
Full/Regular Research Papers CSCI-ISHI

Healthcare Big Data Normalization Graph Theory
Implementation

Atif Farid Mohammad
Senior Research Scientist

Ontrak Inc., 2120 Colorado Ave., Suite 230,
Santa Monica, CA 90404, USA

e-mail: amohammad@ontrak-inc.com

Peter Bearse
Chief Data Scientist

Ontrak Inc., 2120 Colorado Ave., Suite 230,
Santa Monica, CA 90404, USA
e-mail: pbearse@ontrak-inc.com

Intisar Rizwan I Haque (Contact Author)
Data Science Intern

Ontrak Inc., 2120 Colorado Ave., Suite 230,
Santa Monica, CA 90404, USA

https://orcid.org/0000-0003-3702-8923

Abstract— This paper presents Healthcare Big Data
Normalization using Computerized Provider Order Entry
(CPOE) and application of Graph Theory. This is the process of
entering physician orders directly into an electronic health record
(EHR). CPOE replaces traditional pen and paper, email, fax, and
telephone ordering methods. CPOE is an integral part of
electronic medical records and a mandatory component for
achieving Meaningful Use Stage 2 certification in health care.
CPOE is vital because it helps reduce medical errors that can lead
to morbidity and mortality and lowers health care costs.
Relational databases are the most common type of database used
in healthcare settings. The advantages of using a Relational
Database Management System for CPOE are discussed, as well as
the disadvantages. The Entity-Relationship diagram and schema
for a medication CPOE system used in a small ambulatory medical
clinic are provided. We also briefly discuss the potential use of a
CPOE application and a NoSQL Open Source database, such as
OrientDB, along with the benefits and challenges.

Keywords— Relational Database, Healthcare, CPOE,
Meaningful Use, NoSQL

I. INTRODUCTION
In 2009, the Patient Protection and Affordable Care Act

(ACA) was passed into law. Along with the ACA came federal
requirements for the “meaningful use” (MU) of certified health
information technology. The long range goals of MU include
improving clinical efficiency and patient outcomes, reducing
preventable medical errors and reducing health care costs.
CPOE is a software application that is embedded or interfaces
with an electronic health record system designed to help achieve
MU goals [1].

 CPOE can be categorized as basic, intermediate or advanced.
Basic CPOE is described as a passive system that pulls
information from the database, provides links to medical
reference guides for the health care provider to search through
manually and can only print out prescriptions. Intermediate and
Advanced CPOE are active systems that provide the practitioner
with contextual information that serves as clinical decision
support and provides convenience for patients, as they can push
information and prescriptions to local networks (i.e., pharmacy,
health systems). Intermediate CPOE uses standard drug tables
and dosages, whereas Advanced CPOE systems suggest
treatment options, checking for drug-drug and drug-allergy
indications, and allowing dosages to be calculated based on
weight. Advanced CPOE is ideal, as it has the added capability

to directly link to regional Health Information Exchanges (HIE),
which are networks of health information networks serving large
geographical regions and key to the creation of a Nationwide
Health Information Network (NHIN) [2]. Studies show that the
more advanced the CPOE system, the greater percentage of error
is avoided. To achieve MU Stage 2, providers must attest to
using a minimum of an intermediate CPOE to electronically
record and send prescriptions 60% of the time [3].

 As previously mentioned, the ultimate goal of MU is the
creation of a NHIN, hinting at what Garfinkel describes as a
“nation of databases” [4], and which will eventually eliminate
paper charting and afford patients greater continuity of care.
Because most health data is unstructured, it must be stored as
structured data to fulfill MU requirements. The most common
form of database used in healthcare is the Relational Database
[5]. The Relational Database Management System (RDBMS) is
the cornerstone of most health information networks, because it
is well suited for handling transaction data and its analysis.
Because health care is episodic (one patient with multiple
encounters) and each patient can have multiple other one-to-
many relationships, the RDBMS must be normalized to third
normal form to run efficiently [6]. This paper briefly explores
RDBMS structure and describes some of the use cases for CPOE
in a RDBMS.

II. BACKGROUND RESEARCH
Many current EHR systems (e.g., Epic, Veterans Health

Information Systems and Technology Architecture (VistA),
Meditech) use a hierarchical, array-based database called the
Massachusetts General Hospital Utility Multi-Programming
System, also known as MUMPS or M [7]. In use since the
1960s, this hybrid programming language-data architecture has
created a massive amount of legacy applications within
healthcare organizations. A hierarchical approach has been
favored by many for healthcare applications, because unlike
RDBMS, the tree structure allows for multiple redundancies
and running simple queries is fast and does not necessitate the
use of table joins and costly storage space. However, these
types of databases do not support complex, non-traditional
queries often used for healthcare data analysis [8]. They also
fall short when it comes to data aggregation for reporting needs.
In order to meet all the MU reporting and interoperability
requirements, MUMPS users must purchase additional

819

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00153

applications and use other platforms (e.g., Cache, Oracle, MS
SQL) to perform those tasks. Another drawback to MUMPS is
that there are fewer developers available to support and
maintain these systems and subsequent mountains of code, and
younger developers are not interested in learning the arcane
language [9].

In 1970, Codd introduced the relational database model,
which proposed a model for storing data in tables. Each table is
organized into rows and columns that represent instances of
attributes for each unique entity. Thus, a relational database is
a collection of tables linked together by defined relationships.
Because the rows of each table represent relationships among
the set of data, mathematical equations, or relational algebra,
can be used for data representation, fundamental set operations,
and queries. The rise of RDBMS in popularity in the 1980s led
to the development of high-level procedural and non-
procedural query languages with which data can be stored,
sorted, or manipulated. Specific records and groups of records
can be sorted and analyzed with queries. Reports can then be
generated from the data analysis. Besides elegance and
functionality, RDBMS also gives data consistency,
concurrency control, transaction control, and high-level data
security, and supports data independence [10].

III. PROPOSED SOLUTION

A. A Relational Database Management System
 First, we determine that the setting for our relational
database would be a small, retail outpatient clinic with a limited
scope of practice and patient services. Our product would be a
component of the existing EHR and interface with an embedded
web-based drug database (e.g., Medi-Span, EnterpriseRX) to
provide clinical decision support and alert notifications. Because
this is a conceptual model only, we will not discuss application

or interface source codes or persistence layers for
upstream/downstream applications. As with most commercial
relational-databases, our database uses SQL to execute its
functions.

 Next, we examined the process flow of a clinic visit and
produced an activity diagram (Figure 1.). Literature regarding
CPOE design and implementation emphasizes the importance
for CPOE programmers and developers to have a thorough
understanding of the workflow of a clinical area, so that
implementation can go smoothly and to minimize disruption
[11]. With a desire to have a relatively simple relational database
with regular structure, we then developed our database schema
(Figure 2.).

 Next is our entity-relationship diagram (Figure 3.).
Constraints and access permissions will not be discussed in
detail. However, it should be assumed that access to write a
medication order would only be allowed to a legal prescriber
(e.g., physician, nurse practitioner, physician’s assistant).
Access to read and acknowledge orders only would be limited
to appropriate users (e.g., medical assistants, nurses).

Figure 1. Clinic visit flowchart.

Figure 2. Database schema.

Figure 3. Entity-relationship diagram.

820

 Based on recommendations from the literature we
normalized the relations to third normal form to prevent update
and consistency issues. The following are examples of Use Case
scenarios of our RDBMS with relational algebraic equations:

Use Case – Physician Order
An existing physician orders a treatment from the database

for an existing patient.

Relevant tables:
Primary: Transaction_procedure
Secondary: Login, Patient, Medication

Assumptions:
1) The provider is logged into the system with a unique login

ID “user”. (Need to add provider login ID to provider table,
or better, create a login table, where we have (pk_loginID,
fk_Phys_ID, roleID, sessionID, lastLoginTime)

2) The provider is within the record of the active patient “p”.
3) The provider will select a treatment that is an existing

element of the Drug table.
4) A single order will be created at a time

Execution steps:
1) Physician selects a treatment from the dropdown list:

 MyMedName = name(Medication)

2) Given the medication name, administration type, dose,
refills, are selected from the following lists:

 MyAdminType = administration_type (mymedID=Med_ID
 (Medication))

 MyDosage = dosage (myMedName=name MyAdminType =

 administration_type (Medication))

3) The data is available to populate the
Transaction_procedure table:

TP_ID = Unique ID generated by the system
Pat_ID = Active patient

Med_ID = Med_ID (mymedName=name myMedName=name MyAdminType

= administration_type (Medication))
Phys_ID = Active user account ID

4) Confirm that user role is sufficient to create this order. E.g.
(prescribing physician has role type=4, and current user
role must = 4)

5) Display any required alerts.
6) Insert record into TP table.

Use Case – Check Allergies
When placing an order, the system checks the new order

against existing orders and generates an alert if there is a known
allergy risk.

Relevant tables:
Primary: Transaction_procedure
Secondary: Patient

Assumptions:

1) The provider is logged into the system with a unique login
ID “user”.

2) The provider is within the record of the active patient “p”.
3) The provider will select a treatment that is an existing

element of the Medication table.
4) The patient’s known allergies have been previously

documented in the Patient table
5) A single order will be created at a time.

Execution steps:
1) Physician selects a treatment as described in the new order

use case
a) Physician selects a treatment from the dropdown list:

MyMedName = name(Medication)

b) Given the medication name, administration type, dose,
refills, etc. are selected from the following lists:

MyAdminType = administration_type (mymedID=Med_ID
(Medication))

MyDosage = dosage (myMedName=name MyAdminType =

administration_type (Medication))

c) The data is available to populate the
Transaction_procedure table:

TP_ID = Unique ID generated by the system
Pat_ID = Active patient

Med_ID = Med_ID (mymedName=name myMedName=name MyAdminType

= administration_type (Medication))
d) The data from c is inserted into a temporary table called

Transaction_procedure_current.
2) Retrieve all med_allergies records for the current patient:

 MyAllergies = med_allergies (Pat_ID=p (Patient))

3) Retrieve all matches between med_allergies and Med_ID

MyAllergyAlerts = Pat_ID, Med_ID (MyAllergies X
MyAllergies.med_allergies = Transaction_procedure_current.Med_ID

Transaction_procedure_current)

4) Display/return alerts for any allergies associated with a
drug in the current order. User may click through text to
override and populate transactions.

Use Case – Check Drug-Drug Interactions
 When placing an order, the system checks the new order
against existing orders and generates an alert if there is a known
drug interaction risk.

Relevant tables:
Primary: Transaction_procedure
Secondary: Medication, Med_Interactions (This is a new table.
Med_Interactions (pk_Interaction_ID, fk_Drug_ID1,
fk_Drug_ID2, Risk_severity, Risk_text))

Assumptions:
1) The provider is logged into the system with a unique login

ID “user”. (Need to add provider login ID to provider table,
or better, create a login table, where we have (pk_loginID,
fk_Phys_ID, roleID, sessionID, lastLoginTime).

821

2) The provider is within the record of the active patient “p”.
3) The provider will select a treatment that is an existing

element of the Drug table.
4) A single order will be created at a time.
5) Any existing drug interactions involving the treatment are

recorded in the Med_Interactions table.
6) Previous drug pairings were tested against the interaction

table when inserted.
7) Interactions are limited to “pairs” only, not sets of size > 2

Execution steps:
1) Physician selects a treatment as described in the new order

use case
2) Retrieve all Med_ID of current order:

MyMed_ID = Med_ID (mymedName=name myMedName=name

MyAdminType = administration_type (Medication))

3) Create subtable of all patient orders in txn database (We
also need a way to discern which orders are “active”. The
txn table seems like the best place to do this, though it will
require stored procedures to update the active status daily.)

MyMedTable = MyMedID, MED_ID (Pat_ID = P_ID
(Transaction_Procedure)

4) Create a union of this table with its inverse. MyMedID, Med_ID
(MyMedTable) U Med_ID, MyMedID (MyMedTable)

5) Add a column to this table indicating the alert type to be
returned from the interaction table.

 risk_severity,risk_text (fk_Med_ID1 = MedID fk_Med_ID2 = MyMedID
(Med_Interaction)

6) Display/return alerts for each non-null drug interaction
with severity and text. User may click through text to
override and populate transactions.

Use Case – Check if Drug is Appropriate
 When placing an order, the system checks the ordered
medication against the patient’s symptoms to determine if the
medication is appropriate.

Relevant tables:
Primary: Transaction_procedure
Secondary: Patient, Symptom, Medication, Med_Appropriate
(This is a new table. Med_Appropriate (pk_Appropriate_ID,
fk_Med_ID, fk_Symp_ID))

Assumptions:
1) The provider is logged into the system with a unique login

ID “user”.
2) The provider is within the record of the active patient “p”.
3) The provider will select a treatment that is an existing

element of the Medication table.
4) The patient’s known symptoms have been previously

documented in the Symptom table.
5) A single order will be created at a time.

Execution steps:
1) Physician selects a treatment as described in the new order

use case

a) Physician selects a treatment from the dropdown list:

MyMedName = name(Medication)

b) Given the medication name, administration type, dose,
refills, etc. are selected from the following lists:

MyAdminType = administration_type (mymedID=Med_ID
(Medication))

MyDosage = dosage (myMedName=name MyAdminType =

administration_type (Medication))

c) The data is available to populate the
Transaction_procedure table:

TP_ID = Unique ID generated by the system
Pat_ID = Active patient

Med_ID = Med_ID (mymedName=name myMedName=name MyAdminType

= administration_type (Medication))

d) The data from c is inserted into a temporary table called
Transaction_procedure_current.

2) Retrieve all Symp_ID records for the current patient:

MySymptoms = Symptom.Symp_ID (Patient.Pat_ID=p (Patient X

Patient.Symp_ID = Symptom.Symp_ID Symptom))

3) Check the currently selected treatment for a match in the
Med_Appropriate table.

Loop through all of the patient’s symptoms. For each symptom:
Project the Medication and Symptom

MySymptomCheck = Pat_ID, Med_ID, Symp_ID
(Transaction_procedure_current X MySymptoms)

Check the Medication and Symptom for appropriateness
(MySymptomCheck Left join Med_Appropriate looking for
records in MySymptomCheck but not in Med_Appropriate).

MyMedInappropriateAlert = Pat_ID, Med_ID (
Med_Appropriate.Symp_ID = null (MySymptomCheck

MySymptomCheck.Med_ID=Med_Appropriate.Med_ID MySymptomCheck.Symp_ID =

Med_Appropriate.Symp_ID Med_Appropriate)

4) Display/return alert if the current medication is not
associated with any symptom in the patient’s record. If any
symptom is found that the ordered medication is
appropriate for, there should not be an alert. User may click
through text to override any alert thrown and populate
transactions.

B. Applying NoSQL to CPOE
The transition from physical, paper-based medical records to

electronic health records has been a recent phenomenon that has
grown exponentially since the passing of Affordable Care Act
and the advent of MU. There is understandably some reluctance
to jump into the NoSQL arena, due to the regulatory and
business needs of the medical community. CPOE systems rely
on interfaces with clinical decision support systems (CDSS) that
supply logic, rules, and information about medications and
interactions. For that reason, we are proposing to add a NoSQL
database for analytics support on top of the standard RDBMS.
Given the complex needs of a medical practice, and the immense

822

amount of data that can be generated for an individual patient,
there are potential gains even from a smaller number of patients.
OrientDB has been selected as the platform for the following
reasons:

1) Benefit from all of the standard NoSQL advantages- speed,
horizontal scalability, and schema development on the fly,
and the ability to handle un- and multi-structured data.

2) Graph database functionality that suits medical records and
prescription data as well.

3) Key/Value Document database functionality for handling
written elements of medical records, such as patient
histories, discharge notes, supplemental status notes, and
imaging interpretations.

4) Atomicity, Consistency, Isolation and Durability (ACID)
compliance.

The scope of gains listed above are well known and will not
be described here. Rather, the key arguments relates to
OrientDB platform’s hybrid graph/document store database
structure (Figure 4.).

 Graphical functionality in OrientDB is implemented through
the extension of Vertex(V) and Edge(E) classes, the main
components of the graph. For example:

Create class Patient Extends V

Create class Physician Extends V

create vertex Patient content { "fname" : "John", "surname" :
"Doe" }

create vertex Physician content { "fname" : "Douglas",
"surname" : "Howser", “specialty” : “trauma surgery” }

 The ability to create column families within each vertex
should be familiar to any NoSQL user. Patient and Physician
are subclass extensions of the generic Vertex class V. The next
step is to create an edge linking the Patient and Physician.

create edge Treated from (select from Physician) to (select from
Patient)

 The fact that the patient sees this particular doctor is stored
in the edge, and the edge itself can have attributes, such as visit
dates, documentation generated, test results etc. Similar steps
can be taken to instantiate the transactions in the patient’s
history, such as placing prescription order. The patient’s entire
history can be maintained in this graphical fashion.

 Graphs can be constructed to facilitate the analysis of any
particular attributes of interest. We can look at patient flows
through the system and identify opportunities for optimization
of shortest paths. Characterizing the graph with measures like
betweenness and clustering coefficients can identify important
factors like nodes of high risk in the network. Environmental
factors from patient histories can be reviewed to assist with
diagnoses, or clusters of infected patients can be connected to
assist epidemiology studies.

 The other strength of OrientDB is document support. For
example, discharge notes can be stored as an attribute of an
office or hospital visit, and those notes can then be mined and
analyzed for content. A key element of the hybrid nature of
OrientDB for this use is that edges can be created between
patients, for example, when their histories share sufficient
cosine similarity [12].

IV. CONCLUSION
Future Work and Challenges

RDBMS remains the predominant database in the
commercial and healthcare sectors for myriad reasons
previously mentioned. In the United States today, there are
more than 700 EHR vendors that have created greater than
1,700 certified products, and only a handful of those companies
control most of the market share. Although the federal
government requires vendors to provide a method to utilize the
EHR for data collection, analysis, and reporting [13], some of

Figure 4. RDBMS – OrientDB diagram.

823

the oldest, well-known systems use older technology
(MUMPS) and do not offer simple interoperability with other
vendors or products, which is creating what amounts to a
“monoculture” in EHRs [13]. In the near future, interest in open
source NoSQL systems for healthcare applications may ignite,
as the Federal Trade Commission and Office of the National
Coordinator begin investigating and penalizing legacy vendors
that engage in technology blocking and price-gouging for
application interface software solutions. There is also much
discussion about clarification, and perhaps relaxation, of
HIPAA regulations regarding cloud storage of personal health
information [14].

 To be sure, there are many EHR systems that use enterprise
cloud storage. Yet, there remains an undercurrent of fear within
organizations related to system outages, loss of revenue, data
breaches, and loss of reputation. Security breaches and outages
caused by hackers, lax security, insider snooping, and mobile
devices have solidified the notion, for the time being, that health
organizations should keep RDBMS and limit cloud storage. But,
because of the massive amount of unstructured health data that
is being generated by EHRs, there is an ever-growing need for
cheaper storage, along with more complex databases with deep
analytic capabilities such as OrientDB, Cassandra, and Hadoop.
RDBMS does not have the scalability or flexibility to provide
big data mining, analysis or reporting. NoSQL products can
perform all those tasks, but most fall short meeting enterprise
security needs and ACID compliance. Though leaders in the
industry say that as NoSQL matures, consistency and security
will improve and remind us that there was once a time in the
near past when RDBMS was an unproven technology [15].

REFERENCES

[1] D. Johnston, E. Pan, J. Walker, D. W. Bates, and B.Middleton (2002)
The values of computerized order entry in ambulatory settings; HIMSS.

[2] (2015) HealthIT.gov website. [Online]. Available:
http://www.healthit.gov/providers-professionals/meaningful-use-
definition-objectives

[3] R. J. Campbell, “Database design: what HIM professionals need to
know,” AHIMA website. [Online]. Available: http://www.healthit-
professionals/meaningful-use-definition-objectives

[4] S. Garfinkel, Database Nation: The Death of Privacy in the 21st Century.
Sebastopol: O’Reilly & Associates, Inc., 2000.

[5] “Meaningful use criteria and healthcare IT infrastructure”, October 10,
2010, Healthcare & Security Solutions blog, Available:
https://healthcaresecurity.wordpress.com/category/healthcare-
technology/privacy-security-solutions/

[6] L. S. Borok, “The use of relational databases in health information
systems”, J Health Care Finance, vol. 20 pp. 6-21, April 1995.

[7] “MUMPS”(n.d.),Available: http://en.wikipedia.org/wiki/MUMPS
[8] “Why are hierarchical databases like MUMPS still popular in

healthcare?”, October 12, 2010, Healthcare & Security Solutions blog.
Available: https://healthcaresecurity.wordpress.com/2010/10/12/why-
are-hierarchical-databases-like-mumps-still-popular-in-healthcare/

[9] R. Tweed, “Can a phoenix arise from the ashes of MUMPS?”, January
22, 2013, The EWD Files blog. Available:
https://robtweed.wordpress.com/2013/01/22/can-a-phoenix-rise-from-
the-ashes-of-mumps/

[10] A.Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts
(3rd ed.). Boston: McGraw-Hill,1999, ch.4.

[11] K. B. Johnson and F. FitzHenry, “Case report: activity diagrams for
integrating electronic prescribing tools into clinical workflow”, J Am
Med Inform Assoc, vol. 13(4) pp. 391-395, July-August 2006.

[12] “OrientDB manual – version 2.0”, (n.d.). Available:
http://orientdb.com/docs/last/

[13] (2015)HealthIT.govwebsite.[Online].Available:
http://www.healthit.gov/sites/default/files/meaningfulusetablesseries2_1
10112.pdf

[14] K. DeSalvo, “Report to Congress: Report on health information
blocking,” (April 2015). Available:
http://www.healthit.gov/sites/default/files/reports/info_blocking_040915
.pdf

[15] K. D. Mandl and I. S. Kohane, “Escaping the EHR trap – The future of
health IT”, N Engl J Med, vol 2012(366), pp 2240-2242, June 14, 2012.

824

