
Coupling Storage Systems and Self-Describing Data
Formats for Global Metadata Management

Michael Kuhn∗ and Kira Duwe†
Faculty of Computer Science

Otto von Guericke University Magdeburg

Magdeburg, Germany

michael.kuhn@ovgu.de∗, kira.duwe@ovgu.de†

Abstract—Traditional I/O stacks feature a strict separation of
layers, which provides portability benefits but makes it impossible
for storage systems to understand the structure of data. Coupling
storage systems with self-describing data formats can offer
benefits by making the storage system responsible for managing
file metadata and allowing it to use structural information for
selecting appropriate storage technologies.

Our proposed storage architecture enables novel data man-
agement approaches and has the potential to provide significant
performance improvements in the long term. By making use
of established self-describing data formats, no modifications are
necessary to run existing applications, which helps preserve past
investments in software development.

Specifically, we have designed and implemented an HDF5 VOL
plugin to map file data and metadata to object and key-value
stores, respectively. Evaluations show that our coupled storage
system offers competitive performance when compared with the
native HDF5 data format. In some cases, performance could even
be improved by up to a factor of 100.

Index Terms—file system, storage system, self-describing data
format, metadata management

I. INTRODUCTION AND MOTIVATION

Over the last decades, societies came to rely more than ever

on technological progress in information technology. Especially

in the area of scientific research, this does enable the possibility

to solve increasingly complex problems, which nowadays

require the computational power of supercomputers. The rising

complexity of the processed problems as well as the growth of

computation power leads to rapidly increasing data volumes.

The globally produced data volume doubles approximately

every two years, leading to an exponential data deluge.

Many HPC applications generate vast amounts of data and

write them to parallel distributed file systems where they are

kept for further processing. All production-level file systems

currently in use offer a POSIX I/O interface that treats file data

as an opaque byte stream. As it is not possible to reconstruct the

data format from this byte stream without prior knowledge, self-

describing data formats such as NetCDF (Network Common

Data Format) and ADIOS (Adaptable IO System) are widely

used to be able to easily exchange data with other researchers

This work is partly funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 417705296. More information about
the CoSEMoS (Coupled Storage System for Efficient Management of Self-
Describing Data Formats) project can be found at https://cosemos.de.∗Corresponding author

and annotate data with meaningful metadata. For example, the

World Data Center for Climate (WDCC) alone holds multiple

petabytes of data in such formats and provides access for other

researchers. The data structure information is encoded in the

files themselves, which makes it possible to group and annotate

data. Moreover, data can be accessed and interpreted without

having prior knowledge about its structure.

In a typical HPC I/O stack, applications only interface

directly with a high-level I/O library such as NetCDF, which

depends on HDF5 (Hierarchical Data Format) and so on. The

coupling between the different layers is loose and mainly used

for performance tuning. However, structural information about

the data is lost as it is handed down through the layers.

Supercomputers usually make use of parallel distributed file

systems to satisfy the demand for high capacity and throughput.

Data and metadata are typically separated in such file systems

for performance reasons because data and metadata produce

different access patterns and thus require different optimizations.

This separation leads to two different types of metadata: file
system metadata (such as ownership and permissions) is stored

on the file system’s metadata servers, while file metadata
(such as the type of physical quantities used in a simulation

application) is stored within files on the file system’s data

servers. File system metadata is typically in the range of 5% of

the overall data volume, which leads to significant amounts of

metadata in current multi-petabyte file systems. It is, therefore,

necessary to develop efficient and scalable approaches to handle

these increasing amounts of metadata.

Figure 1 shows the different kinds of metadata and data

present when storing self-describing data in a file system. While

the file system is responsible for managing folders and files,

self-describing data formats typically offer similar concepts

called groups and datasets in this example. The functionality

offered is effectively that of a file system nested within the

actual file system.

The goal of this paper is to address the weak treatment of

different types of metadata. Opening a file and reading specific

portions of data (for example, a single output dimension) first

requires accessing the file system metadata to identify the

servers holding file data. Afterwards, file metadata is read

to determine which portions of the file have to be accessed.

Finally, the actual data can be read from the file system. This

1224

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00229

File Group Datasett

Group Datasett

File metadata File data

Folder

File system

metadata

Figure 1. Exemplary self-describing data format stored in a file system.
Different kinds of metadata are managed by the file system and the self-
describing data format.

strict separation between file system metadata and file metadata

leads to inefficient file access. Maintaining metadata requires

coordinated access to a shared resource and therefore imposes

significant synchronization overhead due to strict semantics

mandated by POSIX. Moreover, file metadata is distributed

across potentially many different data servers that have to

be contacted, causing additional overhead. Data servers are

commonly optimized for streaming I/O and therefore cannot

deal well with small random accesses that are typical for

metadata requests.

II. GLOBAL METADATA MANAGEMENT

To address the issues outlined above, we have adapted

the I/O stack to handle both file system metadata and file

metadata using the storage system’s metadata backends, which

enables efficient metadata management and improves metadata

performance. To this end, the storage system and self-describing

data formats have been closely coupled to benefit from the

available structural information. This coupling can be used to

tune the backends’ hardware appropriately for their respective

access patterns and to optimize access to both types of metadata

using established database technologies. Moreover, this deep

integration of metadata enables the storage system to handle

different kinds of metadata optimally. For instance, while

file system metadata might be best managed by a key-value

store, file metadata could be stored in an SQL database. We

expect this to have considerable long-term performance benefits

as previous studies have shown that metadata performance

can be improved significantly using appropriate database

techniques [1]. Handling the file metadata within the storage

system will be used for novel data management approaches

such as a specialized data analysis interface.

Our objective is achievable without exposing additional

complexity to the end-user, as will be shown in the following

section. Coupling the storage system and self-describing data

formats lays the foundation upon which future improvements

such as adaptable I/O semantics and an intelligent storage

selection can be built. The structural information made available

to the storage system by global metadata management will

allow intelligent decisions to be taken.

We build on JULEA, a flexible storage framework for HPC

that can be used to rapidly prototype new approaches in research

and teaching [2]. It provides basic storage building blocks

that are powerful yet generic enough to support parallel and

distributed storage use-cases. This kind of flexible functionality

is achieved by providing well-defined and well-documented

plugin interfaces with common requirements in mind. It is

possible to run it without administrator or system-level access

to enable easy large-scale experiments on supercomputers,

where such access is typically not available. Making use of

this framework allows us to focus on the objectives defined

above instead of having to implement basic storage system

functionality. We make use of this functionality to extend a

selected self-describing data format to enable global metadata

management. A detailed overview of our proposed architecture

will be given in the next section.

Our proposed approach couples the storage system and self-

describing data formats in a way that allows the storage system

to handle both file system metadata as well as file metadata

appropriately. The storage system’s architecture is shown in

Figure 2. Applications utilize a self-describing data format
(SDDF) API such as HDF5. The modified SDDF library, in

turn, transfers the I/O operations to JULEA via several clients

that communicate with JULEA’s backends to store data and

metadata. There is currently support for object and key-value

storage with a matching client for each backend type.

JULEA’s architecture allows selecting from multiple different

backends without requiring changes for applications and

libraries. Both the client and backend interfaces have been

designed with the requirements of the respective backend

types in mind and are abstract enough to support a wide

range of backend implementations. For instance, there are

object backends for both RADOS and POSIX file systems.

Moreover, key-value backends for LevelDB, LMDB, MongoDB

and SQLite are available. The different types of metadata are

separated and mapped to appropriate backends for maximum

performance. In the future, the SDDF implementation will

find a fitting storage backend and technology for a given set

of requirements. We are also planning to add a data analysis

interface (DAI) that will enable comfortable and efficient post-

processing by offering a direct interface to query file system

metadata as well as file metadata. In contrast to existing analysis

tools that have to extract the metadata and store it in a database,

this will allow more efficient access and thus reduce overhead

as well as redundancies.

The highest level of our storage system are application-

facing interfaces. For backward compatibility, we focus on

existing SDDF interfaces such as HDF5. These interfaces are

widely used in several scientific fields (for example, climate

science and high-energy physics) and, therefore, allow us to

support a wide range of existing applications. Moreover, HDF5

is used as a basis for other data formats such as NetCDF and

NeXus. The SDDF API sits on top of JULEA, offering well-

known interfaces for scientific applications. The specific SDDF

implementation is responsible for separating the metadata and

data, and for making use of the pertinent JULEA backends.

We have designed and implemented a proof-of-concept

plugin for HDF5 that allows existing applications to make use

1225

Client

Application Object Client

Key Value Client

Tool

DAISDDF API

FS Metadata File Metadata File Data SDDF File

Metadata

Backend

Key Value

Metadata

Backend

Key Value

Data

Backend

Object

Figure 2. Overview of our proposed architecture. To realize backward compatibility, applications are using unmodified SDDF APIs. The SDDF library itself is
adapted to make use of JULEA’s clients to handle data and metadata appropriately.

of our storage system. Even though no application changes are

required, this allows our storage system to handle file metadata

in a way that is not possible with traditional file systems. It

is important to note that our storage system approach is not

limited to one specific SDDF and we are currently in the

process of providing an ADIOS2 engine.

HDF5 comprises a set of file formats and libraries that allow

storing and accessing self-describing collections of data and is

widely used in scientific applications. It supports several types

of data structures, two of the most important ones being datasets
and groups. These two data structures are used analogously

to files and directories, that is, datasets are used to store data,

while groups are used to structure the namespace. Groups can

contain several datasets as well as other groups, leading to a

hierarchical layout. Datasets can store multi-dimensional arrays

of a given data type, with each dimension being potentially

unlimited. These data structures within an HDF5 file are then

accessed using POSIX-like paths such as /ocean/depth.
Additionally, arbitrary metadata can be attached to groups

and datasets in the form of user-defined, named attributes.
These can be used to store information such as the allowed

minimum and maximum values, or the unit of the physical

quantities within a dataset together with the actual data. As

HDF5 files are self-describing they allow accessing them

without any prior knowledge about their structure or content.

Moreover, links are used to establish relationships between

groups and datasets. For instance, one dataset can be linked

into several groups and accessed as one of their members.

HDF5 offers the The Virtual Object Layer (VOL) plugin

interface that can be used to adapt its I/O behavior by

enabling fine-grained control over the management of HDF5’s

different data structures. Specifically, it is possible to implement

functions for creating, opening, reading, writing, deleting and

closing attributes, datasets, datatypes, files, groups, links and

objects. This allows separating file data and file metadata in

a way that structural information can be used by the storage

system for intelligent decisions. Additionally, file data and file

metadata can be handled appropriately by storing file data in

an object store, while file metadata is stored in a database.

Our HDF5 client uses the Virtual Object Layer. By using

the VOL, it is possible to gain fine-grained access to file data

and file metadata while still conforming to the HDF5 standard.

This allows us to keep the native SDDF format. Therefore,

this approach is transparent to existing applications because

we do not introduce a separate generic storage format for self-

describing data. HDF5’s VOL allows defining functions for

attributes, datasets, datatypes, files, groups, links and objects.

For our implementation, we have focused on the most important

areas of files, groups, datasets and attributes for now. This

allows covering a wide range of HDF5 functionality without

having to implement very specific niche features.

Notably, our current design does not consider links, which

are normally used to establish relationships between groups

and datasets, and allow one dataset to be referenced by

multiple groups. Instead, we will assume that each dataset

belongs to exactly one group for now. However, this is not

an inherent limitation of our design and will be taken care

of later. Furthermore, the use of the key-value backend is

a first approach to store the file metadata and the file data

separately. Our long-term goal is their management using a

database backend. A detailed outline is given in Section V.

1226

III. EVALUATION

To be able to evaluate the viability of our approach, we have

conducted several benchmarks and compared the native HDF5

data format against the one implemented by our HDF5 VOL

plugin. More precisely, we have measured the most relevant

operations for the data structures presented in the last section.

All benchmarks were executed on compute nodes of the

Mistral supercomputer located at the German Climate Comput-

ing Center (DKRZ). Each compute node is equipped with two

Intel Xeon E5-2680v3 CPUs with 12 cores each (2.5GHz),

64–128GB of main memory and connected via a 54Gbit/s

InfiniBand FDR network. Furthermore, all compute nodes are

connected to a 54 PiB Lustre file system that has been used for

the native HDF5 data format. While the file system offers a

maximum throughput of roughly 500GB/s, single-stream I/O

performance is limited to approximately 1.1GB/s. All mea-

surements were conducted using three different configurations

to be able to compare the native HDF5 functionality with our

proposed approach:

Native: The native HDF5 data format was used such that

the HDF5 library stored file data and file metadata on the

Lustre file system. It has to be noted that POSIX file systems

such as Lustre make heavy use of Linux’s page cache. This

means that small write operations are first aggregated in the

local cache before being sent to the remote file system servers.

Moreover, read operations do not have to communicate with

the remote servers at all if they can be satisfied from the cache.

VOL, safe: Our HDF5 VOL plugin was used on top of

JULEA using one compute node’s local storage, provided by an

ext4 file system on top of LVM on a 128GB SSD. Even though

storage is local, the SSD’s throughput is considerably lower

than that of the Lustre file system. Its sequential write and

read performance was measured to be 180MB/s and 460MB/s,

respectively. Key-value pairs were stored in JULEA’s existing

LevelDB backend, while objects were stored using the POSIX

backend. Both backends were configured to store data in the

/tmp directory located on the SSD.

VOL, unsafe: This configuration is the same as the second

one but without requesting a reply for each network message

whenever possible. It is labeled unsafe since the success of

each operation cannot be checked without a reply. We have

included this configuration because even though Lustre does

check operations sent to its servers, not every operation is

sent to the servers due to cache aggregation. Therefore, it is

complicated to compare these different behaviors and we have

opted to include both extremes for our VOL approach.

a) Files: Figure 3 shows the results of creating and

opening an increasing number of empty HDF5 files. While there

are other operations such as deleting, these are not considered

in this evaluation.

As can be seen, performance for both operations is relatively

stable for the native HDF5 data format, regardless of the

number of files. While the performance of the create operations

is in the range of 190–220 operations per second, opening

files is considerably faster with 710–770 operations per

second. However, since empty HDF5 files were created, these

performance numbers are likely mainly determined and limited

by Lustre’s metadata performance. To limit the toll on the

Lustre file system, which is a shared resource for all users, we

have set a maximum of 20,000 files to be created and opened.

Both VOL configurations store information about HDF5

files in JULEA’s key-value store and are thus not limited

by the underlying file system’s performance. Since key-value

stores are optimized for access patterns as encountered during

metadata management, performance is improved in comparison

to the native HDF5 data format. The safe configuration reaches

roughly 10,000–11,000 operations per second for both creating

and opening files. Since opening files requires a reply to be

sent, the open performance of the unsafe configuration does

not differ from the safe configuration. The create performance,

however, is drastically improved. To gather meaningful results,

up to 1,000,000 files were used for the unsafe configuration,

while 100,000 were enough for the safe one.

Being able to rapidly open a large number of HDF5

files can have significant advantages during processing of

application results. For instance, different configurations might

be compared, requiring many files to be accessed. HPC file

systems commonly contain millions of files produced by dozens

of different applications. The presented improvements allow

inter-application analyses, such as ensemble comparisons found

in climate science, to be performed more efficiently.

100
101
102
103
104
105
106

102 103 104 105 106Th
ro

ug
hp

ut
 [o

pe
ra

tio
ns

/s
]

Number of les

Create (native)
Open (native)

Create (VOL, safe)

Open (VOL, safe)
Create (VOL, unsafe)

Open (VOL, unsafe)

Figure 3. Throughput in operations per second for creating and opening HDF5
files (note the logarithmic axes).

b) Datasets: Since the purpose of datasets is to store

data, their main operations are creating and opening, as well

as writing and reading. The results for writing and reading

datasets are shown in Figure 4. Each dataset had a size of

4MiB and was accessed using a single write or read call.

When using the native HDF5 data format, writing starts out

at 1,000–1,100MiB/s and drops to 175MiB/s. As mentioned

previously, the file system’s single-stream performance is

roughly 1.1GB/s, which HDF5 cannot saturate in this case.

When reading, performance starts at 3,100MiB/s for 100 to

1,000 datasets. Since this number is well above the single-

stream performance maximum, Linux’s page cache is likely

involved. Since 1,000 datasets occupy only 4,000MiB, they fit

into the cache easily. As the total amount of data grows, read

performance drops to 40MiB/s. To keep the load on the shared

1227

file system within reasonable levels, a maximum of 20,000

datasets were measured.

When using the safe configuration, writing starts out at

430MiB/s and drops to 60MiB/s. It is important to note that

the datasets’ objects were stored on the compute node’s local

storage, which offers significantly lower performance than the

Lustre file system. For reading datasets, the performance starts

at 600MiB/s, regardless of the configuration, and then drops

to 100MiB/s. When using the unsafe configuration, the write

performance is on par with that of the native HDF5 data format

for 100 to 1,000 datasets but drops to 60MiB/s for more. Due

to the low amount of local storage, measurements were limited

to 10,000 datasets, which equals 40,000MiB.

100

101

102

103

104

102 103 104

Th
ro

ug
hp

ut
 [M

iB
/s

]

Number of datasets

Write (native)
Read (native)

Write (VOL, safe)

Read (VOL, safe)
Write (VOL, unsafe)
Read (VOL, unsafe)

Figure 4. Throughput in MiB/s for writing and reading HDF5 datasets with a
size of 4MiB each (note the logarithmic axes).

c) Attributes: Figure 5 shows the results of writing and

reading an increasing number of attributes with a size of 4KiB

within a single file. Since attributes are typically used to carry

metadata about a file, group or dataset, and thus are seldom

used empty, we have only performed measurements for writing

and reading attributes. While writing includes the attribute’s

creation, reading includes its opening.

As can be seen, performance degrades dramatically for

the native HDF5 data format when increasing the number of

attributes. While writing starts with roughly 4,000 operations

per second, it decreases to only 40. Reading drops from roughly

40,000 operations per second to approximately 3,000. Since

such performance degradations do not occur with the other

tested HDF5 data structures, the reason has to be an inefficiency

specific to attributes. The exact cause is unknown and has to be

investigated further. Due to the low performance, measurements

were only performed up to a maximum of 20,000.

When using the safe configuration, writing attributes starts

at 2,8000 operations per second and steadily increases to 5,000.

Therefore, our VOL-based is able to handle even large numbers

of attributes. For both the safe and unsafe configuration,

read performance stays constant at 3,000 operations per

second. When writing attributes using the unsafe configuration,

performance starts at 6,000 operations per second, increases to

its maximum of 24,000 for 1,000 attributes and then decreases

to 6,000. Again, these numbers are significantly lower than for

files but can be explained by the increased size of the key-value

pairs and the fact that two key-value pairs are managed for

each attribute.

100

101

102

103

104

105

102 103 104 105Th
ro

ug
hp

ut
 [o

pe
ra

tio
ns

/s
]

Number of attributes

Write (native)
Read (native)

Write (VOL, safe)

Read (VOL, safe)
Write (VOL, unsafe)
Read (VOL, unsafe)

Figure 5. Throughput in operations per second for writing and reading HDF5
attributes with a size of 4KiB each (note the logarithmic axes).

In conclusion, our VOL-based approach offers competitive

performance when compared with the native HDF5 data format.

For attributes, we could even improve performance by a factor

of 100. However, when writing and reading datasets, further

analyses and optimizations are still necessary.

A major improvement of our approach is the fact that all

file metadata regarding HDF5’s data structures is stored within

the underlying key-value store, which can be queried with high

performance. Moreover, it is not necessary to search individual

HDF5 files for attributes or datasets anymore. Instead, all

metadata of all HDF5 files can be queried at once. However,

it is currently necessary to use the basic key-value interface

provided by JULEA. In the future, a dedicated data analysis

interface will provide convenient access to libraries and tools

such as the Climate Data Operators.

100

101

102

103

104

105

106

Native VOL DAI-Get DAI-Iterate

Th
ro

ug
hp

ut
 [o

pe
ra

tio
ns

/s
]

Con guration

Figure 6. Throughput in operations per second for reading a total of 100,000
HDF5 attributes spread across 10 HDF5 files (note the logarithmic y-axis).

d) Data Analysis Interface: Next, we want to analyze the

potential performance benefits of such a data analysis interface.

For this measurement, 10 HDF5 files have been created with

10,000 attributes each. Afterwards, all attributes have been

read from all files. This represents a typical use case where

multiple files have been created by an application and results

from multiple runs should be compared or aggregated. Four

configurations have been used:

1228

Native: Uses the native HDF5 file format as in the

previous tests. File data and file metadata are stored in the

Lustre file system. Again, it has to be noted that POSIX file

systems make heavy use of Linux’s page cache. Due to this,

read performance is likely higher than what would be observed

in a read-world application since data is usually not read directly

after it has been written.

VOL: Uses JULEA’s HDF5 VOL plugin, storing file

data in the object backend and file metadata in the key-value

backend. This provides no performance benefits apart from

those enabled by JULEA’s backends themselves, since all

accesses still have to be performed via HDF5’s interface and

thus routed through the VOL plugin.

DAI-Get: Accesses the key-value store directly via

JULEA’s key-value client, with each key-value pair being

requested separately. The value, a serialized version of the

HDF5 attribute, is deserialized and returned to the application.

DAI-Iterate: Accesses the key-value store directly and

uses JULEA’s iterator interface to query all key-value pairs at

once. Some filtering is performed to identify and process only

those values belonging to attributes. Once a matching value is

found, it is again deserialized and returned to the application.

Figure 6 shows the results of reading a total of 100,000

attributes spread over 10 files, with each attribute having a size

of 4KiB. Creating the files and writing the attributes has been

excluded for this measurement.

As can be seen, performance of the native and VOL

configurations is roughly in line with the results obtained

previously: While the native HDF5 file format reaches almost

4,700 operations per second, the VOL plugin is slightly slower

with almost 3,000 operations. It is important to note that

all accesses have to pass the full HDF5 I/O stack for these

configurations and therefore have to first open the files and then

access the individual attributes. The DAI-Get and DAI-Iterate

configurations, on the other hand, access JULEA’s key-value

store directly and achieve throughputs of almost 9,300 and

120,000 operations per second, respectively. Even accessing

each attribute separately using JULEA’s key-value get operation

already provides twice the performance of the native HDF5

file format. Using the more advanced iterate operation allows

achieving a speedup of almost 25. This improvement can be

used to enable advanced features or enhance performance. Since

all file metadata is stored in JULEA’s key-value backends,

external tools can always access up-to-date file metadata,

requiring no further indexing.

It has to be kept in mind that JULEA’s key-value interface

provides only basic operations such as put, get and iterate.

Specifically, searching for a particular attribute or all attributes

matching a certain query requires iterating over all attributes

and selecting all appropriate ones. The database client currently

in development will be able to provide further benefits by

allowing libraries to specify schemas and perform advanced

queries akin to relational database management systems.

Moreover, while we chose JULEA’s LevelDB key-value back-

end and POSIX object backend for our evaluation, many other

combinations provide interesting opportunities. In particular, it

is possible to combine server-side backends with client-side

ones, which could be used to build hybrid configurations: While

file metadata can be stored on a dedicated node using a key-

value backend, a client-side POSIX object backend can make

use of existing infrastructure such as an existing parallel file

system. Moreover, the RADOS object backend could be used

to store file data in the cloud while file metadata is kept in a

key-value store for fast access.

IV. RELATED WORK

As fundamental standards such as POSIX as well as MPI-

IO pose extreme challenges especially regarding metadata

management, numerous approaches to design new systems

have been proposed. Also, several extensions and changes to

the existing systems have been presented.

A very thorough and promising proposal is the Fast Forward
Storage and IO (FFSIO) project [3]. Its goal is to provide

an exascale storage system able to support both HPC and

big data workloads called DAOS (Distributed Asynchronous
Object Storage). It is designed for future systems and requires

a considerable amount of NVRAM (Non-Volatile RAM) and

NVMe (Non-Volatile Memory Express) devices, which will not

be suitable for all users such as small research labs due to the

high acquisition costs. Evaluations show that the adaptation of

existing applications to DAOS is simplified through the HDF5

API [4]. DAOS will also support other common interfaces as

POSIX and MPI-IO. However, evaluations show that object

stores present better scalability than POSIX with DAOS

outperforming Ceph’s RADOS and OpenStack’s Swift [5].

Another approach to improved metadata management is

EMPRESS (Extensible Metadata PRovider for Extreme-scale
Scientific Simulations). The user can highlight interesting areas

of data before storing through the usage of custom metadata

tags [6]. The insights of EMPRESS 1 have been used to develop

EMPRESS 2, which includes extensive query functionality,

fault tolerance as well as atomic operations [7]. The difference

to our work is that we do not require application changes to

incorporate new metadata tagging. We use the metadata that

is already available inside the self-describing file.

Another object-oriented approach to metadata management

is SoMeta (Scalable Object-centric Metadata Management),
which organizes the file system metadata in form of objects

that are stored in a distributed hash table [8]. Similar to

EMPRESS, developers have the possibility of tagging this

metadata with additional information. These tags are stored

as key-value pairs. SoMeta’s metadata search is 16× faster

than SciDB [9] and MongoDB. There have also been efforts

from the ADIOS (Adaptable IO System) developers to enable

querying of large scientific datasets [10]. While they also use a

database approach, they store the whole self-describing file not

only the metadata in the form of the attributes. This severely

impacts the performance as the large number of blocks slows

down the used indexing mechanisms considerably.

The DAMASC (Data Management Services for Scientific
Computing) intend to change the file system interface by incor-

porating database mechanisms and passing the responsibility

1229

for efficient access to the file system [11]. DAMASC was

supposed to be integrated into Ceph but has not been realized

yet. Another optimization of file system metadata management

using a key-value store is LocoMeta, which flattens the directory

content to improve access patterns and splits metadata into

parts to lower write traffic [12].

There are a number of domain- or application-specific

solutions such as the ADDS (Atmospheric Data Discovery
System) [13] or the Sloan Digital Sky Survey (SDSS) CAS
(Catalog Archive System) [14]. While they offer a variety of

metadata queries, they do not make use of file metadata and are

restricted to a specific area and thus not portable enough for

wide-spread use. ATLAS has been developed for the LHC (Large

Hadron Collider) [15] but has evolved from a very specific

approach to a generic metadata framework [16]. The European

Centre for Medium-Range Weather Forecasts (ECMWF) has

developed its own storage and archive systems ECFS (ECMWF
File Storage System) and MARS (Meteorological Archival
and Retrieval System) [17]. MARS provides a database-like

interface allowing customized queries to the object store. While

we follow the same idea to manage metadata, our approach

will not be domain- or system-specific.

In conclusion, all current solutions only analyze and manage

the file system related metadata or offer additional tagging

mechanisms but they do not use the file metadata inside data

formats. However, file metadata is important both from data

management and performance points of view due to self-

describing data formats effectively being file systems within a

file system. We will unify the handling of all metadata within

the storage system and use it for its innovative optimization

and management possibilities.

V. CONCLUSION AND FUTURE WORK

Our coupled approach enables file system metadata as well

as file metadata to be managed by the storage system. We have

designed an HDF5 VOL plugin that achieves this goal without

requiring application changes, lowering the barrier for adoption.

Performance evaluations have shown promising results when

compared to the native HDF5 data format. Moreover, managing

file metadata within the storage system provides interesting

opportunities for performing queries across all available meta-

data. Based on the promising results, we will further extend

the data analysis interface that will allow external applications

direct access to the file metadata for increased performance

and novel data management opportunities. Applications will

be able to specify additional metrics that should be kept in the

metadata backends for efficient access later on.

In the future, we are planning to extend global metadata

management for additional self-describing data formats and

I/O interfaces. In particular, work has started on an ADIOS2

engine. ADIOS2 provides similar functionality to HDF5 and

thus is a fitting candidate to further generalize our architecture

and interfaces such that support for additional SDDFs can

be added more easily in the future. We are also working

on a more database-like backend that can be used for more

sophisticated queries. This will allow improved performance

and more complex requests to be formulated.

Moreover, we are planning to address more problems we

have identified in current storage systems. Namely, performance

problems caused by static I/O semantics and inefficient data

placement can benefit greatly from our architecture. Since file

metadata as well as file system metadata are now managed by

the storage system itself, more intelligent decisions become

possible. For instance, the storage system can make use of

information derived from file metadata to place file data on

appropriate tiers of a hierarchical storage landscape.

REFERENCES

[1] K. Ren and G. A. Gibson, “TABLEFS: enhancing metadata efficiency in
the local file system,” in USENIX Annual Technical Conference. USENIX
Association, 2013, pp. 145–156.

[2] M. Kuhn, “JULEA: A flexible storage framework for HPC,” in ISC
Workshops, ser. Lecture Notes in Computer Science, vol. 10524. Springer,
2017, pp. 712–723.

[3] J. F. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“DAOS and friends: a proposal for an exascale storage system,” in SC.
IEEE Computer Society, 2016, pp. 585–596.

[4] M. S. Breitenfeld, N. Fortner, J. Henderson, J. Soumagne, M. Chaarawi,
J. Lombardi, and Q. Koziol, “DAOS for extreme-scale systems in
scientific applications,” CoRR, vol. abs/1712.00423, 2017.

[5] J. Liu, Q. Koziol, G. F. Butler, N. Fortner, M. Chaarawi, H. Tang,
S. Byna, G. K. Lockwood, R. Cheema, K. A. Kallback-Rose, D. Hazen,
and Prabhat, “Evaluation of HPC application I/O on object storage
systems,” in PDSW-DISCS@SC. IEEE, 2018, pp. 24–34.

[6] M. Lawson, C. Ulmer, S. Mukherjee, G. Templet, J. F. Lofstead, S. Levy,
P. M. Widener, and T. Kordenbrock, “Empress: extensible metadata
provider for extreme-scale scientific simulations,” in PDSW-DISCS@SC.
ACM, 2017, pp. 19–24.

[7] M. Lawson and J. F. Lofstead, “Using a robust metadata management
system to accelerate scientific discovery at extreme scales,” in PDSW-
DISCS@SC. IEEE, 2018, pp. 13–23.

[8] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “Someta: Scalable
object-centric metadata management for high performance computing,”
in CLUSTER. IEEE Computer Society, 2017, pp. 359–369.

[9] P. G. Brown, “Overview of scidb: large scale array storage, processing
and analysis,” in SIGMOD Conference. ACM, 2010, pp. 963–968.

[10] J. Gu, S. Klasky, N. Podhorszki, J. Qiang, and K. Wu, “Querying large
scientific data sets with adaptable IO system ADIOS,” in SCFA, ser.
Lecture Notes in Computer Science, vol. 10776. Springer, 2018, pp.
51–69.

[11] S. Brandt, C. Maltzahn, N. Polyzotis, and W.-C. Tan, “Fusing Data
Management Services with File Systems,” in Proceedings of the 4th
Annual Workshop on Petascale Data Storage, ser. PDSW ’09, 2009.

[12] S. Li, F. Liu, J. Shu, Y. Lu, T. Li, and Y. Hu, “A flattened metadata
service for distributed file systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 12, pp. 2641–2657, 2018.

[13] S. L. Pallickara, S. Pallickara, and M. Zupanski, “Towards efficient
data search and subsetting of large-scale atmospheric datasets,” Future
Generation Comp. Syst., vol. 28, no. 1, pp. 112–118, 2012.

[14] A. R. Thakar, A. Szalay, G. Fekete, and J. Gray, “The catalog
archive server database management system,” Computing in Science
& Engineering, 2008.

[15] S. Albrand, T. Doherty, J. Fulachier, and F. Lambert, “The atlas metadata
interface,” in Journal of Physics: Conference Series. IOP Publishing,
2008.

[16] J. Fulachier, O. Aidel, S. Albrand, F. Lambert, A. Collaboration et al.,
“Looking back on 10 years of the atlas metadata interface. reflections
on architecture, code design and development methods,” in Journal of
Physics: Conference Series, 2014.

[17] M. Grawinkel, L. Nagel, M. Mäsker, F. Padua, A. Brinkmann, and
L. Sorth, “Analysis of the ECMWF storage landscape,” in FAST.
USENIX Association, 2015, pp. 15–27.

1230

