
MAESTRO: a semi-autoMAted Evaluation SysTem
for pROgramming assignments

Alessandro Bertagnon
Department of Engineering

Ferrara University
Ferrara, Italy

https://orcid.org/0000-0003-2390-0629

alessandro.bertagnon@unife.it

Marco Gavanelli
Department of Engineering

Ferrara University
Ferrara, Italy

https://orcid.org/0000-0001-7433-5899

marco.gavanelli@unife.it

Abstract—Many works in the literature highlight the impor-
tance of formative assessment to improve the learning process.
Formative assessment means providing assignments to the stu-
dents and giving them feedback during the course. It is not very
used in Italian Universities because it is highly time-consuming
for the professors, that typically do not have help in the process
of homework grading.

In this work, we focus on programming exercises in computer
science subjects, and propose a tool to semi-automatically grade
and give feedback to the students. The tool was used in a
computer language course on functional programming in a M.Sc.
degree; the students evaluation of the course show a steep
increase in the students appreciation. The tool is currently used
in a course at undergraduate level on C programming.

Index Terms—Distance learning methods and technologies;
Computer and web-based software for instruction; Debugging
tools and learning; software engineering programming issues and
laboratory practice.

I. INTRODUCTION

The effectiveness of formative assessment has been pointed

out in many works, e.g., in the classical survey by Black

and Wiliam [1]. The term Formative Assessment, opposed to

Summative Assessment, was proposed for the first time in

[2] with its current meaning. While Summative Assessment

is performed at the end of a course, teaching unit or semester

with the aim of grading or certification (of the student, of

the teacher or of the curriculum) formative assessment is used

during the process of teaching and learning with the purpose

of improving the teaching and/or the learning process.

In the Italian higher-education system, usually the only

evaluation that students have is during the final examination,

and as such falls into the summative assessment category. This

has a series of drawbacks. One is that assessment is done

when it is too late to provide any constructive feedback to the

students, and if a student misunderstands a concept early in

the semester, it is not immediately corrected, possibly making

fruitless vast parts of the following efforts of the student. Also,

the exam is a very stressful situation and students might be

tempted to cheat; this causes that the teacher does not get a real

We thank Prof. Evelina Lamma for her help in this research. We thank Elisa
Gulmini for helping with retrieving some of the data. We thank Alessandro
Zerbinati for the implementation of the C language part.

This work was partially supported by GNCS-INdAM.

understanding of the level of achievement of the objectives,

since the only assessment is through the exam.

Even when professors understand that students learning

could be improved if they had feedback on their exercises,

this is considered inapplicable in practice, because there is not

enough personnel to correct students’ exercises. Quizzes (e.g.,

with yes/no or multiple choice questions) can be corrected

with automatic tools, but they are often quickly ruled out:

many professors think that in their subject quizzes would not

be suitable, since the result of the exam is not a yes/no answer

or a numeric value, but the methodology to obtain a result. For

example, when learning a programming language, the exam

often comprises tests in which students write a program, and

it is difficult (if not impossible) to devise yes/no or multiple

choice questions to assess the programming skills of a student.

Usually, the main interaction between students and professor

happens during lectures, where students can raise their hand to

ask questions, in case they did not understand a passage. On

the other hand, this happens quite rarely, often only the most

self-confident students ask for explanations, while shy students

tend to remain silent, because they fear judgment from the

professor of from the other students in the classroom.

This became even worse in the second semester of 2019,

when Italian universities had to adopt distance learning, due

to the Coronavirus disease 2019 (COVID-19) lockdown. Many

professors started giving lessons in streaming, and they com-

plained that they could not get feedback from the students,

since they could not even see the faces of their students.

In Italian Universities, on average students take 41% more

time to graduate with respect to the expected duration of the

studies; this index has wide variations depending on the subject

of studies, and it is 51% in Engineering [3].

In this work, we propose semi-autoMAted Evaluation Sys-

Tem for pROgramming assignments (MAESTRO), a semi-

automated tool to check students’ programs, and to give

feedback to the students. The idea is to ask students to

upload their computer programs, and check through software

engineering technologies (in particular, by running tests) the

correctness of the students’ programs; in case the tool detects

an error, this is communicated to the student, together with

the test case that failed. The tool was developed and then

953

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00177

used in the course Programming Languages and Compilers
(Linguaggi e Traduttori) in Ferrara University (Italy).

The rest of the paper is organized as follows. In next section,

we describe the main case study: the course Programming

Languages and Compilers. We then explain, in Section III how

the course was organized in 2019, during the lockdown due

to COVID-19. Section IV explains the software technologies

underlying MAESTRO, and its architecture. We provide the

results obtained with MAESTRO in Section V. The tool is

currently used in a second case study, for a first-year course on

computer science; we report on its current use in Section VI.

Finally, we propose extensions for future work and conclude.

II. CASE STUDY: THE COURSE “PROGRAMMING

LANGUAGES AND COMPILERS”

As a case study, we will consider the course Programming
Languages and Compilers (Linguaggi e Traduttori) in the

Laurea Magistrale (equivalent to the M.Sc. level) Computer
Science and Automation Engineering (Ingegneria Informatica

e dell’Automazione). The course is held once every two years,

and is attended by about 50 students in each edition.

The course Programming Languages and Compilers insists

on two main subjects: parsers and functional programming. In

particular, in functional programming students learn how to

program in the Haskell language exploiting the main features

of the language: pure declarativity, higher-order functions, lazy

evaluation, monads. Haskell is a strongly typed language, and

Haskell compilers detect, at compile time, many errors that in

other languages would occur only at run-time. Students know

imperative and object-oriented programming from their laurea
courses (roughly equivalent to B.Sc.), and have difficulties in

understanding the functional programming paradigm, since it

requires a completely new way of thinking about programs.

For this reason, the course contains a part held in the

computer laboratory of about 15 hours, out of the 60 hours of

lessons. In the lab lessons, students are assigned exercises, and

they can raise their hand to ask for help to the professor. The

professor walks around the lab, asks students if they were able

to solve the problems, and possibly has a look at computer

monitors, providing some suggestions. Students works are

not graded, and students do not get any feedback on their

work (unless they raise their hand). This is a rather classical

organization of laboratory lessons in Italian Universities.

III. THE NEW ORGANIZATION OF THE COURSE

The 2020 edition started immediately after the lockdown

due to the COVID-19 pandemic: lessons could not be given in

the classroom (or in the lab), but only on-line. This required

a complete rethinking of the organization of the lessons, in

particular to foster interaction with the students in a situation

where the only communication possible was through the

Internet.

The lessons were pre-recorded videos where the professor

explained the various topics; about once every one or two

weeks, there was a synchronous session where students could

discuss with the professor. However, the main fear was that in

these synchronous sessions students would not ask questions,

due, e.g., to shyness.

To raise the level of interaction, and also have a valid

substitute for the laboratory part, the idea was to introduce

formative assessment: assign students exercises and give them

feedback during the course. Since the formative objective of

the functional programming part was to have students learn

a new programming paradigm, the natural means was to

assign exercises that students had to solve through Haskell

programs. The professor would collect the programs, correct

the assignments and provide a grade, together with a personal

feedback to each student. The synchronous sessions would

then be used to discuss frequent (or, significant) errors with

the students, while, obviously, hiding the name of the student

that made each error. Since students would have already faced

the difficulties of the exercise, they would be interested to

know how to reason in that specific case.

On the other hand, although this organization seemed

promising, it raised the problem of correcting a large number

of exercises: only one person was available to correct the

assignments, namely the professor, and of course university

professors also have other duties beside teaching.

To reduce the time spent in correcting programs, a

computer-assisted correction of the assignments was devised.

Of course, in general it is impossible to have a completely

automated procedure to check the correctness of programs

in a Turing-complete language (such as Haskell), since even

checking if a program loops is not computable [4]. On the

other hand, even an incomplete procedure would be useful, to

shortlist the programs to be manually corrected.

In next section, we explain the technologies used in the

Programming Languages and Compilers course for the semi-

automatic correction of students’ programs, and the architec-

ture of the application.

IV. SOFTWARE TECHNOLOGIES AND ARCHITECTURE OF

MAESTRO

A. Google Classroom, Google Forms

Google Classroom (GC)1 is a web service developed by

Google specifically for educational purposes, created with

the aim of digitizing and simplifying the teaching workflow.

Students in GC are divided into classes, in the university

context each class corresponds to one course, and for each

class there are tools that allow teachers and students to interact

and share teaching material. GC includes the possibility to

provide assignments to students to verify their skills and return

feedback and assessments. Assignments management can be

more or less automated and two different approaches can be

substantially distinguished. In the first approach the student

uploads the solution onto the service, the teacher reviews it and

submits the assessment. In the second approach the grading

is done by the service. This second approach is only possible

when dealing with assignments in the form of quizzes where

questions can be easily verified by direct comparison with the

1https://classroom.google.com

954

solution (e.g. multiple choice questions). GC quizzes support

is made possible thanks to the integration with Google Forms.

Google Forms (GF)2 is a web app that is part of Google’s

office suite (now known as Google Workspace) and specif-

ically designed to collect information. Due to its versatility,

the service is currently used for a wide variety of purposes,

including: event registration, surveys, data collection, quizzes,

scheduling appointments, etc. The flexibility of the forms

comes from the possibility, during their creation, to choose

between many types of fields (short text answer, text field,

multiple choice, checkboxes, dropdown, multiple choice grid,

checkbox grid, etc) and to add multimedia content such as

images, videos and URLs of external websites. There are

also more advanced features such as the possibility to modify

the flow of questions through conditional tools that change

according to the user’s choices. The data collected through

the forms can be analysed and transformed into relevant

information either with the analysis tools made available by

Google Workspace or with external software. The data can be

exported in various file formats (e.g. comma-separated values)

recognized by spreadsheet and data analysis software. From

a didactic perspective one of the most interesting features,

introduced in 2016, is the ability to automatically grade

quizzes. As already indicated above, it is possible to insert the

answer keys when creating the form so that when the form is

filled in, the grade is automatically computed, although this

functionality is limited only to certain types of form fields.

B. Flubaroo

Flubaroo3 is a Google Sheets add-on, launched in 2011, de-

signed to evaluate and share the results of student assignments.

The tool, which counts today more than 10 million installa-

tions and is used to evaluate more than 400000 assignments

every month, is completely free to use and the source code

is available on GitHub4 under Apache-2.0 License. Although

Flubaroo is an Add-on for Google Sheets, it is designed

to work mainly on data collected through a Google Form.

Flubaroo is simple to use. The usual way to work with the

tool is to begin creating a Google Form with the assignment

questions, and some fields to identify the student. Each time

the form is filled in, the answers given by the students will be

automatically stored in a linked Google spreadsheet. Once the

teacher has entered the correct answers that will be used as

answer keys and all the students have submitted their answers,

it is possible to move on to the grading phase. For all questions

in which there is a unique correct answer (or for which there

is a list of correct answers), Flubaroo is able to compute the

grade. The other questions must be graded by hand. As last

step the teacher can review the grades, add some feedback for

each student, and decide to email each student his/her grade.

Flubaroo also provides important statistics for teaching such

as: average assignment score, average score per question, low

scoring questions and low scoring students. This data provides

2https://docs.google.com/forms/
3http://www.flubaroo.com
4https://github.com/edcodeorg/flubaroo

important insights concerning student competence and the

quality of teaching. Many of Flubaroo’s features have been

introduced into Google Forms which, as mentioned above,

now allows to automatically grade quizzes. However, Flubaroo

is more flexible as it allows teachers to work on data extracted

from forms and possibly pre-processed by other applications.

C. QuickCheck

As already said, in general checking if a computer program

is correct is not computable. On the other hand, tools that

detect errors are widely used, because even detecting some

errors saves precious human time.

Different tools have been proposed in practice to detect

errors. Static analysis is one such options, and many such

techniques are currently enclosed in modern compilers. An-

other option is to generate test cases and check if the program

provides correct answers. Both approaches could be used for

the task of semi-automatic checking of students’ programs, we

currently used only the second, and we leave or future work

the exploitation of other techniques.

QuickCheck [5], [6] is probably the most famous tool of

Property-Based Testing. Consider a function whose correct-

ness should be tested. The programmer defines a property
that should always be satisfied; this is given as a predicate,

or a function returning a Boolean. Given the function to

be tested and the property, QuickCheck generates a large

(configurable) number of random tests, invokes the tested

function for each test case, and checks that in all cases the

property is satisfied. If some test case fails, it is reported to

the user as a counterexample.

QuickCheck was designed in Haskell, but the idea was so

successful that ports have been independently developed for

most mainstream programming languages (the Wikipedia page

lists dozens of them).

D. Architecture

Programming assignments are not trivial to evaluate because

in order to verify their correctness it is necessary to resort

to several software engineering technologies. The computer-

assisted correction tools offered by cloud teaching services,

such as those presented above, are unable to perform their

task when it comes to evaluating programming assignments.

For this reason we decided to develop a dedicated evaluation

system that could be easily integrated into the workflow of

the Google Workspace suite. In the proposed architecture

(Figure 1) students’ computer programs are collected through

a Google Form, shared via Google Classroom, where students

enter their identification data (name, surname, email) and

the source code as text. The data of all assignments are

then downloaded in the form of CSV file and uploaded into

MAESTRO together with the source file containing a valid

solution for the problem in question. The property tested with

QuickCheck is typically that the result of the function written

by the student and of the version written by the professor

are the same; of course other properties may be used as well.

MAESTRO, for each record of the CSV file provided as input,

955

quickcheck

MAESTRO

.csv
Google Forms

Google Classroom

.csv

Google Sheets

Flubaroo

emails

students

solution

teacher

student feedback

Fig. 1. Architecture

is able to perform several evaluation tasks on the student’s

source code including:

• check whether the requirements indicated in the as-

signment have been observed (e.g. function names and

parameter types);

• check if the source code is compiled properly, by running

the compiler, and if necessary report warnings and errors;

• execute the program and verify that it completes within

an acceptable time considering the task it is carrying out;

• check for runtime errors;

• perform property-based testing through QuickCheck.

At the end of all the tasks, a specific report is generated

for the student both in the form of text and in the form

of a question-answer summary compatible with Flubaroo.

MAESTRO exports the results for all the students as a CSV

file. Table I reports the CSV fields generated by MAESTRO.

Some fields allow multiple choice values, this makes them

suitable for the computer-assisted grading. Values considered

correct for each field are shown in bold; ND means ”Not

defined” and applies when the value cannot be evaluated (e.g.

a program cannot be executed if the compilation fails). The

Text fields add additional information useful to both the

teacher and the student.

The teacher then re-uploads the generated CSV file to

Google Sheets, and proceeds to grade each assignment using

Flubaroo. Each CSV field, generated by MAESTRO, that

supports computer-assisted grading is associated with a score.

Flubaroo basically performs the sum of the scores of the

fields with the correct value to compute the student’s overall

grade. The grade obtained by each student and the statistics

of the class are provided in a separate spreadsheet. Finally,

the teacher may decide to enter customised feedback for all,

or just a few, students before sending each one the summary

assessment email.

Field Value
Was the code written according to specs? [Yes, No]
Are errors generated during compilation? [Yes, No]
Are warnings generated during compilation? [Yes, No]
Did runtime errors occur? [Yes, No, ND]
Did the program end in an acceptable amount of time? [Yes, No, ND]
Is the output provided according to specs? [Yes, No, ND]
Are the results computed correctly? [Yes, No, ND]
Compiler output Text
Execution output Text
Testing output Text

TABLE I
CSV FIELDS GENERATED BY MAESTRO.

V. RESULTS

The statistics of student evaluation of courses for Ferrara

University are published on the SIS-ValDidat system [7],

which is used by 20 Universities in Italy. The results are

publicly available on the web5 (except for the rankings, which

are available only upon authentication). Table II reports the

results of the last edition before the introduction of formative

assessment, while Table III contains the same results after that

introduction. The evaluation for each question is given on the

usual scoring system in use in Italy, in which marks are on

the 0-10 scale, and the pass mark for exams is 6 out of 10.

The tables provide the average mark obtained in the question,

the standard deviation, the average mark obtained by courses

in the degree course, and the rank obtained by Programming

Languages and Compilers out of the courses in the degree.

Note that the SIS-ValDidat system does not report a score if

less than 5 students answered that specific question, or if for

a course there were less than 5 answers overall. This explains

also the fact that the number of courses in the “rank” column

has some variability. After the lockdown due to the COVID-19

5http://valmon.disia.unifi.it/sisvaldidat/unife/

956

Avg Std.Dev. Degree course Rank Question
8.04 2.289 8.3 11/ 18 Was preliminary knowledge enough to understand the subject?
6.64 3.097 8.19 17/ 18 Is the workload of this course proportionate to the number of credits?
8 2.191 8.26 13/ 18 Is the teaching material adequate?
8.76 1.727 8.93 14/ 18 Have the methods of examination been clearly defined?
9.63 0.992 9.23 5/ 17 Are teaching hours respected?
8.17 2.249 8.33 11/ 17 Does the professor stimulate / motivate interest?
8.92 1.935 8.34 6/ 17 Does the professor explain the arguments clearly?
8.13 1.727 7.91 9/ 17 Are exercises, laboratories, etc. useful?
9.13 1.364 9.08 8/ 17 Are the subjects consistent with what is stated on the website?
9.28 1.281 8.71 5/ 18 Is the professor actually available for clarifications and explanations?
7.6 2.498 8.39 14/ 18 Are you interested in the subject?

TABLE II
RESULTS OF THE STUDENTS EVALUATION OF THE COURSE Programming Languages and Compilers IN THE LAST EDITION BEFORE THE INTRODUCTION

OF FORMATIVE ASSESSMENT THROUGH SEMI-AUTOMATIC EVALUATION OF PROGRAMMING EXERCISES.

Avg Std.Dev. Degree course Rank Question
8.94 1.779 7.95 1/18 Was preliminary knowledge enough to understand the subject?
7.72 1.967 7.55 7/18 Is the workload of this course proportionate to the number of credits?
8.89 1.629 7.81 1/18 Is the teaching material adequate?
8.44 1.833 8.36 9/18 Have the methods of examination been clearly defined?
- - - - Are teaching hours respected?
9.03 1.5 8.11 2/17 Does the professor stimulate / motivate interest?
9.33 1.247 8.21 2/17 Does the professor explain the arguments clearly?
8.95 1.581 7.86 4/15 Are exercises, laboratories, etc. useful?
9 1.414 8.95 6/17 Are the subjects consistent with what is stated on the website?
9.42 1.187 8.71 2/18 Is the professor actually available for clarifications and explanations?
8.17 1.724 8.01 7/18 Are you interested in the subject?
8.94 1.527 7.78 1/8 Overall, do you think the online teaching is effective?

TABLE III
RESULTS OF THE STUDENTS EVALUATION OF THE COURSE Programming Languages and Compilers AFTER THE INTRODUCTION OF FORMATIVE

ASSESSMENT THROUGH SEMI-AUTOMATIC EVALUATION OF PROGRAMMING EXERCISES.

disease, a new question was introduced, about the effectiveness

of the online teaching. This question was introduced only for

the courses on the second semester, about half of the total

courses in the degree.

Before the introduction of MAESTRO (Table II), Pro-

gramming Languages and Compilers got a pass mark in all

questions, although the score was below the average of the

courses in the degree on 6 questions (preliminary knowledge,

workload, teaching material, methods of examination, moti-

vation of the professor, and interest of the students). The

workload was considered particularly high, and Programming

Languages and Compilers ranked second-last of all courses in

the degree on this criterion.

After the introduction of the semi-automatic evaluation

(Table III), there was an abrupt improvement of the scores in

almost all questions. Before the introduction of MAESTRO,

Programming Languages and Compilers ranked between the

5th and the 17th place (out of 18), while after its introduction

it ranked between the 1st and the 9th place (out of 18). In

particular, it was considered the best course according to the

effectiveness of on-line teaching.

The percentage of students that passed the exam in the first

six months after the end of the lessons also increased: from

65.6% to 72.5%.

Also, in the previous edition, 15.6% of the students who

had chosen Programming Languages and Compilers in their

study plan, decided to substitute it with other exams, that were

considered easier by the students. After the introduction of

MAESTRO, none of the students changed their study plan to

remove Programming Languages and Compilers.

The synchronous sessions were very lively, and the profes-

sor was able to discuss the errors made by the students.

Some lessons were learned from the experience. If the

assignments are very easy, then most of the students do it right,

and the time spent for correcting the few errors is low. This

means that the focus is on lower-level students, while higher

level students just get as feedback that their work is correct, but

do not get any correction to improve their skills. On the other

hand, lower-level students are the ones most needing help, so

this choice is not necessarily wrong. If, instead, the exercises

are harder, then the time to explain the errors becomes higher,

with the risk to overwhelm the professor.

VI. WORK IN PROGRESS: THE COURSE “BASICS OF

COMPUTER SCIENCE AND LABORATORY”

As a second case-study, we have re-implemented

MAESTRO to use it for language C, and it is currently used

to automatically correct students’ programs in a computer

science basics course: the course Basics of Computer Science
and Laboratory (Fondamenti di Informatica e laboratorio).

There are currently 258 students that subscribed to the

Google Classroom of the course, although not all of them

do their homework. Each week, an assignment is given to

them, and they can submit their solution; it will be graded in

the following week. In the first assignment, it took about 130

minutes to correct 89 works. Most of the time was devoted

957

to write comments for the students: first year students have

difficulties even in understanding the error messages of the

compiler, so they need detailed explanations of why their

program could not be compiled.

In most cases, programs that passed all the tests were

considered correct. Of course, this is not always precise, and

we selected randomly a small number of programs that passed

the tests for a deeper hand-made analysis. No errors were

discovered in this way.

Other simple tests were added as spreadsheet formulas, e.g.,

testing if forbidden structures were used in the program (e.g.,

goto statements or other assignment-based restrictions).

VII. RELATED WORK

Many tools exist for automated assessment of computer

science assignments; the excellent survey [8] provides various

pointers. The most closely related work is probably Ceilidh [9]

and its successor CourseMarker [10]. CourseMarker is written

in Java and executes all the tests on the students’ computers.

The tests to be performed are written by the teacher. Web-CAT

[11] is another highly customizable open source automated

grading system that supports many programming languages.

Unlike other systems, Web-CAT requires students to write

tests for their own code. GradeIT [12] uses program repair

techniques to evaluate also programs that do not compile and

therefore provide evaluations more similar to those provided

by teaching assistants.

These are large systems developed over several years that

embed user interfaces for both students and teachers, several

types of users, customizations. MAESTRO is a much simpler

application, it relies on Google Forms (and, as such, it is easy

to use for the students that are already familiar with Google

Classroom), and uses QuickCheck to automatically execute a

large number of random tests.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented MAESTRO, a tool for semi-

automatic assessment of students programs. It was used in

a university course on programming languages to automat-

ically provide feedback on students’ assignments (formative

assessment). The students’ feedback was enthusiastic: many of

them congratulated with the professor after the exam, and the

students evaluation of the course improved significantly (from

a less-than-average course among the ones in the degree, to

a top-ranked course in various criteria). The tool is currently

being used also for a computer science basic course.

The long-term objective of this work is to have an applica-

tion that is completely web-based, without resorting to down-

loading files and re-uploading results. Such an application

could integrate with Google Classroom and/or Flubaroo, and

provide the feedback immediately after the submission of the

works by the students. We foresee that some user intervention

could be necessary in some cases, but the main objective is

to automatize as much as possible the process, in order to

automatically grade a large number of works, while leaving to

the professor the decision on edge cases.

The number of tests could be enlarged, in order to include

other software engineering technologies, such as static analy-

sis, concolic testing, or different testing methodologies.

Also, for simple programs it is likely that many submit-

ted programs represent exactly the same algorithm, although

possibly written in syntactically different ways (e.g., different

variable names, swapping of instructions that do not require a

specific ordering, etc.). By grouping programs that are actually

the same solution, the professor time to correct programs could

be further reduced, while providing the same answer to many

students. Of course, in general detecting if two programs are

the same is not computable in general, but even detecting in

some cases the equality of programs would reduce the overall

human effort. This could be done by comparing the Abstract

Syntax Trees of the students’ programs. There exists similarity

testing programs, but they are usually focussed on different

tasks, such as detecting plagiarism [13].

REFERENCES

[1] P. Black and D. Wiliam, “Assessment and classroom learning,” Assess-
ment in Education: Principles Policy and Practice, vol. 5, no. 1, pp.
7–73, 1998.

[2] B. S. Bloom, J. T. Hastings, G. F. Madaus, and T. S. Baldwin,
Eds., Handbook on the formative and summative evaluation of student
learning. New York, NY: McGraw-Hill, 1971.

[3] Consorzio Interuniversitario AlmaLaurea, “XXII indagine - profilo dei
laureati 2019,” 2020.

[4] A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” in Proceedings of the London Mathematical
Society, ser. 2, vol. 42, 1937, pp. 230–265.

[5] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random
testing of Haskell programs,” in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Mon-
treal, Canada, September 18-21, 2000, M. Odersky and P. Wadler, Eds.
ACM, 2000, pp. 268–279.

[6] J. Hughes, “QuickCheck testing for fun and profit,” in Practical Aspects
of Declarative Languages, 9th International Symposium, PADL 2007,
Nice, France, January 14-15, 2007, ser. Lecture Notes in Computer
Science, M. Hanus, Ed., vol. 4354. Springer, 2007, pp. 1–32.

[7] B. Chiandotto and B. Bertaccini, “SIS-ValDidat: a statistical information
system for evaluating university teaching,” Quaderni Di Statistica,
vol. 10, pp. 157–176, 2008.

[8] K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp. 83 – 102, June 2005.

[9] E. Foxley, C. Higgins, A. Tsintsifas, and P. Symeonidis, “Ceilidh: A
system for the automatic evaluation of student programming work,” in
Proceedings of the 4th International Conference on Computer Based
Learning in Science (CBLIS’99), 1999.

[10] E. Foxley, C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas, “The
CourseMarker CBA system: Improvements over Ceilidh,” in Proc. of the
5th Annual Computer Assisted Assessment Conference, 2001.

[11] S. H. Edwards and M. A. Perez-Quinones, “Web-cat: Automatically
grading programming assignments,” SIGCSE Bull., vol. 40, no. 3, p. 328,
Jun. 2008. [Online]. Available: https://doi.org/10.1145/1597849.1384371

[12] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya, “Automatic grading and feedback using program repair
for introductory programming courses,” in Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’17. ACM, 2017.

[13] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proc. of the 2003 ACM
SIGMOD international conference on Management of data, 2003.

958

