
Multiple Ways for Medical Data Visualization

Using 3D Slicer

Ismail Mohammed Bahkali

Department of Computer Science

University of Colorado Colorado Springs

Colorado Springs, USA

ibahkali@uccs.edu

Sudhanshu Kumar Semwal

Department of Computer Science

University of Colorado Colorado Springs

Colorado Springs, USA

ssemwal@uccs.edu

Abstract— Computers can process large amounts of data.

Medical practitioners can deliver better services and provide

more accurate diagnoses and treatment regimens to patients.

This document described how 3D Slicer allows Command Line

Interface (CLI), Python, Jupyter, and MATLAB in software to

process medial data. 3D Slicer has become useful software

worldwide since 1997, especially in the medical field for pre-

operative visualization and analysis. Today, 3D Slicer is

supported by The National Alliance for Medical Imaging

Computing (NA-MIC), Neuroimaging Analysis Center (NAC),

Biomedical Informatics Research Network (BIRN), The

National Center for Image-Guided Therapy (NCIGT), The

Harvard Clinical and Translational Science Center (CTSC),

and the Slicer Community worldwide as a platform to develop

new ideas. In this paper, we demonstrate our knowledge in using

the 3D Slicer software.

Keywords-component; 3D Slicer, MATLAB, Jupyter, Python,

CLI.

I. INTRODUCTION

3D Slicer is one of the quintessential software commonly
used in the medical field [16]. The system is open-source and
used to visualize and analyze medical image data sets [2] [16]
[20]. It supports a wide range of information formats such as
images, surfaces, segmentation, and annotations in either 2D,
3D, and 4D [4] [15]. The platform allows developers to
implement and evaluate new features, which can then be
distributed to other clinical users. The main programming
languages used to code 3D Slicer are C++ and Python.
However, it provides a secondary extension module, enabling
users to customize the platform’s functions and appearance.

According to the article by Fedorov [4], the program is
written in Python and C++. It has a full environment and
packages for the Python language [5]. 3D Slicer has a built-in
Python console functions as a Jupyter notebook kernel for
easy prototyping and customization of products for customers,
hence analyzing different coding languages that one can
utilize to code the program. This paper analyzes and examines
how to code 3D Slicer using CLI, Python, Jupyter, and
MATLAB. The recommended process of coding 3D Slicer
includes GitHub download, CMAKE compilation, generation,
and package because the procedure is simple and convenient
for the development of a software programming environment.

II. ADVANTAGES OF USING 3D SLICER

3D Slicer has the following advantages:

• It is a free access software compatible with different

software such as Linux, Mac OS, and Windows.

• The program is versatile as it uses DICOM files.

• It can be integrated with different image devices, such as

MRI, CT scanners, and microscopes.

• 3D Slicer provides real-time images and analysis, which

improves surgical operations and efficiency.

• Users are at liberty to customize the platform by adding

modules that suit them.

• Visualization allows professionals to share opinions that

lead to improved software.

• It can help generate better information, possibly reducing

diagnosis time for treatment.

• It reduces the cost of surgery by minimizing surgery

planning and process.

• It has broad functionality and scalability.

III. 3D SLICER LIMITATION

Despite the many advantages, 3D Slicer is characterized

by the following limitations:

• It requires technical know-how to use the software or to

analyze data. Therefore, it limits the use of the software.

• Restarting the program after adding extensions is

mandatory; if the right sequences do not follow installing

it or using it after installation, there could be errors.

• The software is also not approved for clinical use and is

meant for research, conditions that limit the usage in real

situations [4].

• It is challenging to construct the environment, meaning that

there is no easy way to modify the program.

793

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00149

IV. HOW TO USE A 3D SLICER?

3D Slicer operates in any Windows, Mac, or Linux
computer, and the installers are available in 64-bit. It is also
recommended that the hardware should have a memory of
more than 4GB, a minimum resolution of 1024 by 768, and
dedicated graphics [4]. New users get overwhelmed by the
number of options available after installing the software. It is
crucial to learn how the systems operate for different
applications. After launching the software, data should be
loaded, as illustrated in Figure1.

Figure 1. 3D Slicer window for loading data.

After the process above, views can be customized by

clicking the controller display push button. The options allow

setting viewpoint direction and adding the slice to the 3D

viewer. Figure 2 is a screenshot of the 3D Slicer window for

managing image views, which we have edited with comments

to show different image views.

Figure 2. A screenshot of the 3D Slicer window for managing image

views.

The third step involves data processing. The 3D Slicer

software consists of already included modules (illustrated by

Figure 3), which include the following:

Figure 3. The representation of 3D Slicer built-in modules.

1. Annotations: Build and edit additional data linked

with a scene. The Markups module will shortly
replace the module. Currently supported
annotations are fiducial points, rulers, and
regions of interest (ROIs).

2. Data: It contains all information and allows

operation such as search, delete, or rename. The
Data module is the fundamental data-organizing
point where presenting all loaded data for access
and direction is the Data module. It permits
regulating the data in folders or patient/study
trees (automatically done for DICOM),
visualizing any displayable data, transforming
whole branches, and many data type-specific
features.

3. DataStore: Allows users to download and upload

datasets.

4. DICOM Allows importing, loading, and exporting of

DICOM data. Allows sending and receiving data
using DICOM networking.

5. Markups: Create, edit, and manage markup
matrices in two and three dimensions. It can
replace fiducials annotations.

6. Models: The Models Module loads and balances
illustrate parameters of models such as Color,
Transparency, and Clipping. Save models via the
File menu, Save button. The Add 3D model or a
model directory button will permit the user to
load any model that Slicer can read and all the
VTK models in a directory. Add Scalar Overlay
will load a scalar file and associate it with the
currently active model. The user can modify the
appearance characteristics of the models in the
Display pane. Select the model to operate on

794

from the model selector drop-down menu. Load
scalar overlays with a default color lookup table.
The user can reassign scalar overlays manually.
The user can turn on Clipping for a model in the
Display pane and selecting the slice planes that
will clip the model are in the Clipping pane. The
Model Hierarchy pane enables the user to group
models collectively and sets the group's
properties.

7. Scene Views: Create, edit, restore, delete scene
views. Scene views capture the state of the MRML
scene at a given point. The accepted method to
utilize them is to load all user data and then
adjust the element's visibility and capture
impressive scenic views. Unexpected action may
happen if the user adds or deletes data from the
scene while saving and restoring scene views.

8. Segment Editor: It allows editing segmentation
objects by straight illustration and handling
segmentation tools on the contained segments in
real-time, updating representations are
automatically other than the label map one.

9. Segmentation: Any segmentation can hold
multiple segments, which match to one structure
or ROI. Every segment can include multiple data
representations for the same structure, and the
module supports automatic transformation
between these illustrations and advanced
appearance settings, and import/ export
features.

10. Transforms: Create and edit transformation
matrices.

11. View Controllers: It allows for transforming the
views options.

12. Volume Rendering: It implements a 3D
visualization of data. It provides advanced tools
for the toggling interactive volume rendering of
datasets. If supported, hardware-accelerated
volume rendering is made available. It permits
the selection of preset transfer functions to
colorize and set the opacity of data in a task-
appropriate approach and tools to customize the
transfer functions that specify these parameters.

13. Volumes: It changes the size of different data,
adjusting Window, Level, Threshold, Color, and
other parameters that regulate the appearance of
volume image data in the scene.

14. Welcome to Slicer: A panel features for loading
data and customizing the view.

V. PROGRAMMING 3D SLICER

The UI for 3D Slicer consists of three sections: input
parameter, results-widgets, and standard 2D and 3D views
[14]. The 3D Slicer software architecture is developed in
modules, which are coded using different programming
languages. The system has three main modules: CLI, Scripted,
and Loadable Modules [11]. Accordingly, a developer writes
the script modules using Python language that allows easy and
extensive access to 3D Slicer’s internal systems. The
developers further apply C++ language for the loadable
modules that control a custom graphical user interface’s
particular behavior. CLI communicates only through the
predefined display, which limits its interaction. Each of the
other subsection is developed using specific algorithms to
achieve particular functions. Thus, different programming
languages are used to create sections of 3D Slicer, which
defines their applications. 3D Slicer extension modules can be
coded using different languages such as MATLAB, Python,
Jupyter, and CLI. MATLAB’s functions can be accessed and
employed within a 3D Slicer environment using
MatlabBridge extension, enabling faster and simple
prototyping [9]. As a result of API in Python wrapper, 3D
Slicer can be customized using the Python language.

Moreover, the Jupyter language can be implemented in 3D
Slicer by following a GitHub centric workflow [17]. The CLI
approach can also be used to customize 3D Slicer through
input and output strategy, which is more accessible but limited
to one batch processing at a time. The recommended steps for
customizing 3D Slicer software include the following steps:

• GitHub download.

• CMAKE compilation.

• Generation and package phases.

VI. HOW TO CODE 3D SLICER USING PYTHON?

Python is also used in many relevant packages, such as

SimpleITK, scikit-learn, and TensorFlow [3]. The 3D Slicer

software is written on Visualization Toolkit (VTK), a pipeline

based library of graphical data. The program is mainly coded

in C++, but the API uses a Python wrapper [1]. The user

interface is developed in Qt, and it may be modified using

C++ or Python [1]. 3D Slicer has a Python-based platform

with an interactor within the graphical user interface capable

of managing the software. Thus, developers can use built-in

command-line interpreters to modify 3D Slicer software since

they have access to the API linked libraries such as VTK, Qt,

and simpleITK, which are wrapped with the Python language

[13] [14]. Wrapping 3D Slicer software with the Python

language makes it possible to develop extension modules for

the program, enabling faster and simple prototyping. The

steps are:

795

1. Open3DSlicer, press the search button next to

Modules, click extension wizard.

2. Create an extension.

3. Select destination, which is the root directory.

4. Select Category.

5. Add a module to extension.

6. Restart 3D Slicer and then open the created module.

VII. HOW TO CODE 3D SLICER USING JUPYTER?

Jupyter was developed in 2011 as Python notebooks and is

an open software web-based application for programming.

The software supports numerous languages through the

integrated kernels. It can, therefore, be employed to code 3D

Slicer for customization purposes [17]. Yaniv examines

SimpleITK Jupyter notebooks, which can be programmed

using either Python or Language R [17]. The software consists

of a single document that describes the image-appraisal

workflow using text, equations, tables, and figures. The

program is separated into logical parts, known as code chunks.

The algorithm provides an opportunity for modifications via

the graphical user interface. The SimpleITK Notebook is

available using git version control systems and GitHub.

Lowekamp [10] described the SimpleITK as an interface that

allows algorithms and data structures for the Insight Toolkit

(ITK) [7]. The implementation of Jupyter language can follow

a GitHub centric workflow, where new codes can be created

using the git workflow strategy, which is topic branch-based.

As such, a developer uploads code to a forked repository

before pulling a request to the primary dataset. The action

sets-off testing using CircleCI continuous service [17]. The

code is tested and integrated into the system. The Python

kernels embedded in the 3D Slicer make it possible to code

using Jupyter language, following the procedure outlined by

Lowekamp [10]. The steps are:

1. Open 3D Slicer software then click install slicer

extensions.

796

2. Click on install extensions, pick developers tools,

install SlicerJupyter, then restart.

3. Launch JupyterKernal from search, press start

Jupyter server.

4. Create Notebook directory.

5. Open 3D Slicer in Jupyter notebook.

6. Code using Python, Slicer views can be shown using

display command.

VIII. HOW TO CODE 3D SLICER USING MATLAB?

MATLAB is a popular software used for the development
of algorithms for computational purposes. It is employed for
matrix manipulations, graphing data, creation and
implementation of algorithms, and user interface development
[1]. However, the program is limited to medical analysis
because of the difficulties of importing/exporting,
visualization, and processing images. Nevertheless, Lasso [9]
proposed a strategy that would enable the running of
MATLAB features in 3D Slicer having the architecture of the
proposed MatlabBridge mentioned in Figure 1 in [9].

The authors suggested an extension, MatlabBridge, which
can start the software, receive input data, run algorithms, and
process information using a TCP/IP based OpenIGTLink
protocol [9]. The graphical user interfaces are described in the
CLI module in XML format. The MatlabBridge should be
downloaded and installed using the extension manager feature
in 3D Slicer. It has a MatlabModuleGenerator, a helper tool
for creating skeleton modules, which can be extended and
customized. MATLABCommander allows other 3D Slicer
modules to be run by MATLAB functions. Thus, the
MATLAB software can be used to program 3D Slicer
software via a MatlabBridge [9]. The steps are:

1. Open 3D Slicer, click install slicer extensions.

2. Click on install extensions, Pick developers tools,

Install MatlabBridge, then restart.

3. After restarting, Click the welcome to slicer menu,

Pick developer tools, Pick MATLAB, Press

MATLAB Module Generator.

4. Enter Module Name, Click Generate module, File

will exist in directory, Press Restart application.

5. Click the welcome to slicer menu, Pick MATLAB,

Press FirstMatlabModule.

6. Download the data of interest (For example,

Download MR Head), click clinical sample data,

MATLAB, open your module.

7. Enter input volume, output volume, and apply.

8. Open your Module, click developer tools,

MATLAB, MATLAB Module Generator.

9. Copy MATLAB Script Directory and Past it on

your hard disk.

10. Exit 3D Slicer and Discard any modification.

797

IX. PROGRAMS NEEDED FOR SECONDARY MODIFICATION

OF EXTENSION MODULES IN 3D SLICER

3D Slicer provides customization and extension

opportunities with an interactive console that gives all the

algorithms and data loaded. However, some programs, such

as CMake, SVN, Git, Visual Studio, and Qt, are needed to

provide a suitable environment to modify the extension

modules [11]. The CMake application is used to solve the

problem arising from multiple compilers used to program 3D

Slicer. It generates a Makefile or Project file, which describes

all platforms’ construction processes [11]. SVN software

stores data and marks changes made to code, allowing the

restoration of previous versions [11]. Git is open-source,

which is used to manage software versions. Visual Studio is

needed for compilation, debugging, and packaging of the

developed source code for 3D Slicer [11]. Lastly, the Qt

program allows component programming and is mainly used

to modify the interface module [11]. CMake, SVN, Git, Visual

Studio, and Qt software are needed before changing 3D Slicer

extension modules.

X. HOW TO CODE 3D SLICER USING COMMAND LINE

INTERFACE?

One of the 3D Slicer program’s main goals is to provide

biomedical engineers, software developers, and researchers

with an opportunity for quick prototyping and development of

images for analysis. Therefore, the tool is open and ex-

tensive, with interfaces and design patterns to introduce new

functionalities [4]. The key user-level features for modifying

the software include DICOM and CLI [4]. The extension code

is divided into Python loadable and the C++ CLI module [14].

The former type is detailed later in the study. The C++ CLI

module is used for batch processing of input information.

Thus, it is limited to the basic input-output setup, where the

inputs are the command line parameters [14]. It is also

restricted to one-time processing. However, C++ CLI

supports easy prototyping by developers. The C++ CLI

module allows developers to modify or develop new

extension through an input-output phase, which is easier to

implement, but it enables only one batch processing at a time.

The steps are:

1. Open 3D Slicer software, Press load DICOM data.

2. Press import DICOM files, Navigate to the dataset

file, Press import.

3. Click on the file, then press load.

4. The screen after loading the dataset.

5. Use the Command Phase for different rendering and

manipulation.

798

XI. MODIFYING EXTENSION MODULES IN 3D SLICER

The leading coding languages used for 3D Slicer are C++

and Python. However, it provides a secondary extension

module, enabling users to customize the platform’s functions

and appearance. 3D Slicer allows users to modify the software

to suit different applications. Optimizing the software to cater

to the medical equipment requirements require developers to

be highly accurate at higher speeds and maintain maximum

safety during the process. However, the modification process

is complicated, and a suitable procedure has been proposed

[11]. The recommended steps for customizing 3D Slicer

software include GitHub download, CMAKE compilation,

and generation and package phases. One acquires source code

from GitHub or SVN as the initial step outlined by [11].

However, the developer should configure Git before

downloading open software on GitHub [7]. The software

should then be installed. The machine information should be

set to be utilized by all Git repositories using the following

code:

$git config–globaluser.name”username”

$git config–globaluser.email@example.com

Then, utilize the following code to create a version library:

1. Create an empty directory

$mkdir mymenu

$cd mymenu

$pwd /Users/ibahkali/mymenu

2. Initialize the warehouse git init

$git init “Initialized empty Git repository” in :

/Users/ibahkali/mymenu/.git/

Lastly, search the source code, select Clone or download,

copy the link, open GitBash, type git after $, put the URL, and

press download. The download process is summarized in

Figure 4.

Figure 4. The process of downloading a source code in GitHub

The second step involves compiling and generating the

downloaded source code. The procedure can be undertaken

using either QT, VS, Git, CMake, SVN, or NSIS [7]. After

that, the CMAKE software (Figure 5) should be used to

resolve issues arising from multiple compilers [18]. A

developer uses the CMake GUI to generate VS project files

through the following paths:

• Where the source code is: sets the path to the

downloaded source code.

• Where to build the binaries is: sets the space for

building and storing a project.

Figure 5. CMake window for path configuration.

The third step is undertaken after the compilation using

Visual Studio to generate and debug the code, which might

exist or not as a packaged project. The fourth and last phase

involves packaging the software. The file might be in

packaged or unpackage formats. In the former case, then the

file can be produced directly. However, it cannot directly be

created if it is not packaged because it is located in the

SlicerDMRI.sln file [11]. Clicking the Edit, Application

Settings, Modules enables easy importation of the packaged

folder [11]. The modules can then be opened and modified

according to a user’s preference. Figure 6 summarizes the

tools and steps needed when undertaking extension module

modification in 3D Slicer.

799

Figure 6. Tools and steps when undertaking extension module

modification in 3D Slicer.

XII. CONCLUSION

3D Slicer is an important software, especially in the medical

field, because it analyzes sophisticated data through

visualization. The software reduces costs and promotes

surgical operations safety, which has increased its popularity

in medical applications. 3D Slicer is coded mainly using C++

and Python programming languages. However, it provides a

secondary extension module, enabling users to customize the

platform’s functions and appearance. In this regard, the study

was undertaken to investigate how a coding environment can

be created using different languages to modify the 3D Slicer

program and its several paths. It was established that the

software could be optimized to meet medical equipment

requirements, which need high accuracy, speed, and safety.

However, the modification process is complicated, and a

suitable procedure was proposed. The recommended steps for

customizing 3D Slicer software include GitHub download,

CMAKE compilation, and generation and package phases. By

using a MatlabBridge extension, MATLAB’s functions can be

accessed and employed within a 3D Slicer environment,

enabling faster and simple prototyping. The Python language

can also customize 3D Slicer because its API is done in

Python wrapper. Moreover, the Jupyter language can be

implemented in 3D Slicer by following a GitHub centric
workflow, where new codes are created using the topic

branch-based git strategy. The CLI approach can also be used

to customize the 3D Slicer through input and output strategy,

which is easier but limited to one batch processing at a time.

In this paper, we explained these several paths for using 3D

Slice so that the usage of 3D Slicer could be more

commonplace and grow further.

REFERENCES

[1] M. Bustamante, "Detection and Quantification of Small Changes in

MRI Volumes," 2014.
[2] D. Chalupa, and J. Mikulka, "A novel tool for supervised segmentation

using 3D slicer," Symmetry, 2018, pp. 627.
[3] B. E. Chapman, J. A. Roberts, and A. Sorenson, "Scientific Session

Posters and Demonstrations Creating an Open Source Infrastructure for
Image Phenotyping in Clinical Research," SIIM, 2017.

[4] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, JC. Fillion-
Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, and J.
Buatti. "3D Slicer as an image computing platform for the Quantitative
Imaging Network," Magnetic resonance imaging, 2012, pp.1323-1341.

[5] J. L. Forbes, "Developmentand Verification of Medical Image
Analysis Tools Within the 3D Slicer Environment," 2016.

[6] D. T. Gering, "A system for surgical planning and guidance using
image fusion and interventional MR," (Doctoral dissertation,
Massachusetts Institute of Technology), 1999.

[7] S. Jin, G. Yu, J. Song, J. Chang, J. Cui, "Development environment
construction of medical imaging software 3d slicer," Journal of
Complexity in Health Sciences, 2020, pp. 43-51.

[8] T. Kapur, S. Pieper, A. Fedorov, JC. Fillion-Robin, M. Halle, L.
O'Donnell, A. Lasso, T. Ungi, C. Pinter, J. Finet, S. Pujol, "Increasing
the impact of medical image computing using community-based open-
access hackathons," The NA-MIC and 3D Slicer experience, 2016, pp.
176-180.

[9] A. Lasso, K. Alexander, C. Jechel, K. Wang, J. Schreiner, G.
Fichtinger, "Running Matlab® functions in 3D Slicer using
MatlabBridge," Imaging Network Ontario, 2015, pp. 78.
www.imno.ca/sites/default/files/2014Proceedings.pdf. Accessed 4
Nov 2020.

[10] B. C. Lowekamp, D. T. Chen, L. Ibáñez, D. Blezek, "The design of
SimpleITK," Frontiers in neuroinformatics, 2013, pp. 45.

[11] L. Ma, C. Zhang, W. Wu, J. Chang, J. Cui, "Secondary development
based on 3D Slicer extension modules," Journal of Complexity in
Health Sciences, 2020, pp. 73-80.

[12] N. Bruns, "3D Slicer: Universal 3D Visualization Software," Der
Unfallchirurg, 2019, pp. 662-663.

[13] F. Pye, N. B. Raja, B. Shirley, Á. T. Kocsis, N. Hohmann, D. JE.
Murdock, and E. Jarochowska, "ImageJ and 3D Slicer: open source
2/3D morphometric software," PeerJ Preprints, 2019.

[14] T. Michalík, "Software pro stereotaktickou navigaci v
epileptochirurgii," 2019.

[15] S. Vijayan, S. S. Melo, S. Anamali-Allareddy, F. B. Teixeira, and V.
Allareddy, "Segmenting Root Canal Systems Using an Open Source
Slicer Software," Oral Surgery, Oral Medicine, Oral Pathology and
Oral Radiology, 2019, pp. 48-49.

[16] Y. Muyi, "Medical image segmentation algorithm based on 3D slicer
and its application." Electronic World, 2016, pp. 14-15.

[17] Z. Yaniv, B.C. Lowekamp, H.J. Johnson, and R. Beare, "SimpleITK
image-analysis notebooks: a collaborative environment for education
and reproducible research," Journal of digital imaging, 2018, pp.290-
303.

[18] J. Yu, X. Li, Z. Wu, "Design and Implementation of Compiler Theory
Demo Module," Research and Exploration in Laboratory, 2018, pp. 36.

[19] X. Zhang, K. Zhang, Q. Pan, J. Chang, "Three-dimensional
reconstruction of medical images based on 3D slicer," Journal of
Complexity in Health Sciences, 2019, pp. 1-2.

[20] X. Zhou, J. Wang, M. Guo, Z. Gao, "Cross-platform online
visualization system for open BIM based on WebGL," Multimedia
Tools and Applications, 2019, pp. 28575-28590.

800

