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Abstract—Deep learning is a form of artificial intelligence (AI)
that has seen rapid development and deployment in computer
software as a means to implementing AI functionality with
greater efficiency and ease as compared to other alternative
AI solutions, with usage seen in systems varying from search
and recommendation engines to autonomous vehicles. With
the demand for deep learning algorithms that can perform
increasingly complex tasks in a shorter time frame growing
at an exponential pace, the developments in the efficiency and
productivity of algorithms has far outpaced that of the security
of such algorithms, drawing concerns over the many unaddressed
vulnerabilities that may be exploited to compromise the integrity
of these software. This study investigated the ability of poisoning
attacks, a form of attack targeting the vulnerability of deep
learning training data, to compromise the integrity of a deep
learning model’s classificational functionality. Experimentation
involved the processing of training data sets with varying deep
learning models and the incremental introduction of poisoned
data sets to view the efficacy of a poisoning attack under
multiple circumstances and correlate such with aspects of the
model’s design conditions. Analysis of results showed evidence of
a decrease of classificational ability correlating with an increase of
poison percentage in the training data sets, but the scale of which
the decrease occurred varied with the specified parameters in the
model design. Based on this, it was concluded that poisoning can
provide varying levels of damage to deep learning classificational
ability depending on the parameters utilized in the model design,
and methods to countermeasure such were proposed, such as
increasing epoch count, implementing mechanisms bolstering
model fit, and integrating input level filtration systems.

Index Terms—deep learning, machine learning, artificial intel-
ligence, data poisoning

I. INTRODUCTION

Deep learning is a subset of machine learning and a form

of artificial intelligence that utilizes a structured layer of al-

gorithms in order to process data and generate classificational

capabilities. While steeped in the classical practices of artificial

intelligence, such as teaching through example, deep learning

sets itself apart from other alternatives by incorporating large

sets of artificial neural networks and automated feature ex-

traction from data samples, allowing deep learning to process

and scale with larger sets of data with greater speed and

efficiency [1]. These attributes, alongside the relative ease

and reliability at which deep learning can be implemented,

have allowed a multitude of organizations to implement and

employ AI functionalities into their products and services.

Through this, deep learning has spurned on the development

and introduction of new and innovative technologies such

as autonomous vehicles, assistance devices, and cancer cell

detection systems [2].

The strong focus in the deep learning field on productivity

and efficiency though has led to the overemphasis on the need

to optimize the performance of the algorithms as opposed to

the strengthening of the security of them, leading to growing

concerns over exposed and unaddressed security threats. Lack-

ing in any major countermeasures in response, these threats

have led to the development of multiple attack methodologies

that pose a significant danger to systems incorporating deep

learning models. An instance of such an attack that proves

a major threat, poisoning attacks, relies on the corruption

of vulnerable training data to cause incorrect classificational

learning, resulting in faulty and even harmful classificational

capabilities that can be exploited by malevolent individuals

and organizations to potentially devastating results [3].

In spite of these flaws, deep learning still remains the future

of artificial intelligence. It is currently the only known viable

solution to bridging the gap between big data and artificial

intelligence and remains the most promising in terms of

moving towards unsupervised learning [4]. It has an estimated

market value at $4.4 billion as of 2020 and many major cor-

porations, such as Google, Amazon, Samsung, and NVIDIA,

have invested heavily in the advancement and integration of

deep learning into many of their applications [5], making it a

critical mainstay solution to AI problems. However, security

threats like poisoning attacks still pose a significant hindrance

to the development of the field.

Thus, this paper delved into the mechanics and processes

involved in data poisoning on deep learning and analyzed

methods by which poisoning attacks could be used to effect

deep learning models and their classificational capabilities.

The remainder of this paper is organized as follows: Section

II introduces background of the research. Section III discusses

research methodology. Section IV demonstrates research re-

sults. Section V concludes the paper with some reflections on

findings and suggestions for future work to build upon them.

II. BACKGROUND

A. Deep Learning Overview

Deep learning is a type of artificial intelligence that is

typically categorized as a sub-field of the general AI field

of machine learning, and tackles the challenge of intelligent

behavior in computers by mimicking the learning process
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found in living organisms through the employment of artificial

neural networks.

Artificial neural networks, or neural networks, is a de-

sign approach to artificial intelligence that emphasizes the

processing of data and information in a manner similar to

how a biological brain would function. Neural networks are

comprised of a collective of nodes, known as neurons, that

are structured to form a multitude of layers. These layers

are connected to one another through the neurons, in which

each neuron both receives and transmits signals to and from

adjacent layers in a forward manner (typically dubbed ‘feed-

forward’).

Each neuron contains a specialized value, or weight, that it

uses in conjunction with outputs from neurons in the previous

layer to calculate a value. If the value reaches a certain

threshold, it will output the value to the next layer’s neurons.

If the value fails to reach the threshold, the neuron will not

output the value to the next layer. Through multiple instances

of ‘training’, in which data performs a full run through every

layer (known as an ‘epoch’), these weights will be gradually

adjusted by validation checks until the weights are optimized

to perform accurate classification through its training data

set [6]. As this process is scalable, the greater the amount

of data inputted into the model, the more optimized and

accurate the classificational ability will become throughout

the training process [7]. This continuous cycle of training

and reinforcement, similar to biological processes of learning,

forms the backbone of the deep learning process and allows

it to produce efficient and productive classificational models.

Deep learning also incorporates the function of automated

feature extraction. Feature extraction itself is the process in

which the initial raw input data is procedurally reduced in

a manner in which the resulting data is far more manageable

for the neural networks to process, essentially summarizing the

data through selective combination in order to create groups,

or ‘features’, that retain the traits and attributes of the original

data set but are now much more computationally efficient to

process [8].

Traditional approaches regarding feature extraction for arti-

ficial intelligence usually entailed manual feature identification

and extraction under the direction of a data scientist, which

was typically greatly consuming in both human labor and

resources as well subject to human error at times. Deep

learning, on the other hand, automated the feature extraction

process, allowing the immediate input of raw data into the

model instead of requiring the pre-processing of such data [9].

This greatly improved the ease and efficiency at which one

could train deep learning models with raw training data sets

as compared to other forms of machine learning and artificial

intelligence.

B. Data Poisoning Overview

Data poisoning is a type of attack in which a bad actor

attempts to alter, or ‘poison’, either the internal machine

learning model algorithm or the machine learning training

data.

The general goal of this form of attack is to render a

poisoned machine learning model unreliable or incapable of

producing the intended output that the system is designed

to perform by interfering with the internal learning process

occurring within the model.

Poisoning attacks typically vary from factors that influence

the required design philosophy, such as intended goal or

environmental restrictions.

Intended goals are typically categorized as either targeted

attacks, specifically attempting to alter a certain item or

process in the model, or non-targeted attacks, not specifically

attempting to alter any certain thing but instead anything

available to alter; environmental restrictions typically come

from how much access an attacker has to the targeted model

and is categorized as a white-box, gray-box, or black-box

scenario corresponding to full access, partial access, and no

access to the model respectively [10].

The table below (see TABLE I) describes the four primary

approaches used in poisoning attacks [11].

TABLE I
POISONING ATTACH APPROACHES

Poisoning Approach Description

Logic Corruption
An attacker has access to the internal algorithms
of the model, allowing them the ability to alter
internal processes and mechanisms.

Data Manipulation

An attacker has access to the training data set
used to train the model, allowing them the ability
to alter the training data itself or labels used to
aid the classification of the training data.

Data Injection
An attacker has access to the training data set but
is limited to only adding data to the pre-existing
set.

Transfer Learning A new model is poisoned by the transferring of
an old poisoned training data set to the new one.

Data poisoning is traditionally associated with machine

learning, with some of the earliest studies on data poisoning

being performed on machine learning based spam filters [12].

Recent work though has shown that deep learning models

too are susceptible to data poisoning attacks targeted at neural

networks through methods such as training data manipulation

[13] and reverse-engineering the computational process of

neural networks [14]. These works implicate the transferability

of data poisoning from a machine learning level to a deep

learning level and demonstrate the potential threats that deep

learning models face should they be attacked through this

methodology.

III. RESEARCH METHODOLOGY

A. Approach Overview

To view the efficacy of data poisoning on deep learning

models and the potential impact possible on its classification

capacity, an empirical experiment was performed on a deep

learning model with a data manipulation method gradual

poisoning of its training sample pool to view the effect on

the classification ability of the resultant models.
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Two deep learning training models with differing amounts

of dropout layers were used for testing. A comparative baseline

was established with a clean training set using these two

models trained on both 50 and 100 training epochs to view

the classification and validation data for an un-poisoned set.

Following such, poison would be incrementally introduced

into the training data pool with the deep learning model

retrained to view the resulting change in classification and

validation data. The resulting classificational output was then

tabulated and compared against the baseline to view general

trends in change from the incremental data poisoning.

B. Model Design

The deep learning training models were written in Python

and built upon the Keras [15] library with a TensorFlow

[16] framework, and the code was hosted on a Windows 10

machine with a 4 core 8GB RAM processor.

Model 1 consisted of 10 layers (i.e., 3 convolution layers, 3

polling layers, 1 flatten layer, 1 full connected layer, 1 dropout

layer, and 1 final layer) and the Model 2 consisted of 13 layers

(i.e., 3 convolution layers, 3 polling layers, 1 flatten layer, 1

full connected layer, 4 dropout layers, and 1 final layer). The

two models primary differed in the amount of dropout layers

used for model fitting.

Model 1 had a single dropout layer at 0.5 dropout, while

Model 2 had 4 dropout layers at 0.3 dropout each; this

differentiation allowed the observance of a situation in which

a poorly fit model and properly fit model are poisoned, and

how such affected their classificational capabilities.

Both models were further differentiated through training on

both 50 epochs and 100 epochs with 16 overall trainings per

model type through a poisoned training data set range of 0%

to 35%.

The deep learning models were trained with a training data

set consisting of 400 labeled training images separated into

two classes and validated by a pool of 100 labeled validation

images similarly separated into two classes.

IV. RESEARCH RESULTS

A. Results Overview

Across the testing phase, 64 total accuracy reports were gen-

erated by the two deep learning models, where each accuracy

report detailed the classification accuracy, classification loss,

validation accuracy, and validation loss for each model when

trained through the training data set.

These accuracy reports described the general classificational

trends across the models as they were retrained with an

increasing amount of poisoned data, as well as how the

classification trends were affected by factors such as epoch

amount and dropout integration.

B. Model 1 Results

Model 1 was a deep learning training model utilizing only

one dropout layer at 0.5 dropout value and went through two

runs through the poisoned training data set, once at 50 epochs

and another at 100 epochs.

At the baseline of 0% poisoned, the model had already

shown signs of over-fitting. At 50 epochs, the classification

accuracy at 0.9775 (see Fig. 1) and classification loss at

0.1007 (see Fig. 2) showed reasonable rates, but the validation

accuracy at 0.9160 (see Fig. 3) and validation loss at 0.3049

(see Fig. 4) showed poor fitting between the model and

training data. Similar trends were seen at 100 epochs, with

reasonable rates with the classification accuracy and loss, but

abnormal validation accuracy and loss rates at 0.9271 and

0.6733, respectively.

Following the introduction of poisoning into the training

sample, the classification accuracy and loss faced minor nega-

tive alterations in their values (an accuracy drop of about 0.06

for 50 epochs and 0.2 for 100 epochs, and a loss increase

of about 0.1 for both epoch sizes), but validation accuracy

and loss experienced dramatic alterations (an accuracy drop

of about 0.2 across both epoch sizes, and a loss increase

by 1.0 and 0.8 for 50 and 100 epochs respectively); thus,

indicating the poison had drastically altered the models’ ability

to classify images outside of its own training sample pool in

a greatly negative manner, making it virtually unreliable in

classification.

Fig. 1. Classification Accuracy for Model 1

Fig. 2. Classification Loss for Model 1
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Fig. 3. Validation Accuracy for Model 1

Fig. 4. Validation Loss for Model 1

C. Model 2 Results

Model 2 was a deep learning training model utilizing 4

dropout layers with 0.3 dropout value each and similarly ran

through two runs of poisoned training data sets at 50 and 100

epochs.

As it has adequate dropout rates, the baseline classification

accuracy and loss as well as the validation accuracy and loss

maintain reasonable rates that do not suggest poor model

fitting.

After the introduction of poison, classification rates suf-

fered minor alteration in value, while validation rates suffered

greater alterations in value but lacked severity in comparison

to the results in Model 1.

In classification accuracy (see Fig. 5), the 50 epoch run saw

a rate decrease of 0.03 and the 100 epoch run saw a decrease

of about 0.02 in value. Classification loss (see Fig. 6) at 50

epochs saw a net increase of 0.02 but experienced fluctuations

that had increased the value by 0.1 at times; classification loss

at 100 epochs also saw a similar trend in value fluctuation but

overall had a net decrease by 0.03 in value.

Validation accuracy (see Fig. 7) generally decreased all

around, with the 50 epoch run experiencing a 0.1 drop in

value and the 100 epoch run experiencing a 0.3 drop in value.

Validation loss (see Fig. 8) increased by 0.3 for the 50 epoch

run and by 0.5 for the 100 epoch run.

Generally, the Model 2 runs experienced similar but more

subdued alteration in rates compared to the Model 1 runs.

The 50 epoch run experienced worse classification rates as a

result of the poisoning compared to the 100 epoch run, but

the 100 epoch run faced far more drastic an effect on its

validation rates compared to the 50 epoch run once poison

was introduced.

Overall, the poisoning runs of Model 2 proved damaging to

the ability of the model to classify images during the training

period for a standard fitting model, as seen with the drop

in classification accuracy and increase in classification loss,

but even more so demonstrated how damaging poisoning can

be on a model’s ability to classify new images outside of its

training set, as seen with how drastic the validation rates were

negatively altered throughout the poisoning process.

Fig. 5. Classification Accuracy for Model 2

Fig. 6. Classification Loss for Model 2

V. CONCLUSION AND FUTURE WORK

As AI functionality becomes increasingly integrated into

our technology, the need for deep learning will only grow.

Unfortunately, deep learning is not infallible, and the existence

of vulnerabilities poses a major threat to the integrity and

reliability of deep learning-based software; thus, highlighting

the need for research exploring the means by which deep

learning can be exploited.
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Fig. 7. Validation Accuracy for Model 2

Fig. 8. Validation Loss for Model 2

This paper overviewed the mechanics and processes behind

data poisoning for deep learning models and demonstrated and

analyzed a method by which poisoning could be applied to a

deep learning model, showing how data poisoning can cripple

a model’s classificational capacity and render it unreliable.

As work on data poisoning for deep learning algorithms is

limited, further study is required for a better understanding

to expand our ability to diagnose and combat it. Research

should be extended to explore other methods of data poisoning

for deep learning. As adversarial examples are another major

attack approach for deep learning models, further research

should also go into viewing the synergistic capabilities of both

data poisoning and adversarial examples, and countermeasures

to combat both.

ACKNOWLEDGMENT

“This work was supported [in part] by the Commonwealth

Cyber Initiative (CCI), an investment in the advancement of

cyber R&D, innovation and workforce development. For more

information about CCI, visit cyberinitiative.org.”

REFERENCES

[1] Jason Brownlee, “What is Deep Learning?” August 16, 2019, https:
//machinelearningmastery.com/what-is-deep-learning/

[2] Mathworks, “What Is Deep Learning?” https://www.mathworks.com/di
scovery/deep-learning.html

[3] Computer Science, University of Maryland, “Poison Frogs! Targeted
Poisoning Attacks on Neural Networks,” https://www.cs.umd.edu/∼tom
g/projects/poison/

[4] Keith D. Foote, “A Brief History of Deep Learning,” Feburary 7, 2017,
https://www.dataversity.net/brief-history-deep-learning/

[5] Reportlinker, “Global Deeping Learning Industry,” July 2020, https:
//www.reportlinker.com/p05798338/Global-Deep-Learning-Industry.h
tml?utm source=GNW

[6] Larry Hardesty, “Explained: Neural networks,” April 14, 2017, https:
//news.mit.edu/2017/explained-neural-networks-deep-learning-0414

[7] Jeff Dean, “Large-Scale Deep Learning for Intelligent Computer Sys-
tems,” https://static.googleusercontent.com/media/research.google.com
/en//people/jeff/BayLearn2015.pdf

[8] DeepAI, “Feature Extraction,” https://deepai.org/machine-learning-glos
sary-and-terms/feature-extraction

[9] Artem Oppermann, “Artificial Intelligence vs. Machine Learning vs.
Deep Learning,” October 29, 2019, https://towardsdatascience.com/artif
icial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac

[10] Alexander Polyakov, “How to attack Machine Learning (Evasion, Poi-
soning, Inference, Trojans, Backdoors),” August 6, 2019, https://toward
sdatascience.com/how-to-attack-machine-learning-evasion-poisoning-
inference-trojans-backdoors-a7cb5832595c

[11] Ilja Moisejevs, “Poisoning attacks on Machine Learning,” July 14, 2019,
https://towardsdatascience.com/poisoning-attacks-on-machine-learning
-1ff247c254db

[12] Daniel Lowd, Christopher Meek, “Good Word Attacks on Statistical
Spam Filters,” Semantic Scholar, https://www.semanticscholar.org/pape
r/Good-Word-Attacks-on-Statistical-Spam-Filters-Lowd-Meek/16358a
75a3a6561d042e6874d128d82f5b0bd4b3

[13] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, Tom Goldstein, “Poison Frogs!
Targeted Clean-Label Poisoning Attacks on Neural Networks,” in Pro-
ceedings of 32nd Conference on Neural Information Processing Systems
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