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Abstract—Every five seconds, somebody around the world
prematurely dies from the effects of air pollution. Air pollution
is one of the world’s leading risk factors for death. To mitigate
the deadly effects of air pollution, it is imperative that we
understand it, discover the patterns and sources, and predict
it in advance. Air pollution prediction in real-time requires
extremely powerful models that can solve this spatiotemporal
problem in multiple dimensions. We used an advanced graph
convolutional network coupled with a deep convolutional LSTM
model to learn patterns over the spatial and temporal dimen-
sion in real-time. Our model employs a graph convolutional
network that models meteorological features and extracts high-
level embeddings through unsupervised representation learning.
We created a sequential encoder-decoder deep convolutional
LSTM that allows for accurate and efficient satellite image based
atmospheric Nitrogen Dioxide air pollution prediction over Los
Angeles county 10 days into the future using data from 10 days
in the past through the use of spatiotemporal satellite imagery
and meteorological graph embedding inputs. Our results for
predicting spatially continuous atmospheric Nitrogen Dioxide in
Los Angeles over various time periods shows improvement in
prediction over previous research done on this topic.

Index Terms—spatiotemporal air pollution prediction, deep
convolutional LSTM, graph convolutional network, remote-
sensing satellite imagery, atmospheric air pollution

I. INTRODUCTION

Air pollution is a pervasive global threat. It is estimated

that 92 percent of the world’s population breathes polluted

air and the effects of air pollution leads to 7 million deaths

annually [1]. Moreover, more than one in every four deaths

of children under the age of 5 is directly related to the effects

of air pollution [2]. As it is projected that by 2050 more

than two thirds of the world’s population or close to seven

billion people will live in in urban areas, it is imperative that

a solution to mitigate the adverse effects of air pollution must

be comprehensive and effective [3].

Our proposed model in this paper seeks to apply deep

neural networks and advanced machine learning algorithms

to learn patterns in spatiotemporal air pollution and predict

spatially continuous atmospheric air pollution multiple days

into the future. Our data of remote-sensing satellite imagery

and ground-level meterological features are highly corellated

to past data at and around that geographic location (spatial

correlation) and timepoint (temporal correlation).

Previous work on the spatiotemporal problem of predicting

weather forecasts or pollutant matter largely focus on either

predicting spatial relations or predicting temporal relations, but

it is considerably more difficult to create a highly complex

model that utilizes measurements that are both spatially and

temporally correlated [4] [5] [6] [7]. It is even more challeng-

ing to utilize meteorological and air pollution features, employ

state-of-the-art deep neural network models to learn and an-

alyze the spatiotemporal patterns and effects on each other,

and produce a highly accurate and continuous spatiotemporal

prediction.

The Graph Convolutional Network (GCN) is an advanced

neural network architecture for machine learning on graphs.

The goal of a GCN model is to learn feature embeddings

of nodes and edges on a graph through convolutions on

neighborhoods of nodes. We can train a neural network with

an initial layer embedding h0
v = xv , where xv denotes the

node features, to perform convolution on these neighborhoods

of nodes. To accomplish this, define the k-th layer embedding

of the vertices hk
v as

hk
v = σ

(
Wk

∑
u∈N(v)∪v

hk−1
u√|N(u)||N(v)|

)
, ∀k > 0,

where σ is some non-linear activation function, hk−1
v is the

previous layer embedding of v, Wk is a transformation matrix

for self and neighbor embeddings, and
∑

u∈N(v)
hk−1
u

|N(v)| is the

average of a neighbor’s previous layer embeddings. The neural

network can be implemented efficiently through sparse batch

operations:

H(k+1) = σ(D−
1
2 ÃD−

1
2H(k)Wk),

where Ã = A+ I and Dii =
∑

j Ai,j [8].
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The Convolutional Long Short-Term Memory (ConvLSTM)

model is a complex machine learning model that allows video

inputs that hold data in spatial and temporal dimensions. The

ConvLSTM model is a variation of the traditional Long Short-

Term Memory network model, a time series Recurrent Neural

Network. In traditional Fully Connected Long Short-Term

(FC-LSTM) models, the input data must be a one dimensional

vector parameterized by time. To allow for image inputs over

time, ConvLSTMs implements convolution over gates and

cell/hidden states. There is an alternative approach that other

papers have utilized to induce convolution to LSTM models

by independently running a Convolutional Neural Network

(CNN) in series with a Long Short-Term Memory Network

(LSTM) in a modular architecture referred to as a CNN-LSTM

model [9].

If we replace the Hadamard products, denoted ◦, of the

key equations from the FC-LSTM model with the convolution

operation, then the key equations for the ConvLSTM are

defined as

it = σ(Wxixt +Whiht−1 +Wci ∗ ct−1 + bi)

if = σ(Wxfxt +Whfht−1 +Wcf ∗ ct−1 + bf )

ct = ft ∗ ct−1 + it ∗ tanh (Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoxh−1 +Wco ∗ ct + bo)

ht = ot ∗ tanh (ct),
where ∗ denotes the convolution operation [10].

II. METHODS

A. Dataset

Our meteorological data was sourced from the Iowa State

University Environmental Mesonet database which records

METeorological Aerodrome Reports (METAR) data of Au-

tomated Surface Observing Systems (ASOS) hourly obser-

vations in the continental United States [11]. The METAR

data utilized in our model recorded 17 different ground-

level meteorological features hourly at 24 sensor locations

around Los Angeles county. Some of these meteorological

attributes include wind speed, wind direction, precipitation,

relative humidity, air temperature, and dew point. A map of

the meteorological sensor locations is shown in Figure 1.

Fig. 1. METAR ASOS observations of Mesonet database: 24 sensor locations
in Los Angeles, where each sensor records 17 meteorological attributes hourly

The raw satellite imagery data we used for input was

sourced from the U.S. Geological Survey’s (USGS) Earth

Explorer database records of the Sentinel-2 remote sensing

satellite [12]. The Sentinel 2 satellite operates along a 290-km

orbital swath and was launched by the European Space Agency

in March 2015 to image and record atmospheric and terrain

data through 13 spectral bands based on the wavelength of the

emitted light [13]. Our model utilized two imaging bands: a

442.7 nm central wavelength spectral band that images coastal

aerosol levels of dust, smoke, and general particulate matter,

and a finer 945.1 nm central wavelength spectral band that

images specifically Nitrogen Dioxide levels in the atmosphere.

A sample raw satellite input is shown in Figure 2, where

the blue structures correspond to strictly Nitrogen Dioxide air

pollution, while the white, cloud-like structures correspond to

general particulate matter.

Fig. 2. Sample Raw Data (Source: USGS EarthExplorer database of satellite
imagery of Los Angeles taken on April 29, 2019 by ESA’s Sentinel 2 satellite)

B. Data Preprocessing

To apply our raw satellite images as input to the ConvLSTM

model, we had to transform our data into a 5D tensor. Our

data included 882 GeoTIFF high resolution images which

corresponded to 1642 days of data. This is because from the

USGS EarthExplorer dataset, we selected Nitrogen Dioxide

satellite imagery from August 3, 2015 to March 19, 2020, or

882 images covering a 1642 day timespan, where each image

taken is 46 hours apart from the next. For compatibility with

the outputs of the meteorological GCN and for ease of use, we

reduced the resolution of all our satellite images in the dataset

to 40px by 40px. Since we focused on predicting nitrogen

dioxide, we filtered out the general particulate matter shown

as a white, cloud-like structure, the ocean imagery, and the

land imagery. We were solely focused on predicting the blue

cloud-like structures that correspond to the Nitrogen Dioxide

imaging band, so we used a color mask from the OpenCV

Python library to retain all light blue hues of the satellite

images, but turn any other hue to black.

The goal of our model is to use the data of 10 days prior

to predict spatiotemporal nitrogen dioxide in Los Angeles 10
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days in the future. Since each image is spaced roughly 2 days

apart from the next, we singly staggered and bundled 5 frames

into a sample. For example, sample 1 contained frames 1-

5, sample 2 contained frames 2-6, etc. Not only does this

allow for manageable temporal chunks of the data to be trained

and predicted on, but it allows us to create a 5D tensor to

input to the ConvLSTM model, where the dimensions of each

sample are: (sample dimension, frame dimension, x-dimension

of image, y-dimension of image, channel dimension). Without

including the outputs of the meteorological GCN, the channel

dimension refers to the red, green, and blue channels of the

images.

For effective predictions, the distinction and size of the

features, labels, and train-test split are key to the performance

of the model. We denoted our label dataset to be 5 frames

ahead of the feature dataset. In this way, the feature dataset

contains samples of images 5 frames prior to a certain date

(for example, frames 1-5), while the label dataset contains

samples of images 5 frames in the future from a certain date

(frames 6-10). Thus, we can ensure that the model has enough

information to learn the patterns while not encountering data

leakage, as there is no overlap between the label and features,

but there is a staggered overlap among samples within the

label dataset or samples within the feature dataset. Finally, we

split 80 percent of our data into the training set and 20 percent

of our data into the test set.

For the meteorological ground-level sensor data to be used

as an input for the GCN model of our implementation,

we preprocessed the raw CSV data into time parameterized

multidimensional gridded graphs. The data source provided

hourly measurements of all meteorological features, however

we used the same time span from March 19 2015 to August

3 2020 and frequency of 46 hours in order to later combine

with the satellite imagery data. The data source also provided

the various meteorological values in percentile units, as there

were various readings that use different units, so a percentile

measure was implemented to standardize units. We first de-

fined a 40 by 40 grid with the values of the four boundary

points of the grid corresponding to geographical latitude and

longitude of the boundaries of the satellite imagery from

the Sentinel-2 satellite. Thus, this geographically bounded

grid covers the same area as any satellite image from the

USGS EarthExplorer dataset. We then mapped each of the

17 ground-level meteorological sensors to the grid by using

their respective longitudes and latitudes to set onto a specific

element of the grid with the closest relative latitude and

longitude value.

We then used the StellarGraph Python package to map a

directed weighted graph where a node of the graph must lie

within an element of the grid. We then created multiple grids

for multiple node attributes. We defined a node attribute of this

“meteorological graph” as one that is constant in reference to

the sensor location but varies through time. Some of the node

attributes of our “meteorological graph” include precipitation,

Air Quality Index, relative humidity, and air temperature.

Fig. 3. High-level overview of data preprocessing for satellite image and
ground-based meteorological input data.
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The edge attributes of our “meteorological graph” were

wind speed, wind direction, max wind gust, and average wind

gust. We used simple calculations to obtain the magnitude and

direction of a wind vector’s u and v components from wind

speed and direction and used these values as directed edge

weights to create a set of graph attributes that each were on

a separate grid so that all node and edge attributes combined

would make a weighted directed graph with a bounded multi-

dimensional grid structure. These structures were created for

each of the 882 timepoints that we have set to parameterize

our satellite image and meteorological ground-based data.

Similarly to the satellite image data, we set our labels

for the multidimensional grid meteorological graphs to be 5

frames ahead of our features. Thus, a sample of the feature

dataset contains “meteorological graphs” for 5 frames prior to

a certain date, while a sample of the label dataset contains

“meteorological graphs” for 5 frames in the future from a

certain date. Figure 3 describes a high-level overview of the

data preprocessing process.

C. Model Architecture and Implementation

Our implemented model can be broken into three parts. The

first part or the meteorological Graph Convolutional Network

(GCN) uses the preprocessed meteorological data as input.

We adapted previous work on using Graph Convolutional

Networks to perform spatiotemporal interpolation of nodes and

edges in a graph [14]. We used the StellarGraph GCN layer to

create denser, more complex weighted directed “meteorolog-

ical graphs” created with the bounded multidimensional grid

structure.

Our deep neural network interpolation of the sparse time-

series graphs trains by hiding a small percentage of the nodes

and respective edge attributes of the label graph corresponding

to the input feature graph. Recall that the label graph is the

ground truth value of the feature graph but 5 frames ahead or

nearly 10 days in the future. These hidden nodes and edges are

used as the label for the GCN model to learn the interpolation,

through the use of the non-hidden nodes and edges of the

feature graph.

For example, a typical training iteration could utilize the

input feature and label graph data of 12 meteorological

sensors, corresponding to 12 nodes in the “meteorological

graph”. To train, the GCN could set 5 of the 12 nodes and

respective edges of the label graph to hidden and learn the

interpolation by using the data of the 7 non-hidden nodes

and edges from the feature graph. After the GCN has trained

on the feature and label graph datasets, we can scale up

the prediction to interpolate for many nodes and edges: for

example, an additional 40 nodes and respective edges. The

output of this model is a set of time-series weighted directed

graphs where the temporal difference of the meteorological

features described in each graph output is 46 hours.

A visualization of the training predictions of AQI node

attributes from 5 hidden nodes, denoted with stars, using seven

non-hidden nodes, denoted with circles, of the graph 5 frames

prior is shown in Figure 4.

Fig. 4. AQI Node Attribute Training Prediction Visualization. (a). shows
the Ground Truth AQI node attribute values over 2 frames separated by 46
hours, (b). shows the GCN Predicted AQI node attribute values over 2 frames
separated by 46 hours.

The second part of the model allows the output of the

meteorological GCN to be used as an input to the ConvLSTM

model along with the satellite image data to ultimately predict

spatiotemporal atmospheric nitrogen dioxide in Los Angeles.

This unsupervised graph representation learning section of

the model allows us to translate the weighted directed graph

outputs of the GCN to high-level time-series indexed sets of

40px by 40px images. We used the StellarGraph Unsupervised

Graph Representation Learning layer to extract the information

on the interactions and effects of various meteorological

features on each other along geographic location and temporal

location.

We trained the unsupervised graph representation learning

model using the directed graph outputs of the meteorological

GCN for 100 epochs. Figure 5 shows a high-level graph

embedding visualized with MatPlotLib.

Fig. 5. High-level meteorological graph embedding visualization (not human-
interpretable).

The final part of our model architecture is the ConvLSTM

which takes in inputs of both the Meteorological Graph

Embedding “Images”. The image arrays of the meteorological

graph embeddings are packaged into a 5D tensor in a similar

way to the raw satellite images, where each sample includes

the singly staggered bundle of 5 frames. Since the graph
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embeddings are not RGB, the images of the meteorological

embeddings use a single channel dimension, thus the shape

of the entire meteorological dataset without splitting to the

training and testing set is (880, 5, 40, 40, 1). The shape of

the raw satellite images is (880, 5, 40, 40, 3). We concatenate

two datasets through the channel dimension so that the input

dataset to the ConvLSTM model is of shape (880, 5, 40, 40, 4).
The output of the ConvLSTM model that uses data of five

frames or roughly 10 days in the past is the predicted image

of atmospheric nitrogen dioxide every 46 hours for roughly

10 days into the future.

III. RESULTS

Our model predicted spatiotemporal atmospheric nitrogen

dioxide continuously in Los Angeles county 10 days in the

future using data of remote-sensing satellite imagery and

meteorological ground-level sensors from 10 days in the past.

Figures 6-8 show the visualization of our predictions of the

first two and fifth frame in the testing set, corresponding to

predictions of roughly 2 days in the future, 4 days in the future,

and 10 days in the future.

Fig. 6. Frame 1 Prediction: Roughly 2nd day (46 hrs) in the future prediction
of Nitrogen Dioxide air pollution in Los Angeles County from previous 10
days of data, (a) Prediction, (b) Ground Truth

Fig. 7. Frame 2 Prediction: Roughly 4th day (92 hrs) in the future prediction
of Nitrogen Dioxide air pollution in Los Angeles County from previous 10
days of data, (a) Prediction, (b) Ground Truth

Fig. 8. Last Frame Prediction: Rougly 10th (230 hrs) day in the future
prediction of Nitrogen Dioxide air pollution in Los Angeles County from
previous 10 days of data, (a) Prediction, (b) Ground Truth

We can see from the visualizations of the 1st, 2nd, and

5th frames that the predictions closer to the specified date are

more similar to the ground truth than predictions on further

dates. This is expected as the correlation between real world

nitrogen dioxide 10 days in the past is less correlated than

nitrogen dioxide 10+ days in the future, so we see a drop in

accuracy over time in our predictions accordingly.

IV. ERROR ANALYSIS

Since the output of our model is a series of images

of atmospheric nitrogen dioxide in Los Angeles over time,

traditional error methods do not truly display the accuracy

of our model. Pixel by pixel RMSE error metrics between

the ground truth and predicted images would not reflect the

similarities in the overall structures of nitrogen dioxide in the

images. Instead, we utilized the Structural Similarity Index

Measure (SSIM) metric commonly used in computer vision

and image related domains [15]. The SSIM error metric

measures the difference in overall structures pictures in two

images through a normalization of traditional pixel-by-pixel

analysis by considering pixel averages and standard deviations.

The SSIM metric is defined as

SSIM(I, Î) =
∑
p∈I

2μpμp̂ + c1
(μ2

p + μ2
p̂ + c1)σ2

p + σ2
p̂ + c2

,

where I and Î denotes the ground truth and predicted images

respectively, p and p̂ denote the pixels of the ground truth

and predicted images respectively, μ denotes the average pixel

value of each image, σ denotes the standard deviation of pixel

values of each image, and c1 and c2 are constants relating to

the relative noise of the images [16]. Table 1 shows the SSIM

error values between the predicted ouputs and the ground

truth for the first five frames of the testing set which span

approximately 10 days in the future.

Our model shows a 69.5% decrease in average error from

our previous model which solely utilized a ConvLSTM struc-

ture [17]. The incorporation of the meteorological GCN and

unsupervized graph representation learning structures to the

model architecture greatly improved our model predictions.

The information and effects on atmospheric nitrogen dioxide

flow from the meteorological features increases the accuracy

of the model by 20%.

TABLE I
SSIM VALUES FOR FIRST SAMPLE (FIRST 5 FRAMES): STRUCTURAL

SIMILARITY PERCENTAGES OF TEN DAYS IN THE FUTURE NITROGEN

DIOXIDE PREDICTIONS IN LA COUNTY FROM PREVIOUS TEN DAYS OF

DATA.

SSIM Values over Sample 1

MeteoGCN-ConvLSTM Model ConvLSTM Model
Frame 1 0.93 0.77
Frame 2 0.88 0.70
Frame 3 0.84 0.63
Frame 4 0.79 0.56
Frame 5 0.71 0.51
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V. CONCLUSION

In this paper, we used complex deep learning models to

accurately predict spatiotemporal atmospheric nitrogen diox-

ide air pollution in Los Angeles over time. In designing the

models, we accounted for the spatial and temporal correlations

of air pollution so that we could learn, analyze, and predict

the patterns of nitrogen dioxide.

We utilized various ground-level meteorological features by

constructing a weighted directed graph with a geographically

bounded multidimensional grid. We then used advanced Graph

Convolution Networks (GCN) to analyze the interactions and

patterns of meteorological data and its effects on the flow of

nitrogen dioxide. We used unsupervised graph representation

learning structures to extract high level embeddings of these

time-series meteorological graphs that inherently contains de-

tails on the spatial and temporal correlations of these features.

Finally, we used a Convolutional Long Short-Term Memory

(ConvLSTM) model to utilize preprocessed satellite image

data along with the meteorological graph embeddings over

time to predict spatially continous images of atmospheric

air pollution in Los Angeles. We used satellite image and

meteorological features of data roughly 10 days (230 hrs) prior

to predict atmospheric nitrogen dioxide 10 days in the future.

Each frame prediction was spaced roughly 2 days or 46 hours

apart.

Our results showed a 69.5% reduction in error from our

previous model which solely used a ConvLSTM model to

predict nitrogen dioxide in Los Angeles using data from

roughly 10 days in the past to predict roughly 10 days in

the future. We used the Structural Similarity Index Measure

(SSIM) error metric to accurately understand the differences

of general structures of nitrogen dioxide displayed in ground

truth and predicted images.

This work can be used to alert researchers in various fields

on the flow and patterns of Nitrogen Dioxide for any given

time period at any location in Los Angeles for the next five

years.

VI. FUTURE WORK

In the future, we hope to utilize both ground-based and

remote sensing satellite image data of Nitrogen Dioxide and

other pollutant matters to improve our model. We hope to di-

rectly predict the raw values of ground-level Nitrogen Dioxide

in parts per million (ppm) through an improved model.

This study can also extend further than Los Angeles county,

predict for larger time ranges, and predict an array of pollu-

tants including PM2.5, Carbon Monoxide, Ozone, and Sulfur

Dioxide.
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