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Abstract—High-performance computing (HPC) systems re-
quire significant energy to run their operations. A typical HPC
system contains various heterogeneous hardware components, in-
cluding CPUs and GPUs. Power capping is a widely-used feature
in processors to achieve an upper limit of power allocation. In this
paper, we exploit power capping capability in modern processors
to achieve energy-efficiency in heterogeneous computing system.
We first develop an optimal power cap allocation model con-
sidering heterogeneous computing platform. Next, we develop a
simulator based on a parallel discrete-event simulation engine to
simulate our proposed power capping allocation model. Finally,
we perform trace-based simulation experiments to demonstrate
effectiveness of our model. Experiments demonstrate that our
proposed model is capable of achieving various level of energy-to-
solution reduction for different parallel applications considering
heterogeneous computing platform.

Index Terms—Power Capping, High Performance Computing,
Energy Efficiency.

I. INTRODUCTION

Rising demand for scientific parallel application has been

contributing to increase in demand for large-scale computing,

such as high-performance computing (HPC). As such, new

HPC systems with more large size and computation power are

being introduced. With such increase in size and capability of

HPC systems, their energy consumption has also been increas-

ing dramatically over the years. The current top-ranked Fugaku

supercomputer in Japan consumes approximately 29MWs of

power [1], sufficient to power a small town of 30,000 homes.

The 200-petaflops Summit system in the United States con-

sumes more than 10MWs power [1]. All the supercomputers

in the top 20 ranks currently consume power in the megawatts

range.

To reduce the overall energy consumption, different energy

saving techniques have been proposed for HPC systems. They

include energy-efficient design for hardware components, in-

cluding CPU, memory, and interconnection network. Saving

energy generally interprets to reducing power consumption,

runtime, or both. The methods in the area can be classified

into three categories: reduce time and power, reduce time but

allow an increase in power, and reduce power while allowing

an increase in time. Dynamic voltage and frequency scaling

(DVFS) is a widely-studied resource allocation technique for

HPC systems [2]–[5]. A more recent effort on DVFS by

Bao et al. [6] automatically selects the optimal frequency

and core count at compile-time to achieve lower energy.

There are also strategies to exploit variations in electricity

price, carbon intensity and renewable energy [7]. Different

job scheduling approaches have also been proposed in the

literature to achieve lower energy consumption [8]–[12]. In

this paper, we exploit power capping capability to achieve

energy-efficiency in heterogeneous HPC platform.

Power capping is the allocation of power to nodes mainly

to achieve an overall HPC cluster power limit. Power capping

not only helps achieve power reduction in the node but also

optimizes application performance within a power budget.

Power-capping capability is becoming a standard feature for

modern processors through various programming interfaces,

such as Intel’s running average power limit, AMD’s advanced

power management link, NVIDIA’s NVIDIA management

library, HP dynamic power capping, among others. A number

of power allocation methods have been developed to achieve

optimized power and performance for HPC systems (e.g., [8],

[13]–[16]). In this paper, we develop power capping allocation

model and simulator to achieve energy-efficiency for HPC

systems considering heterogeneous computing platform. More

specifically, our contributions can be summarized as follows:

• We present an optimal energy-efficient power cap alloca-

tion model for HPC platform consisting of CPUs and GPUs.

We develop a simulator based on a parallel discrete-event

simulation engine. The parallel capability of our simulator can

be used scale to large number of job simulation.

• We perform trace-based simulation study to show effec-

tiveness of our proposed model. We collect various power and

performance data for CPU and GPU node running various

parallel application. The simulation results demonstrates ca-

pability of achieving energy-efficiency in an HPC platform

using our proposed model.

The rest of this paper is organized as follows. In Section II,

we present the related studies that are most pertinent to this

work. Section III presents the proposed model for energy-

efficient power-capping of parallel applications considering

heterogeneous computing platform. In the same section, we

present a job scheduling simulator based on parallel discrete

event simulation engine. In Section IV, we present a trace-

based simulation study. Section V concludes our paper.
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II. RELATED WORK

In this section, we present related work in the following

areas: energy saving methods in HPC, power allocation ap-

proaches, and various job simulation approaches in HPC.

A. Energy Saving Methods in HPC

Different analytical models have been developed to achieve

energy-efficiency of HPC systems. Song et al. [17] developed

one of the first analytical models to help users explore different

system parameters (e.g., processor count, processor frequency,

workload size) for energy-efficiency of parallel applications.

The iso-energy-efficiency model in the paper is used to derive

essential machine and application dependent parameters for

accurate total system energy consumption, as well as maintain

energy-efficiency of the system. An execution-cache-memory

(ECM) based model is proposed and developed by Hoffman

et al. [18]. The model combines both code-level analysis

and hardware-level optimization to achieve energy reduction

at both single-core and multi-core processor chips. Endrei

et al. [19] developed a statistical model for to predict the

Pareto optimal performance parameters and energy efficiency

trade-off options that users can directly control. The model

has shown capable of accurately capturing the performance-

energy trade-offs, improving the overall energy-efficiency of

the system, while incurring moderate performance loss.

Recently, much interest has been shown for job scheduling

and resource allocation to HPC jobs in power bound HPC

systems. Sarood et al. explored the possibility of exploiting

power capping capability of processor and memory subsystems

in HPC systems to achieve optimal application execution time

within the power budget [16]. They presented an interpolation

scheme to estimate application execution time at various pro-

cessor and memory power levels and later used the prediction

to optimize number of nodes and power allocation to nodes by

exploiting RAPL capability. In [8], Sarood et al. presented an

optimal dynamic resource allocation scheme in HPC systems

within a power budget. More specifically, the scheme allocated

power and nodes to HPC jobs exploiting resource overpro-

visioning, power capping, and job malleability properties to

maximize job throughput. DVFS has been widely explored

as a resource allocation technique for parallel applications.

There are early efforts for DVFS-based HPC energy-efficiency

(e.g., [3], [5]), as well some more recent efforts(e.g., [6], [20]).

B. Power Capping Allocation Model

Modern processors are equipped with power control systems

to ensure that the processor operates within a power cap

limit. Various power capping based software solutions have

been proposed in the literature [13]–[15], [21]–[26]. Cochran

et al. [23] proposed Pack & Cap, a technique for increas-

ing the application performance within the power cap limit

for multithreaded workloads on multicore processors. Thread

packing is utilized to explore feasible power caps and to

enable fine-grained dynamic control of power consumption.

A thermal-aware power-capping allocation model for HPC

application specific to homogeneous computing architecture

has been developed in the paper [26]. RAPL, an implementa-

tion of hardware-level power capping, was first introduced in

Sandy Bridge processors [13]. Patki et al. [14] performed an

extensive study of application performance for an entire cluster

while limiting the power usage at the node level. An optimal

power allocation scheme was proposed with consideration of

application parallel efficiency and memory intensity to achieve

the best application performance. Recently, Liu et al. proposed

FastCap [15], a system-wide power-capping approach based

on both CPU and memory DVFS to achieve optimal system

performance within a given budget for systems with a large

number of cores. In this paper, we develop a power capping

allocation model considering heterogeneous computing archi-

tecture, and develop a simulator for model simulation.

C. Job Scheduling Simulation

There exist many job scheduling and resource allocation

simulators particularly focusing on HPC systems. For example,

PYSS (Python Scheduler Simulator) is an open-source HPC

workload scheduling simulator written in Python [27]. The

simulator was developed by the Experimental System Lab at

the Hebrew University, and has been used to study various

scheduling algorithms (e.g., [28], [29]). The simulator imple-

ments a number of scheduling algorithms, including several

backfilling algorithms. The simulator does not really model

the target HPC system in detail. CQSim is another event-

based simulator to study the detailed queuing behavior of job

schedulers using real system workload. The simulator was

developed by Illinois Institute of Technology and has been

used to evaluate fault-aware utility-based job scheduling [30],

adaptive metric-aware job scheduling [31], and so on. Current

HPC simulators provide only limited capabilities for studying

job scheduling. For example, SST/Macro contains only limited

support for running multiple jobs via trace replay [32].

Our job scheduler simulator is developed based on Simulus,

which is an open-source, process-oriented, parallel discrete-

event simulation engine [33]. Simulus supports both event-

driven and process-oriented simulation world-views. It is im-

plemented in Python with several advanced features to ease

modeling and simulation tasks with both events and processes.

III. MODEL

In this section, we present a power capping allocation model

considering heterogeneous computing architecture. We first

outline the job scheduling and resource allocation model, and

then present a problem formulation along with a algorithm

framework to solve the problem. Finally, we present a brief

description of the simulator we develop based on a parallel

discrete-event simulation engine. The simulator is later used

to simulate our proposed power cap allocation model.

A. Job Scheduling and Resource Allocation Model

We assume that an HPC user submits job j requesting nj

nodes, consisting of both CPUs and GPUs. We focus on the

node power consumption, while the power consumption of

non-IT parts of the HPC center such as cooling and power
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supply system is captured using the factor of power usage

effectiveness (PUE). We primarily use the first-come-first-

serve (FCFS) policy, although other job scheduling policies

can be applied as well.

1) Separate CPU and GPU power-cap model: In this

model, we assume that power capping can be allocated

separately for CPU and GPU components of a node. We

assume that a job j submitted by user runs on GPU at

power capping value Pj,gpu. We denote the GPU’s power

consumption for running job j as pj,gpu. We determine pj,gpu
using the following third-order polynomial function:

pj,gpu = agpu+bgpu ·Pj,gpu+cgpu ·P 2
j,gpu+dgpu ·P 3

j,gpu, (1)

where agpu, bgpu, cgpu, and dgpu are constants determined

from empirical analysis of average power relation with differ-

ent power-capping values. The power-capping value assigned

to a GPU should be within a minimum and maximum power-

capping limit. The constraint can be represented as follows:

Pmin
gpu ≤ Pj,gpu ≤ Pmax

gpu , (2)

where Pmin
gpu and Pmax

gpu are the minimum and maximum

power-capping values that can be assigned to a GPU. In a sim-

ilar fashion, we model the CPU’s power consumption pj,cpu
running at power capping value Pj,cpu using the following

third-order polynomial function:

pj,cpu = acpu+bcpu ·Pj,cpu+ccpu ·P 2
j,cpu+dcpu ·P 3

j,cpu, (3)

where acpu, bcpu, ccpu, and dcpu are constants determined from

empirical analysis of average power relation with different

power-capping values. Moreover, the power-capping value

assigned to a CPU should be within a minimum and maximum

power-capping limit. The constraint can be represented as

follows:

Pmin
cpu ≤ Pj,cpu ≤ Pmax

cpu , (4)

where Pmin
cpu and Pmax

cpu are the minimum and maximum

power-capping values that can be assigned to a CPU. Total

dynamic power consumption of the node can be represented

as follows:

pj,node = pj,gpu + pj,cpu. (5)

We assume the time taken for the job to execute is represented

by tj . The total energy consumption of the job can be

determined as follows:

ej,node = nj · pj,node · tj . (6)

We determine the separate power-cap values for CPU and

GPU based on the following optimization objective.

Minimize

N∑

j=1

ej,node

Subject to constraints (2) and (4).

(7)

2) Entire node power-cap model: In this model, we assume

that same power capping value is allocated to the entire node.

We assume that a job j submitted by user runs on a node

consisting of both CPU and GPU. The node runs at power

capping value Pj . We denote the node’s power consumption

for running job j as pj . We determine pj using the following

third-order polynomial function:

pj = a+ b · Pj + c · P 2
j + d · P 3

j , (8)

where a, b, c, and d are constants determined from empiri-

cal analysis of average power relation with different power-

capping values. The power-capping value assigned to a GPU

should be within a minimum and maximum power-capping

limit. The constraint can be represented as follows:

Pmin ≤ Pj ≤ Pmax, (9)

where Pmin and Pmax are the minimum and maximum

power-capping values that can be assigned to the node.

We assume the time taken for the job to execute is repre-

sented by tj . The total energy consumption of the job can be

determined as follows:

ej = nj · pj · tj . (10)

We determine optimal power capping values for the entire

node based on the following optimization objective.

Minimize

N∑

j=1

ej

Subject to constraint (9).

(11)

We resort to standard optimization algorithm (e.g., sequential

least squares programming algorithm using the Han-Powell

quasi-Newton method) to solve the optimization problems

given in Eqs. 7 and 11.

B. Simulation Model

We use simulation to study the effect of the proposed job

scheduling and resource allocation model. Our trace-driven

simulator is developed based on Simulus, which is an open-

source, process-oriented, parallel discrete-event simulation en-

gine [33]. Simulus has several unique design features that

make it more attractive for us to build our scheduler simulator.

Simulus has a very simple application programming interface

(API). The simulator adopts a minimalistic design with only

a handful of core functions. Simulus also supports process-

oriented world view for easy model development. Simulus

is developed using interpreted languages, such as Python.

Simulus has previously been used for trace-driven simulation

study of HPC applications [34].

The job scheduler simulator consists of five major compo-

nents: a job dispatcher, a job executioner, scheduling poli-

cies, application models, and a resource manager. The job

dispatcher takes four different types of events: job arrival, job

departure, job eviction (when an executed job is interrupted

and removed in the middle of the run), and power demand

change (when the power service provider of the HPC center
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changes the current power limit due to any emergency event).

When a job is submitted, it enters the job waiting queue

and invokes the job dispatcher. The job dispatcher determines

whether the job is eligible to run according to the applica-

tion models (that describe the job’s power and performance

characteristics) and the current available resources from the

resource manager. The job dispatcher processes the jobs from

the waiting queue according to the scheduling policies. For

this study, we use the FCFS policy.

When a job is scheduled to run, the job dispatcher removes

the job from the waiting queue and put it in the list of running

jobs. The job executioner allocates the resources using the

resource manager to represent the occupied processors (at

the specified power-capping values) with associated power

consumption for running the job. The job executioner then

simulates the job’s execution accordingly. We simulate using

the job’s execution time and power consumption according to

the estimates from the power and performance models. When

a job completes its execution, the job executioner removes

the job from the list of running jobs, reclaims the resources

occupied by the job, and then invokes the job dispatcher to

select new eligible jobs to run.

IV. EXPERIMENTS

We collect and use jobs’ power-related information from lit-

erature. More specifically, we choose the published data from

an existing study [35]. We collect the power and performance

data for various parallel application at different power capping

values. The testbed used for the experiments contains NVidia

GeForce GTX 1070 GPU and Intel Core i7-7700 CPU. The

applications used were general matrix multiplication (GEMM)

and NAS parallel benchmark (NPB). GEMM was executed

for various matrix sizes, including sizes 16384 × 16384 and

24576 × 24576. The NPB benchmark included the following

kernels: tri-diagonal solver (BT), scalar Penta-diagonal solver

(SP) and lower-upper Gauss-Seidel solver (LU). We collect the

execution time, average power data for various power-capping

values.

Fig. 1 presents the results reported for various power-

capping values for GEMM application. The reported value

of power-capping was changed from 100W to 200W at a

20W increase. Two variations of the applications are shown

in the figure based on two variation of matrix sizes. Fig. 1(a)

presents the average power measurements for the application.

With increase in power capping limit, the average power

consumption increase until it becomes saturated with increase

in power capping value. Fig. 1(b) presents the execution time

measurements for the application.

Fig. 2 presents the results reported for different power-

capping value for the application NPB. The reported value

of power-capping was also changed from 100W to 200W

at a 20W increase for this application. Three kernels of

the applications are reported in the figure: SP, BT, and LU.

Fig. 2(a) presents the average power measurements for the ap-

plication for different kernels. With increase in power capping

limit the average power consumption also increases. Fig. 1(b)
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Fig. 1. GEMM application performance on NVIDIA GeForce GTX 1070.

presents the execution time measurements for the application

at different power-capping limit.

Fig. 3 presents a comparison between two benchmarks:

Optimal and Non-Optimal. In the algorithm Optimal, we

allocate optimal power-capping value to the node based on the

optimization problem formulation in Eq. 11. In the algorithm

Non-Optimal, maximal power-capping value is allocated to

each application. As can be seen in the figure, various level

of energy consumption reduction is possible for all the appli-

cations when considering optimal power-capping allocation.

More specifically, for the application GEMM, 38.9% and

33.7% energy saving is possible for matrix size 16K and

24K, respectively. Therefore, selecting an appropriate level of

power-cap value on a heterogeneous computing architecture

can be energy-efficient for various HPC applications.

Next, we collect application power and performance mea-

surement data from existing study [35] for a different node.

The node contains Intel Xeon processor and NVIDIA GeForce

RTX 2080 GPU. The data for GEMM application for various

matrix sizes (16K, 24K and 32K) are shown in Fig. 4. For

this reported data, the power capping values were changed

from 140W to 240W at 20W granularity. Fig. 4(a) shows the
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Fig. 2. NPB application performance on NVIDIA GeForce GTX 1070.
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average power for different power cap values, while Fig. 4(b)

presents the application time execution for various power cap

values. Fig. 5 presents the comparison of the Optimal and Non-
Optimal benchmarks for these measurements. As evident from

the figure, our proposed model can achieve reduced energy-to-

solution for the application while considering a different set

 105

 110

 115

 120

 125

 130

 135

 140

 145

 150

 140  160  180  200  220  240

A
ve

ra
ge

 P
ow

er
 (

W
at

t)

Power Cap (Watt)

GEMM (size: 32K)
GEMM (size: 24K)
GEMM (size: 16K)

(a) Average Power

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 140  160  180  200  220  240

T
im

e 
(S

ec
on

ds
)

Power Cap (Watt)

GEMM (size: 16K)
GEMM (size: 24K)
GEMM (size: 32K)

(b) Execution Time

Fig. 4. GEMM application performance on NVIDIA GeForce RTX 2080.
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of node consisting of CPUs and GPUs.

V. CONCLUSIONS

In this paper, we develop a power cap allocation model

for parallel application execution on heterogeneous computing

platform, consisting of CPU and GPU. We develop a simulator
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based on a parallel discrete simulation engine. The simulator

includes our proposed power cap model. We collect various

trace data to demonstrate effectiveness of our model. Our

collected data consist of number of HPC application running

on heterogeneous compute node. Simulation experiments show

that our model can achieve energy-to-solution reduction at var-

ious level for different parallel applications on heterogeneous

computing platform.
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