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Abstract—This work aims to give an overview of Artifi-
cial Neural Networks (ANN) approaches applied for BIRs
generation published in the literature and to expose gaps
in the academic research. The literature review shows that
several successful studies are using ANNs approaches for BIRs
generation with a reduction in the computational effort by up
to 90% with respect to the Traditional Method. Nevertheless,
these approaches are bounded by a fixed pair of a sound-
source and binaural-receptor, meaning that they do not take
into account dynamic variations in the position of the receptor.
In this sense, this work also introduces a conceptual model for
a real-time BIRs generator that considers a moving binaural-
receptor using a set of Artificial Neural Networks.

Keywords-Real-time Auralization; Artificial Neural Net-
works; Binaural-Room Impulse Responses; Acoustic Virtual
Reality.

I. INTRODUCTION

Acoustic Virtual Reality (AVR) generates spatial audio

from a virtual environment (such as rooms, auditoriums,

halls, etc.) that simulates the acoustical sensation that a

person could have if present in the environment. This

is done by using complex algorithms of computational

modeling that include the sound wave propagation and

an auralization technique [1]–[4]. The first studies in

auralization appeared in the 1990s [5]–[7]. Subsequently,

[3], [8]–[10] present guidelines in order to implement

auralization using Binaural-Room Impulse Responses (BIR)

generation. This procedure will hereinafter be referred to

as the Traditional Method (TM). In the following years, the

studies for BIRs generation increased, mainly because of

the development of powerful processing machines and more

efficient algorithms partially solving the high computational

requirements that convolution techniques demand (e.g. [11],

[12]).

An Acoustic Computational Simulation requires

numerical modelling of the propagation of a sound

wave from the sound source until it reaches the acoustic

receptor. However, this propagation is a complex process

due to physical phenomena such as reflection, scattering,

and diffraction. Also, the composition and geometry of

the contour materials increase the complexity. Many

sound wave fronts classified according to their arrival to the

receptor must be carefully modeled. This must be conducted

for every pair of an sound-source and an acoustic-receptor

present in the virtual environment. Each pair constitutes

an acoustic transmission system and its characteristics are

fully represented by the Room Impulse Response (RIR),

with [13] being the pioneering work. To make matters

even more complicated, in humans, the sound wave is

also modified by anthropometric features before reaching

the two receptors (left and right ear). Namely, an acoustic

representation in humans requires two functions, instead

of one, known as the Binaural-Room Impulse Responses

(BIRs). [3] proposed a model to generate the BIRs using

a pair of Head-Related Impulses Responses (HRIRs) or

its frequency representation, the so called Head-Related

Transfer Functions (HRTFs). In short, the BIR process

consists of a sum of all the convolution products between

the HRIRs with the arriving wave-fronts [3]. In other

words, the HRIRs are embodied in the BIRs, and these

depend on the direction of incidence (i.e. azimuth and

elevation angles) of the wave fronts and the anthropometric

characteristics (e.g. size of head, torso, ears drums, pinna,

etc.) [1]. To recreate a spatial audio perception without

undesirable effects [14], any incidence direction of the

wave-front is expected to have an HRTF, making mandatory

an interpolation procedure in order to compensate for the

discrete nature of the measurements present in existing

HRTF databases [15], [16].

In [1], the author describes two main phases with a

high computational cost for any AVR generation using the

Room Acoustic Simulation approach. The first phase is

related to the wave propagation in the given environment.

This consists of calculating all wave front representations

(acoustic rays) that arrive at each receiver. The second

phase is the auralization, which comprises the computational

process of the BIRs for each sound source receptor pair.
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According to [3], [17], a method of Geometric Acoustic

(GA) that uses Image Source (IS) is a reliable approach

for Acoustic Computational Simulation. Nevertheless, it

requires high computational processing for high precision

simulation. For instance, for a solid simulation, each sound

source in the AVR must produce at least 105 acoustic rays,

according to [18], [19].

In the 2000s, due to an increase in computational power,

Machine Learning methods became popular, and ANNs

more recently. These methods are data-driven, which means

they do not rely on actual knowledge of the system that

transforms inputs into expected outputs. Additionally,

Machine Learning fixed well-known problems such as non-

linearity predictions, generalization, and noise tolerance

with a less complex model and efficient computational

performance, once the training procedure has ended [18].

Thanks to these benefits, [20] carried out a new model to

generate HRTFs using Artificial Neural Network (ANN),

further, [1], [18], [21] implemented a BIR generation model

using HRIRs learned by ANNs as an alternative to TM,

obtaining a reduction in the computation effort.

In spite of the good results of the aforementioned

studies, an efficient HRIRs generation is not enough to

guarantee a precise BIRs generation in real time, and

therefore, a reliable auralization. This is because the ANN

procedures only deal with the modified HRIRs generation

(i.e. the convolution between the incident wave-fronts of

an impulsive signal and the corresponding HRIR regards

to incident angle). This procedure must be repeated for

each wave-front that appears in the simulation, which is

evidently computationally expensive. To make matters even

more complicated, if a position shift occurs in the receptor

or even in its orientations with regards of the sound source,

a new BIR must be generated from scratch. In this sense,

this works aims to identify academic research gaps through

a systematic literature review in order to justify the proposal

of a new model for a reliable real-time BIR generation

using a set of ANNs.

This work is presented as follows. Section II describes the

whole search process. This section comprises the Research

questions, the search strategy applied, and the process of

studies selection. Section III presents the reviewed studies

as results of the research process, and the main identified

issues. Section IV describes in detail the real-time BIR

generation model using ANNs. Section V evidences the

constraints of the model. Section VI emphasizes on the

detected gaps and suggests future researches.

II. RESEARCH METHOD

This study presents the state of the art of the literature

related to Artificial Neural Networks approaches for real-

time BIRs generation in Virtual Environments. In this sense,

the literature review process was based partially on [22].

This section is divided into Planning and Searching, Studies’

Selection, and Data Analysis.

A. Planning and Searching

This subsection introduces the Research Questions (RQs)

that intends to answer the main objectives of this study.

It also describes the search process, and the inclusion and

exclusion criteria, as it is shown below.

• RQ1. What are the approaches used for the generation

of BIR (with/without real-time) as an alternative of

TM?

• RQ2. What is the appropriate ANN architecture and

spatial distribution of an ANN set that provide an

accuracy (>80%) in training and validation step with

less computational cost in estimating the BIRs?

• RQ3. What is an appropriate ANN architecture to

spatially interpolate a function and which is the per-

formance measure to be consider?

• RQ4. What are the subjective validation tests used in

the literature to guarantee a reliable auralization?

The Search process enclosed three combinations of terms

related to Artificial Neural Networks (ANNs), BIR gen-

eration, spatial distribution, real-time and computational

cost. In order to minimize the research bias, we only

selected peer-review journals from the scientific databases

ScienceDirect/Elsevier, Scopus, Springer, and IEEE-Xplore.

The search criteria also included only studies written in

English and available works since 2015. The literature

review was carried out between January-July 2020.

B. Study Selection

The search process found 414 studies. To reduce redun-

dancy and research bias, two filters were applied. 1) The

Wipe filter dropped off duplicates journals and unrelated

topics. This resulted in 79 journals. 2) The Deep Filter

eliminated 57 studies that did not answer the research

questions aforementioned, remaining 22. By snowballing

technique [22], 8 works were added, obtaining 30 journals

in total.

C. Data Extraction

In order to classify the papers into meaningful structures

and thus tackle the research questions, a set of questions

must be answered after a fulled-review text. Table II shows

the questions carried out across 30 journals. The outcomes

are described in the next section.
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Table I
RESULTS OF THE SEARCH PROCESS DONE BETWEEN JANUARY AND JULY 2020. ONLY WRITTEN ENGLISH PEER-VIEW JOURNALS WERE SELECTED

SINCE 2015.

Topic Searched Scopus Springer Science IEEE Total
Term Direct Xplore

Acoustic Virtual Envi-
ronment

Binaural-Room Impulse Response∗ AND Artificial
Neural Network ∗∗

23 2 5 1 31

Artificial Neural Network AND Acoustic Virtual
Reality

5 0 1 1 7

Spatial-Interpolation
Grid-Spatial Interpolation AND Artificial Neural
Network

60 90 141 1 292

Set of Artificial Neural Networks AND Interpolation 3 0 0 21 24

Auralization
Auralization AND Computational Cost 16 21 19 0 56

Head-related Impulse Response AND Auralization
AND Artificial Neural Network

3 0 0 1 4

Total 414

Table II
DATA EXTRACTION QUESTIONS DONE FOR EACH CANDIDATE STUDY.

Feature Code Question

BIR
generation
Method

EQ1 Was the BIR generation based on ANN?

EQ2 Was there a real-time BIR generation?

EQ3 Was there a computational cost measure?

ANN
approaches

EQ4 What were the inputs and outputs of the
ANN?

EQ5 Which ANN architecture was used ?

EQ6 Did it use a grid or a set of ANN?

EQ7 What percentage of data were used for
training and testing?

Experimental
Validation

EQ8 Which statistic validation techniques were
used ?

EQ9 How many datasets were compared ?

Performance
measures

EQ10 Which metrics were used to assess the
model’s performance?

Interpolation
Methods

EQ11 How was the spatial distribution divided?

EQ12 Was a time-frequency domain function in-
terpolated in space?

III. LITERATURE REVIEW RESULTS

This section arranges chronologically and points out the

most relevant works according to the methodology defined

above. The aim was to identify the main drawbacks of real-

time BIR generation and spatial interpolation constraints.

The first characteristic encompasses the BIR generation

for a Virtual Acoustic Environment. As mentioned, BIR

generation is a key part of auralization in room acoustic

simulation. Some well-known studies encountered were

[4], [5], [7]–[10], [23]. [8] carried out a model of BIR

generation for Room Acoustic that comprises two phases:

1) Simulate the wave propagation from the sound source

across the room, until reaching the receiver, considering

reflection and scattering with internal surfaces. A hybrid

model was proposed by [8] based on image source for

specular reflections and the stochastic ray-tracing for

scatter phenomena; 2) Generate the BIR for a static

point in space by summing up the convolution products

between the incident wavefront representation and the

corresponding Head-Related Impulse Response (HRIR) for

incident direction. This procedure can produce a sound with

immersive characteristics in the given environment. In this

sense, several works have adopted this model along with

computer-aided design (CAD) in order to render faithful

simulation [24]–[26].

However, to achieve a reliable simulation, at least

105 rays per each pair of sound-source and receiver are

necessary for a given scenario according to [3], [19]. This

increases the computational cost and also makes a real-time

BIR generation an even more complex task. Additionally, to

validate the real-time BIR in humans, subjective evaluations

and experiments must be conducted.

Additionally, [27] carried out an attempt to implement

a real-time system for an Auditory Virtual Environments

using the traditional approach. It is worth noting, that TM

process must be repeated for each variation in the receptor

position considering only one fixed sound-source.

Machine Learning became popular because it fixed

problems related to non-linearity predictions, generalization,

and noise tolerance. This conveys a reduction of model

complexity and computational costs after the training step.

Thanks to these benefits, several studies have been carried

out in the acoustic field including sound source localization

[28]–[30], speech recognition [31]. There are several studies

in the Acoustic Virtual Environment field such as HRIR’s

estimation and interpolation [32]–[34], personalizing HRIRs

[35]–[38], Auralization [1], [18], [21], BIR’s classification

[39], [40], and others [17], [25].

The extracted features selected in the methodology such
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as the ANN approaches, performance measurements, and

experimental validation for BIR generation were analyzed

together. In [34], the authors aimed to speed up the

implementation of Acoustic Virtual Reality using Artificial

Neural Network (ANN) that generates BIR through HRIR

at each point of the space. The model comprised two

Multi-layer Perceptron Feed-Forward back propagation

ANN, one per ear. ANN’s architecture contained an input

vector with the 23 features (21 anthropometric measures,

the azimuth angle and elevation angle), one hidden layer

with 50 neurons, and an output vector with 512 HRIR’s

samples. After the training, the Mean Square Error (MSE)

achieved was between 3-5 %. In this sense, [38] performed

another approach in estimating a personalized HRIR. The

authors defined two sets of 50 feed-forward ANNs (i.e. one

per ear) to cover the media plane of binaural receptor. For

each ANN the input vector dimensionality was reduced

to seven most relevant anthropometric measures. The

best performance was achieved with one hidden layer

with 18 neurons. The first six principal components of

Spectral Distortion (SD) were selected as outputs that

were used later to estimate the HRIR. An approach for

HRIR interpolation using a Multi-Layer Perceptron (MLP)

and Super Cascade Feed-Forward ANNs over the whole

auditory reception area was proposed by [33]. Three signals

sets were established as inputs, but it were not detailed

by the authors. The output vector was an array of 128

frequency bins of HRTF. The first input set considered x,y,z

coordinates; the second only azimuth and elevation; and the

last set combined the elements from the first and second

set. The best performance for MLP was reached with two

hidden layers with 64 and 32 neurons, respectively. The

Cascade Feed-Forward only used one hidden layer with 64

neurons.

[18] posed a new approach of BIR generation

for auralization using a set of ANNs. This approach

reconstructs the HRIRs by means of the octave bands

spectral modification, and spatial interpolation. By doing

so, the author proposed to divide the auditory space,

represented by sphere around the head, into 1898 sections.

After that, in each section a Multi-Layer feed-forward ANN

was trained with: two hidden layers, using a input vector

with 11 dimensions (9 for spectral octave bands, azimuth

angle, and elevation), and output vector with 128 samples

of HRIRs. The best performance was reached with 7 and

3 neurons in the hidden layers, respectively. To measure

the performance of estimated HRIR the Mean Square

Error (MSE) and Octave-MSE (OMSE) were used. Finally,

a BIR comparison between the ANN approach and TM

was done. The authors’ approach showed a reduction of

up to the 60 % in the cost computational with respect to TM .

[21] also proposed a set of ANNs as an alternative

to TM for the generation of BIRs. The auditory space

around the user was also pictured as a sphere divided into

64,442 sections, matching with the numbers of HRIRs

measurements in the ”Fabian” dummy head data-set. In

each section a Radial Basis Function (RBF) ANN was

trained with 11 inputs (i.e. 9-octave bands spectrum,

azimuth, and elevation angle), one hidden layer, and 128

temporal samples of HRIR as outputs. The author asserted

that the best cost-benefit ratio was achieved with 5 neurons

in the hidden layer, reducing the computational cost by

approximately ≈ 90% with respect to TM. Like [18], the

BIR generation was implemented using the TM.

The last feature intends to find well-known mathematical

methods for spatial interpolation. The literature process led

us to infer that statistical models are suited for this task due

to better generalization and solving complex non-linearity

relations between inputs and outputs [41]. The two main

classes of statistical models for spatial interpolation are

deterministic (e.g. Inverse Distance Weight (IDW), Linear

Regression (LM), Radial Basis Function (RBF)), and geo-

statistical techniques (e.g. Ordinal Kriging) [41], [42]; and

lately, the introduction of Machine Learning techniques [43].

The studies mentioned conclude that the Kriging approach

provides better performance in a wide coverage area, but for

a narrow area or low spatial resolution, there is no evidence

which method is better.

In summary, the previous studies have provided fruitful

advances towards an efficient BIR generation. However,

those efforts do not guarantee a fast and reliable BIR’s com-

putation for real-time purposes. This is because a significant

variation in the receiver position requires a different BIR

estimation. This means that the whole ANN must be trained

each time the user changes its position.

IV. PROPOSED METHODOLOGY

This study presents a conceptual model for reliable BIRs

generation in real-time. This will be done by interpolating

the BIR in the space using a set of previously trained ANNs.

Figure 1 summarizes the proposed conceptual model. To

obtain accurate results, first its required a sufficient number

of reliable BIRs distributed over the consider scenario. For

this reason, and also for comparison purposes, two sets of

BIRs will be obtained. The first set of BIR will be gathered

through metrological measurements; and the second set will

be obtained by means of Room Acoustic Simulation. Both

will be conducted for a previously determined environment

(e.g. a classroom). The points where the BIRs will be

generated must be spatially distributed into a 3-D grid, in

the sections where a human acoustic receptor usually can

be found (standing position and sitting position with height

variations). The generated BIR databases will consider

a one-fixed sound-source, placed in a given position;

and a binaural-receiver (dummy-head), located at each
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Figure 1. Conceptual Model for real-time BIR generation through a set of ANNs. Source author.

intersection of the 3D-grid, using several orientations. The

measure BIRs database and the simulated BIRs database

will use the same configuration.

After that, the 3D-grid will be divided into sections in

order to reduce the problem complexity. Then, for each

section an MLP-ANN and RBF-ANN will be trained

with positional coordinates and orientation as inputs and

BIRs as targets. The appropriate ANN architecture will be

defined by a heuristic process. The expected output of the

properly trained ANN will be an interpolated BIR with

a significantly less computational cost and an adequate

accuracy. Finally, real-time auralization will be achieved by

the segmented convolution between the interpolated BIR

and an anechoic sound signal.

V. DISCUSSION AND LIMITATIONS

Despite there being several studies in the literature

related to BIRs generation using the ANN methods leading

to a computational saving time of up 90 % with respect

to TM, those do not take into account the change in the

BIR if a position shift occurs in the receiver. This would

demand a new wave propagation simulation in order to

update the BIR, making an accurate real-time generation

almost impossible. This research proposal intends to cover

those problems, by designing a different conceptual model

for efficient generation of BIR using ANNs set. However,

this proposal contains two main challenges.The first is to

provide an efficient and adequate design of the ANN set.

The Second is to generate reliable BIRs measurements to

generate an appropriate database so much for the training

and validation of the ANN.

VI. CONCLUSION AND FUTURE WORK

According to the literature review, the BIR generation

using the ANNs method for the fixed binaural receptor is

a recent approach in the AVR field with promising results.

As mentioned, the ANNs approaches reduce significantly

the number of operations, by between 60% and 90%, to

generate reliable BIRs. Nevertheless, those methods only

deal with the auralization for a static binaural-receptor.

This means that if a position shift occurs in the binaural

receptor inside the virtual environment, or even a change

in the relative orientation towards the sound source, the

BIR is different. Therefore, an approach for BIR real-time

generation must deal with a more complex model and must

run with less computational effort. However, an approach

based on these demands was completely absent in the

conducted literature review.

The proposed conceptual model presents a set of ANN for

real-time BIR generation based on research gaps identified
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by the literature review. Accordingly, the conceptual model

mainly tackles the problem of a reliable and fast BIR gener-

ation for a moving target by means of spatial interpolation

of the BIR using a set of ANN. Nonetheless, to validate

an Acoustic Virtual Reality experiment it is fundamental to

conduct a subjective test, this will be part of future research.
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[9] F. Wefers, D. Schröder, S. Pelzer, and M. Vorländer, “Real-
time filtering for interactive virtual acoustic prototyping,” in
Proc. Euronoise, 2009.
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