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Abstract—Adversarially robust neural cryptography deals with
the training of a neural-based model using an adversary to
leverage the learning process in favor of reliability and trustwor-
thiness. The adversary can be a neural network or a strategy
guided by a neural network. These mechanisms are proving
successful in finding secure means of data protection. Similarly,
machine learning benefits significantly from the cryptography
area by protecting models from being accessible to malicious
users. This paper is a literature review on the symbiotic rela-
tionship between machine learning and cryptography. We explain
cryptographic algorithms that have been successfully applied in
machine learning problems and, also, deep learning algorithms
that have been used in cryptography. We pay special attention
to the exciting and relatively new area of adversarial robustness.

Index Terms—neural cryptography, deep learning, block ci-
phers, generative adversarial networks, adversarial robustness

I. INTRODUCTION

Cryptography is concerned with studying how we can

protect data, offering security against intruders [1]. Much of

the security depends on sophisticated means to obtain pseudo-

random mappings that are invertible, allowing both encryp-

tion and decryption tasks [2]. The strength of cryptographic

algorithms often relies on publicizing the algorithms for the

community to study for weaknesses and possible attacks so

that when a vulnerability is detected, the algorithm can be up-

dated or patched [3]. This public nature of algorithms also has

positive effects concerning mass production, implementation,

and deployment; however, one important additional aspect that

must not be overlooked is trustworthiness: knowing exactly

how the algorithm works, or at least knowing that one can

have access to that information creates trust [4]. The issue of

trust has hindered the progress of machine learning algorithms

in the field of cryptography until recently.

The machine learning community has brought a new wave

of interest in the field with exciting and innovative research.

The problem of trustworthiness is no longer tabu and is the

object of much study today [5]. Much progress has been made

in the area of explainable AI, which also promotes trust in AI

[6]–[8]. This has opened the door for other disciplines to con-

sider machine learning, particularly deep learning models, to

address highly complex problems from a different perspective.

In 2016, Abadi et al. [9], connected the idea of adversarial

learning and neural networks to train a neural model to learn

its own encryption mechanism. This research captured the

attention of many researchers in both areas, cryptography,

and machine learning [10]–[13]. However, while the authors

of [9] gathered much attention, they are other lesser-known

successful models that need to be put in the proper context to

display the problems that have been solved and the challenges

that still exist. This paper aims to provide context on recent

research in the intersection between cryptography and machine

learning.

The paper is organized as follows: Section II describes

preliminaries on both deep learning and adversarial neural

networks; Section III presents a general introduction to state

of the art machine learning algorithms that benefit from

cryptography; Section IV cryptography research that benefits

directly from machine learning; we present a discussion and

future work in Section V and conclusions in Section VI.

II. PRELIMINARIES

A. Deep Learning

A deep learning model is a machine learning model that

has a long structure and numerous parameters [14]. Most

deep learning models are modeled as neural networks. Layers

in this kind of neural network can be homogeneous or not

homogeneous. Hence, each layer in the model can be either

convolutional, recurrent, or fully-connected. Fig. 1 shows an

example of deep learning model consisting of two convo-

lutional layers and one fully-connected layer. Convolutional

neural networks (CNNs) have been of particular interest in

the deep learning community in different applications [15].

B. Adversarial Neural Network

In 2014, Goodfellow et.al [16], [17] proposed a state-of-

art scheme, called Generative Adversarial Networks (GANs)

which motivated the idea of adversarial neural network. GANs

composed of two neural networks: a generative model (called

generator) and a discriminative model (called discriminator).

The generator receives a noisy input and generates an image to

send to the discriminator. The discriminator receives an image

to calculate the probability pd that the image is real and the

probability pd′ that the image is generated by the generator.

The discriminator’s goal is to maximize pd when the input

is real and pd′ when the input is not real, and the generator’s

goal is to minimize the maximization of the discriminator. As a

result, after the learning process and competition between both
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Fig. 1. Example of deep learning model represented as a convolutional neural network.

of them, the generator can generate an image which is almost

identical with the real image. Fig. 2 describes the architecture

of this scheme.

Existing works applied this idea to let neural network

models learn by themselves where there are competitors in

the schemes. This is called adversarial neural network and

categorized in unsupervised learning.

III. CRYPTOGRAPHY FOR MACHINE LEARNING

In some applications, obtaining training data only from one

source in a deep learning model is not enough. Thus, many

data owners would like to let the model learn their own data

and also data from other sources. To successfully achieve

the goal, they can have one cloud and let the model in the

cloud learn from their data. In addition, they do not want

leak their sensitive information, and this scenario is called

collaborative deep learning. In this paper, collaborative deep

learning can be categorized into two types: sharing encrypted
training data and sharing encrypted gradients. To preserve

the data owners’ privacy, all the data during the learning

process (including operands for operations on the cloud) need

to be encrypted, called fully homomorphic encryption [18].

A. Sharing encrypted training data

Li et.al [19] designed two schemes (i.e. basic scheme and

advanced scheme) to preserve privacy for users who desired

to collaboratively train their data with deep learning on the

cloud, and the users as well as the cloud are honest-but-

curious. This means that all the things in the models are

honest to perform their duties, but try to reveal information

in the learning process. First, basic scheme is composed of

data owners and the cloud and based on multi-key fully

homomorphic encryption (MK-FHE) [20]. The mechanism is

listed as below:

1) Data owners generate public keys, secret keys and eval-

uation keys, encrypt their own data with the public keys

(i.e. training data, partial weight and desired target) with

his/her own public key and send them to the cloud.

2) The cloud receives encrypted data from all the data

owner and let the model learn with the encrypted data

using public keys and evaluation keys of the data owners.

3) After updating all the encrypted weights, the cloud sends

the encrypted and updated weights back to the data

owners.

4) The data owners jointly decrypt it to gain the individual

updated weights by using secure multi-party computa-

tion (SMC) with their secret keys [21].

Second, advanced scheme is more complicated to ensure

that the data owners do not need to communicate to each other

for decrypting the encrypted results. This scheme consists

of data owners, the cloud and authorized center (AU). This

scheme applies double encryption, called BCP scheme [22],

and MK-FHE, and its mechanism works as follows:

1) Data owners generate their own public keys and secret

keys (no evaluation keys), encrypt their own data (i.e.

training data, partial weight and desired target) with their

own public key and send them to the cloud. Note that

AU also has the data owners’ secret keys.

2) The cloud receives encrypted data from all the data

owner, but it cannot perform addition and multiplication

operations since it does not have evaluation keys. Hence,

it adds noise to them and sends them to AU.

3) AU decrypts them with the data owners’ secret keys and

encrypts all the data with one public key. Then, it sends

them back to the cloud.

4) Now, the cloud can calculate encrypted and updated

weights from all the data encrypted with the same

public key. After obtaining the results, the cloud sends

the results to AU to transform each result to the data

encrypted with the particular data owner’s public key.

5) The cloud sends each result back to its data owner, and

each data owner can decrypt the result with his/her secret

key.

The system was theoretically proved that it is semantically

secure [23] if the public key scheme is semantically secure.

Also, the system can preserve privacy for the parameters of
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Fig. 2. Generative Adversarial Network’s architecture.

deep learning (i.e. the weights) if the cloud does not collude

with AU.

In 2019, Kwabena et.al [24] improved basic scheme in

[19] by applying multi-scheme fully homomorphic encryption

(MS-FHE) [25] which is that the data owners can use different

encryption schemes to join the collaborative deep learning.

Also, the estimated activation function for Sigmoid function

is more accurate and Relu function is estimated for alternative

(since a homomorphic encryption cannot perform division

operation). Furthermore, this work’s scheme has a slightly

more accuracy of classification tasks than the ones of previous

works [26]–[28] and runs faster than [28].

B. Sharing encrypted gradients

Phong et.al [29] proposed additively homomorphic encryp-

tion scheme for collaborative deep learning by improving the

work in [30] which applied asynchronous stochastic gradient

descent (ASGD) [31], [32] for the learning method and was

called gradients-selective ASGD because each data owner

chooses which gradients to globally share to preserve his/her

privacy. Also, [30] showed additional scheme which leveraged

differential privacy by adding Laplace noise [33] to all the

gradients. However, Phong and the others had a proof to

show that gradients-selective ASGD and differential privacy

still leaked some sensitive information of the data owners

although these methods slightly altered the values of gradients.

In [29], ASGD is also applied for the learning method and the

mechanism is summarized as follows:

1) A data owner downloads the encrypted weight stored in

the cloud using the secret key.

2) The data owner computes the gradient after using the

global weight and the training data to learn in his/her

deep learning model.

3) The data owner encrypts the gradient multiplied with the

learning rate with his/her secret key and sends back to

the cloud.

4) The cloud updates the global weight with the data

owners’ encrypted message by performing only addition

operation.

This work proves that there is no gradient’s leakage to the

honest-but-curious cloud in this mechanism, and when the data

owner decrypts the encrypted result, the decrypted result is the

same as if the operations on the cloud were performed with

an unencrypted gradient.

IV. MACHINE LEARNING FOR CRYPTOGRAPHY

Not only encryption schemes have been used in machine

learning models, but also in this decade, machine learning

has certainly existed in encryption or cryptography field. The

machine learning-based cryptography can be categorized into

two types: non-adversarial-machine-learning cryptography
and adversarial-machine-learning cryptography.

A. Non-adversarial-machine-learning cryptography

The prior works [34], [35] leveraged neural network models

to create encryption schemes. [34] in 2012 and [35] in 2015

which enhanced the former utilized the mixing method and

non linearity property of neural network models to build

encryption and decryption schemes. The secret keys of the

schemes are the parameters (weights and biases) of the net-

work or mixed with some random numbers. The drawbacks

of these kinds of schemes are that if the architectures of the

networks are exposed, the schemes will not be secure.

In 2017, Shruti et.al [36] applied a deep learning model to

create a symmetric encryption and decryption scheme based

on a genetic algorithm [37] and DNA computing. This work

includes the key generation part and encryption and decryption

part. First, the generic algorithm is applied to perform the key

generation, and this algorithm consists of mutation, crossover

and selection. Key candidates which are binary strings are

initialized, and then mutation is performed to expand the

number of candidates by randomly flipping some bits on each

string. After that, crossover is performed to also increase the

number of candidates by randomly swapping some parts of a
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pair of key candidates. Then, the key candidates which results

the best fitness functions are obtained. This process keeps

going on until the random values reach the threshold.

Next, the encryption scheme can be accomplished by the

DNA computing. A bit string of plaintext is converted to

a string of DNA by mapping 00 to A (Adenine), 01 to

C (Cytosine), 10 to G (Guanine) and 11 to T (Thymine).

This DNA string is processed by transcription and translation

process [38], and then it is converted back to a binary string.

After that, this string is performed by Exclusive OR (XOR)

operation with one of the generated key. The decryption

process is just the reverse of the encryption process.

B. Adversarial-machine-learning cryptography

In the present, researchers focus on adversarial neural cryp-

tography in which the encryption and decryption algorithms

can learn to improve its level of secrecy by themselves

where there is an adversary existing in the scheme. In 2016,

Abadi et.al [9], [39] utilized Generative Adversarial Networks

(GANs) [16] and proposed a deep-learning based approach to

provide secrecy for communications with adversarial neural

cryptography. A simple scenario consists of Alice, Bob and

Eve. Alice communicates with Bob with a symmetric encryp-

tion, they desire to have secrecy property, and Eve intercepts

the communication and desires to obtain the plaintext from the

encrypted message [40]. For instance, as can be seen in Fig. 3,

Alice produces ciphertext C from plaintext P with symmetric

key K and sends to Bob. At the same time, Eve also receives

the ciphertext C. When Bob receives ciphertext C, it tries to

decode ciphertext C with key K to recover plaintext P and

outputs its recovered plaintext PBob. Similarly, Eve attempts to

recover plaintext P and outputs its recovered plaintext PEve.

Note that Bob has an advantage over Eve since it has key K,

but Eve does not.

Eve

Alice Bob

Fig. 3. Alice, Bob and Eve with a symmetric encryption.

The proposed scenario in this work assumes that Alice, Bob

and Eve are neural networks where Alice’s network, which has

θA as a set of parameters, attempts to successfully protect C
and communicate with Bob, Bob’s network, which has θB as a

set of parameters, tries to fully recover P from C. and Eve’s

network’s goal, which has θE as a set of parameters, is to

decode C in order to gain P . Therefore, Bob’s loss function

is defined as

LB = d(P, PBob),

where

d(X,Y ) = ΣN−1
i=0 |Xi − Yi|, (1)

and Xi is bit i of X . Eve’s loss function is defined as

LE = d(P, PEve),

and Alice-Bob’s loss function is defined as

LAB = LB +
(N/2− LE)

2

(N/2)2
,

where N is the size of plaintext, and the latter component is

to ensure that Eve’s loss is not different to a random guess’s

loss.

Note that values in C, PEve and PBob can be real values.

The goal of Alice and Bob is to minimize the average of

LAB of all plaintexts, and the goal of Eve is to minimize the

average of LE of all plaintexts. The input of Alice’s network

is P ||K where || is a concatenation operator, the input of

Bob’s network is C||K, and the input of Eve’s network is

simply C. Alice’s network’s architecture starts with a fully-

connected (FC) layer, and this is followed by a sequence of

one-dimension convolutional layers. Then, it is ended with

another FC layer, and the activation function of each layer

is tanh. Bob’s network’s architecture is simply the reverse

of Alice’s, but the activation function of the last layer is

Sigmoid, and Eve’s network’s one adds another FC layer at

the end to make it stronger than those two networks. Also,

the activation function of the last layer is Sigmoid. The

mechanism is

1) Train Eve’s network two rounds with static Alice and

Bob to update θE .

2) Train Alice and Bob together to update θA and θB once.

3) Go back to step 1 if it is not enough with respect to a

hyper-parameter.

As a result, with 16-bit key, plaintext and ciphertext, Bob’s

loss and Alice-Bob’loss can be significantly low. On the other

hand, Eve’s loss is close to the loss of random guess.

Coutinho et.al [41] argued that the work in [9], on the one

hand, had some weaknesses in term of strong encryption and

decryption’s accuracy. On the other hand, they considered two

key goals to improve the previous work. First, in practice, the

decyprtion algorithm needs to be able to fully recover all the

plaintext where the work in [9] could not achieve it; hence,

this work tries to achieve this goal. Second, since [9] did not

show any detail related to an encryption algorithm of Alice

and Bob, there was no information to show how strong the

encryption algorithm was. Additionally, Eve in [9] was very

weak which lead to a weak encryption algorithm of Alice and

Bob. Therefore, this work attempts to lead the neural networks

of those to form unbreakable encryption and decryption, called

One-Time Pad (OTP) [42] by making Eve stronger. Finally,

with the improvement, they proposed Chosen-Plaintext Attack
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Adversarial Neural Cryptography (CPA-ANC). To success-

fully achieve OTP which consists of XOR operations and some

permutations, CryptoNet is created. To illustrate CyptoNet,

according to [9], let Pi denote bit i of P , Ki denote bit i
of K and Ci denote bit i of C. The input of Alice’s network

is still P ||K, but each bit i of input is converted to an angle

with function

f(x) = arccos(1− 2x),

and the network’s architecture has only one fully-connected

layer. The output of this layer is converted back into bits with

function

f−1(x) =
1− cos(x)

2
.

Bob’s network is identical with Alice’s, but it has C||K as

input instead. The reason for all these changes is for achieving

OTP. Fig. 4 shows Alice’s network’s architecture for a better

understanding where hi is neuron i in the output layer.

... ...

... ...

...

...

... ...

...

Fig. 4. Alice’s CryptoNet.

In this work, there are three stages in this work. In the first

stage, there are only Alice’s and Bob’s networks, and the result

shows that Bob and Alice can learn to communicate where

Bob is able to fully recover the plaintexts for all 4-bit, 8-bit

and 16-bit plaintexts. However, the encryption algorithms that

they learn are not secrecy, and, certainly, they are not able to

achieve OTP since there is no adversarial neural cryptography

or Eve in the scenario. In the second stage, an adversarial

neural cryptography or Eve is added into the scenario; hence,

the scheme can be identified by Fig. 3. The result of this stage

is still not able to achieve OTP, and Alice and Bob cannot learn

any strong encryption algorithm because Eve has only C as its

input; thus, it is too weak for learning any strong encryption

of Alice and Bob. Finally, in the third stage, the scenario is

still the same as Fig. 3, but there was two differences. First,

Alice’s input is from one of a set of two plaintexts, denoted

by SP = {P 1, P 2} where P 1 denotes the first plaintext and

P 2 denotes the second plaintext, and , second, SP is Eve’s

another input; hence, in term of neural network, Eve’s input

is P 1||P 2||C, and has two outputs which are the probability

p0 that C is from P 1 and the probability p1 that C is from P 2.

Therefore, this scheme is called CPA-ANC, and Eve’s network

is similar to Alice’s. It has two hidden layers, and two neuron

in the output layers. The first hidden layer has R neurons, and

their outputs are converted to angles by function f−1. Then,

these values are the inputs of the second hidden layer and

later, their outputs are the inputs of two neurons of the output.

After that, these two outputs are converted to p0 and p1 with

Softmax functions. Fig. 5 illustrates the scenario of the third

stage. As a result, Alice and Bob can achieve OTP for 58 trials

out of 60 trials. Also, Bob can fully recover the plaintexts for

59 trials out of 60 trials. In conclusion, in this work, Alice

and Bob can produce strong encryption algorithms, and Bob

successfully gains all the bits of plaintexts in almost all cases.

Eve

Alice Bob

Fig. 5. CPA-ANC scenario.

In 2017, Hayes and Danezis [13] also leveraged GANs and

adversarial training idea to generate steganographic images,

which were images that embedded messages. Their key idea,

which is depicted in Fig. 6, is that it is better when an

adversary cannot notice that an encrypted message contains

a message. The scenario in this work also has Alice, Bob

and Eve. To illustrate it, Alice’s input is a message P
concatenated with image K and provides the output which

is a steganographic image C to Bob and Eve. Then, Bob

who also has image K as an input with C, and its output

is a decrypted message PBob. Eve’s input is only C, and its

output is the confidence score cEve of how likely the input is a

normal image or steganographic image, as illustrated in Fig 6.

Analogous to GANs, Alice’s network is a generator and Eve’s

network is a discriminator, but Alice also has another task

which is to allow Bob to recover a message in the particular
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Eve

Alice Bob

Fig. 6. Alice Bob and Eve with a steganographic image.

steganographic image. Therefore, Bob’s loss function is

LBob = d(P, PBob), (2)

where d(X,Y ) is as defined in (1) and Xi is bit i of X . Eve’s

loss function is

LEve = −y · log(cEve)− (1− y) · log(1− cEve), (3)

where y is 1 when the input is K and 0 otherwise. This

equation is identical with the discriminator in GANs. Alice’s

loss function is just a combination of d(K,C), (2) and (3) as

LAlice = λA · d(K,C) + λB · LBob + λE · LEve, (4)

where λA, λB and λE are Alice’s weight, Bob’s weight and

Eve’s weight respectively. The first part of (4) indicates that

C is not supposed to be much different to K.

This work uses CelebA dataset [43] and BOSS dataset [44]

for evaluation. After training Alice, Bob and Eve, Eve’s loss is

close to a random guess. In the other word, Eve’s confidence

score is close to 0.5. Also, Bob is able to successfully decode

the messages, and the steganographic images still look similar

to the original images. However, Alice’s result is a little worse

than conventional steganographic algorithms, and Eve’s result

is also slightly worse than a conventional steganalyzer.

V. DISCUSSION AND FUTURE WORKS

Although an encryption scheme (i.e. a homomorphic en-

cryption) has been applied to multiple collaborative deep

learning models to preserve data owners’ privacy in many

existing works, there are still some other aspects that need

to be considered for robustness such as an adversarial attack

(i.e. an adversarial example). An adversarial attack was ex-

plained and constructed in [45]–[48], and [47]–[54] proposed

approaches for deep learning model to be robust to adversarial

attacks. However, some further works are still required for

adversarially robust deep learning models.

On the other hand, whether or not deep learning models

and adversarial neural cryptography models can be utilized

in practice in encryption schemes is still an open question

because non-adversarial deep learning models are not secure

enough to be practically used, and adversarial neural cryptog-

raphy models lack of the mathematical proof showing that

encrypted messages can be successfully recovered into the

original messages by the receiver. Additionally, the keys and

plaintexts in those works are small (i.e. 16-bit); in practice, a

key’s and plaintext’s size can be 256 bits or more.

According to the aforementioned remaining issues, the

further works can be summarized as follows:

• Discovering a fully robust deep learning model for ad-

versarial attacks.

• Designing an adversarial neural cryptography model with

a mathematical proof for fully recovering encrypted mes-

sages.

• Developing an adversarial neural cryptography model

which supports larger sizes of key and plaintext.

VI. CONCLUSION

We have discussed the recent research algorithms in the

intersecting areas of cryptography and machine learning. We

described cryptography algorithms from which machine learn-

ing can benefit, by means of providing privacy or otherwise.

Similarly, we summarized approaches where cryptography can

benefit from machine learning by modeling pseudo-random

invertible functions, complex mappings, and others. Whenever

cryptography has leveraged machine learning, new possibili-

ties have been introduced into the field.

The area of adversarial robustness by which one is able

to certify that a particular block-cipher deep learning-based

model is of much interest within the machine learning commu-

nity and will not be susceptible to adversarial attacks, either

chosen plaintext or ciphertext attacks. This can further the

issues associated with explainability and trustworthiness that

are crucial in the adoption of deep learning technology in other

fields of science.

Neural cryptography can potentially lead to wide-spread

data privacy protection, if resources are invested in the areas

of rapid development and testing of cryptography protocols

and standards. Further, the dramatic decrease in the costs

associated with storage make these type of neural models a

important alternative to secure data communications.
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