.01 E
f | | | | | i
90% 99% 99.9% 99.99% 99.999% 99.9999% 100%
Recurring Value Probability
Fig. 8. Execution Time versus High Recurring Probability for different

algorithms on GPU

will access the input and output arrays, while the hybrid
method which utilizes the modified binary search and intrinsic
functions performs the fastest because it only requires one
kernel function call. Note that these three approaches perform
much faster as compared with the timing results on the CPU
in Figure 6,

Another evaluation, as shown in Figure 8, is like the previous
one but focuses on the upper end of the recurring value
probability where the likelihood of the value being the same
as the previous value is much higher. This can present some
difficulties to the various algorithms, because the beginning
ranking for a group of values is not necessarily found near the
current value. This requires some special processing to work
backwards to find the proper beginning rank for the group.
This evaluation also uses 128 million values but looks at the
high end of the probability range starting at 0.9, advancing to
0.99, then 0.999, and so on until 0.999999 and finally 1.0.

1248

T T
Sequential —+—
hreads
8 Threads ------
12 Threads &
24 Threads

0.6 41

Execution Time (in sec)

04 B
///
//// B
02 _ 2 9
_— L
i a
0 ¥] L L L L
aMm 8M 16M 32M 64M 128M
Number of Elements
Fig. 9. Execution Time versus Number of Elements for CPU Pthreads
9 ;
4 Threads —+——
8 Threads
8l 12 Threads ---*--- |
24 Threads a I a
&
7t . B

Speed Up

16M 17M
Number of Elements

Fig. 10. Speed Up for CPU Pthreads

In another experiment, we measured the pthreads-based al-
gorithm performance by varying the input from 4 million
values to 128 million values, while using the recurring value
probability of 50%. This allows us to see if an algorithm
performs better or worse based on the size or number of values
being ranked. Figure 9 depicts the results running on the CPU.
The corresponding speed-up ratios, which are the ratios of the
sequential time to the parallel time, are shown in Figure 10.
It can be observed that using 24 pthreads can be roughly 8
times faster than the serial execution on the CPU.

A similar experiment was also conducted for the three parallel
prefix-based approaches on the GPU device. Figure 11 and
Figure 12 show the timing results and the speed up ratios,
respectively. It can be seen that our hybrid approach can be
more than 400 times faster than running sequentially on the
CPU.

0.05 : .
naive —+—
shfl_scan based
ybrid ---%---
"
0.04 | / |
S /
]
2 003 / |
o
1
= /
<
=3
3 002 |
&
]
0.01 B |
"
"
’”JWJ/ e *
ey Y ‘

16M 32M
Number of Elements

aM 8M 64M 128M

Fig. 11. Execution Time versus Number of Elements for algorithms on GPU
600 . T
hybrid —+—
shfl_scan based
naive ------
500 B
- A _
_— L N
—
~
400 B
o
=]
B 800 |
g
2]
200 B
100 |- B
* -x P
Keeeennens . B
0 A
am 8M 16M 32M 64M 128M
Number of Elements
Fig. 12. Speed Up for algorithms on GPU

V. CONCLUSION AND FUTURE WORK

The computation of SCR over a sorted array seems inherently
sequential because the rank of an item depends on the rela-
tionship with its previous ones. We restructured the problem
and introduce a new associative binary operation so that the
SCR calculation can be carried out by using the parallel prefix
approach. We presented three implementations on the GPU
many-core computing platform and one parallel implementa-
tion on the CPU multi-core environment. The experimental
results show that the pthreads-based approach on a 12-core
CPU can achieve almost 8 times faster than the sequential
execution. The results on the GPU platform are even more
encouraging. The hybrid scheme which exploits the warp shuf-
fle and some intrinsic functions as well as the modified binary
search method, can achieve more than two orders of magnitude
speedup relative to a serial CPU implementation. Furthermore,
we have extended our ideas to implementing other ranking
strategies, such as Modified Competition Ranking, Fractional

1249

Ranking, etc. [16] and currently are conducting experiments
to evaluate their performance.

ACKNOWLEDGMENT

This research was supported in part by the Summer Faculty
Fellowship and the equipment sponsorship from the NASA
Glenn Research Center.

(1]
[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]
[13]

(14]

[15]

[16]

REFERENCES

H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. Wiley, 2003.

G. Heygster, “Rank filters in digital image processing,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 148-164, 1982.

D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach, 3rd ed. Morgan Kaufmann Publishers
Inc., 2016.

M. Harris, “CUDA Pro Tip: Do The Kepler Shuffle, PARALLEL
FORALL,” http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-
shuffle/, 2015.

L. S. N. Nunes, J. L. Bordim, K. Nakano, and Y. Ito, “A Memory-
Access-Efficient Implementation of the Approximate String Matching
Algorithm on GPU,” in Proceedings of International International
Symposium on Computing and Networking (CANDAR), 2016.

W. Hillis and G. Steele, “Data Parallel Algorithms,” Comm. ACM,
vol. 29, no. 12, pp. 1170-1183, 1986.

J. C. Wyllie, “The Complexity of Parallel Computations,” PhD thesis,
Cornell University, Ithaca, NY, USA, Tech. Rep., 1979.

M. J. Quinn, Parallel Computing: Theory and Practice, 2nd ed.
McGraw-Hill, 1994.

A. G. Greenberg, B. D. Lubachevsky, and 1. Mitrani, “Algorithms for
unboundedly parallel simulations,” ACM Trans. on Computer Systems,
vol. 9, no. 3, pp. 201-221, Aug. 1991.

A. Hylton, G. Henselman-Petrusek, J. Sang, and R. Short, “Tuning
the performance of a computational persistent homology package,”
Software: Practice and Experience, vol. 49, no. 5, pp. 885-905, May
2019.

J. Sang, C. Lee, V. Rego, and C. King, “Experiences with implementing
parallel discrete-event simulation on GPU,” Journal of Supercomputing,
vol. 75, pp. 4132-4149, Aug. 2019.

NVIDIA, CUDA Programming Guide version 10.0 , 2018.

V. Rego, J. Sang, and C. Yu, “A Fast Hybrid Approach for Stream
Compaction on GPUs,” in Proceedings of International Workshop on
GPU Computing and Applications, 2016.

NVIDIA, “CUDA Parallel Prefix Sum with Shuffle Intrinsics
(SHFL_Scan),” http://docs.nvidia.com/cuda/cuda-samples/index.html.

E. Kilgariff and H. Moreton and N. Stam and B. Bell , “NVIDIA Turing
Architecture In-Depth,” https://developer.nvidia.com/blog/nvidia-turing-
architecture-in-depth/, 2018.

Wikipedia, “Ranking,” https://en.wikipedia.org/wiki/Ranking.

