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Abstract—While it is apparent that the transfer of knowledge
between tasks is beneficial for training efficiency, the application
of trained deep reinforcement learning agents to solve new tasks
is not trivial. Especially when tasks are differently structured,
retraining and fine tuning is not necessarily beneficial. Instead, it
is often the most convenient approach to train a new agent from
scratch. One potential solution for effectively reusing learned
knowledge may be found in hierarchical reinforcement learning.
In this paper we investigate the possibility of reusing low-level
policies to improve training efficiency when learning manipula-
tion tasks with an industrial robot. We consider four different
scenarios and demonstrate for three of them an increased sample
efficiency when training a high-level policy on top of pretrained
low-level skills. In the fourth scenario we uncover the reason
for a failed transfer to be an ambitious higher hierarchy level
enforcing a relearning of the low-level skills.

Index Terms—Hierarchical Reinforcement Learning, Transfer
Learning, Industrial Robotics

I. INTRODUCTION

Reinforcement learning (RL) is a method to discover strate-
gies for sequential decision-making problems and has greatly
expanded its scope of applications through the achievements
of deep learning [1], [2]. Despite the recent attention RL
has received, its applicability for real-world scenarios, such
as robotics, still faces crucial challenges, as classical RL
approaches do not scale well with the complexity of a task: On
the one hand, an increase in dimensionality of the observation
and action space usually results in an exponential increase
in required training data. On the other hand, tasks which
require long-horizon planning and offer only sparse feedback
also drastically increase training effort. The chance of the
agent achieving its goal during exploration, a prerequisite for
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subsequently deducing a solution strategy, diminishes under
such circumstances.

One strategy in the pursuit for more sample efficient learn-
ing techniques is the concept of hierarchical reinforcement
learning (HRL) [3]–[6]. The main idea behind HRL is the
explicit separation of the long- and short-term planning of an
agent into different policy levels, where each level receives its
objectives from the next higher level [7], [8]. The levels are
based on different time scales, which leads an agent to use
its lower levels for reacting to the current situation, while the
higher levels are used for long-term strategy planning.

Besides the ability to solve long-horizon sequential
decision-making tasks more effectively through temporal ab-
straction, the division of an agent into multiple levels intro-
duces straightforward opportunities for transfer learning [9].
Especially when considering the domain of robotics it is
plausible that low-level motor skills may be useful for solving
a multitude of high level tasks. Thus, it stands to reason that
once learned low-level skills should be reused rather than
relearned, in order to decrease the amount of training required.

In this work we investigate the transferability of low-level
motor skills in HRL. We use Hierarchical Actor-Critic (HAC)
[3] to train agents with two hierarchical levels in an industrial
robot simulation. Thereafter, the motor skills of the lower
level are transferred to new environments containing addi-
tional obstacles or intermediate objectives to be achieved and
continue the training process. We compare the performance
of the transferred agents to agents with the same hierarchical
structure, but trained from scratch on the new environments in
order to evaluate the benefit of motor-skill transfer. We further
exploit the hierarchical structure of the agents to visualize
decisions of the higher level in an interpretable way.
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II. RELATED WORK

A. Hierarchical Actor-Critic Reinforcement Learning

RL describes an approach to train an agent on solving a task
in an environment in a trial-and-error fashion [1], [10]. In an
iterative procedure, an agent observes the state of the envi-
ronment, chooses an action and observes the outcome. Given
enough observations an agent is able to learn which actions are
beneficial for solving a given task. Especially in combination
with artificial neural networks, many control tasks such as
games [11], resource management [12], and robotics [13] have
successfully been learned with reinforcement learning.

Hierarchical Reinforcement Learning refers to algorithms
decomposing a given task through abstraction. The essential
virtue of this approach is the reduction of complexity of the
problem [14]. Learning hierarchical agents is a long-standing
pursuit in RL [15], [16]. Despite the potential of approaching
problems on multiple levels of temporal abstraction, past
efforts were mostly limited to discrete domains or resorted
to learning multiple levels only successively in a bottom-up
fashion [3]. Recent works have introduced stable, sample-
efficient algorithms operating on continuous domains [3], [5],
[8], thus making the concept of HRL highly relevant for
robotics applications.

In this paper we employ the Hierarchical Actor-Critic
(HAC) algorithm, which is based on two main concepts: an
underlying hierarchical architecture and hindsight transitions
[3]. The underlying hierarchical architecture is depicted in Fig-
ure 1 and operates as follows. The high-level policy receives
the current state and goal as inputs from the environment and
outputs a subgoal for the next lower policy. This level also
gets the current state as well as the subgoal from the top-level
policy and outputs the next subgoal to further break down the
task. This extends to the lowest level. Here the policy takes
the current state as an input and the subgoal from the policy
above as its goal and outputs a primitive action to be executed
in the environment. The levels operate on different timescales,
whereby from a level perspective one episode spans over one
step of its predecessor.

Fig. 1: Structure of a HAC agent. The top level policy πn
observes the current state s and goal g to be achieved. It
therefore proposes a subgoal gn−1 to be achieved by the
subsequent layer. This pattern continues until the lowest level
policy π0, which actually proposes the agents next primitive
action a.

An inherent problem of HRL is that the simultaneous
training of multiple, nested policies is inherently unstable, as
the transition functions for higher levels change due to the
adjusting lower levels. In addition, the randomness introduced

during exploration of the agent prevents the higher levels on
collecting meaningful feedback, as the observed rewards may
vary highly with the exploration noise of the lower level policy.
To counteract these issues, HAC uses hindsight transitions.
The concept of hindsight transitions describes the practice of
augmenting the collected experience in order to generate more
meaningful training examples for the agent, e.g. by substituting
the goal with the achieved state to provide positive feedback
in sparse reward environments [3].

Besides being beneficial with respect to the training ef-
ficiency, the explicitly defined hierarchical structure offers
opportunities for generating interpretable representations of an
agents behavior. The idea of analysing learned knowledge by
visualizing the value-function of the higher level is based on
the findings of Beyret et al. in [17].

B. Transfer learning in Hierarchical Reinforcement Learning

Transfer learning refers to the idea that the behaviour
learned in one task is also useful for solving a related,
but different task [18]. Generalization appears not only for
any individual task, but may happen across related tasks.
Then, transferring learned knowledge between tasks should
accelerate convergence. Especially in the domain of computer
vision, transfer learning has been successfully applied for a
multitude of tasks, such as image segmentation [19], object
detection [20] or pose estimation [21]. Regarding the use of
transfer learning in the domain of HRL, previous works have
shown that the reuse of trained higher levels led to a successful
transfer of planning capabilities across scenarios [4]. However,
it should be noted that the employed HiDE-algorithm [4]
was explicitly created in a decomposed structure to foster
the composition of new agents from trained modules without
retraining. In this work, on the other hand, the transfer of
low-level skills through transferring the weights of the bottom
level of a general HRL framework will be discussed. Also
the transfer of low level skills was previously investigated,
whereby a KL-regularization was used to constrain the lower
policy to previously learned behavior [22]. By utilizing the KL
regularized expected reward objective, policies are optimized
to a trade-off between expected reward and closeness to
a default policy. Consequently, our approach differs in the
method of incorporating prior knowledge into transfer learning
agents.

III. EXPERIMENTAL SETUP

A. Learning Environments

The conducted experiments are based on tasks introduced
by Plappert et al. [23] and on variations of said problems.
They all utilize the MuJoCo physics engine [24]. The two
environments FetchPush-v1 and FetchPickAndPlace-v1 are
selected as baseline tasks, which are depicted in Figure 2. The
only modification is an adaptation of the goal visualizations.
The state-space is 25-dimensional and contains information on
the robot’s gripper and the object. The 4-dimensional action-
space comprises the desired change of the 3-dimensional
Cartesian position of the tool center point, as well as one
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value specifying the opening of the robots gripper. Goals are
expressed as the desired 3-dimensional Cartesian position of
the object. All tasks use sparse rewards, where the agent gets
a reward of 1 if the object’s position matches the goal up to
a threshold of 5 cm, and a reward of 0 otherwise.

(a) FetchPush: The box must be
pushed across the table to the goal
position.

(b) FetchPickAndPlace: The box
must be picked up and moved to
the goal position.

Fig. 2: Baseline environments taken from [23].

In order to investigate the transfer of policies between
related, yet different tasks, we introduce two variations for
each of the two original environments. As shown in Figure
3, the new scenarios all include obstacles or intermediate
objectives that increase the difficulty of the original task.

(a) Push-Gate: The cube must be
pushed onto the green area to
drive down the barrier and give
way to the goal position.

(b) Push-Gap: The cube must be
pushed around a gap cut out from
the table and then to the goal
position.

(c) PickAndPlace-Wall: The cube
must be moved up and over the
barrier.

(d) PickAndPlace-Table: The cube
must be placed on top of an ele-
vated structure.

Fig. 3: Learning environments used for evaluating the transfer
of low level policies.

The Push-Gate problem is characterized by a wall that
halves the table top. The agent must first move the cube onto
the green button to trigger the opening of the gate before they
pursue the end-goal. Push-Gap requires the agent to bypass
a gap in the tabletop when navigating to the goal. In the

PickAndPlace-Wall environment, the agent must learn to lift
the cube over a barrier before placing it on the other side,
while in the PickAndPlace-Table task the cube must be placed
on a table. All variations require solutions which deviate from
the shortest-distance path, and thusly deviate from the optimal
solution in the base environments.

B. Agent Architecture

The architecture of an agent and the interaction of the
agent’s two levels are based on HAC. The highest level of
the algorithm is called subgoal level and introduces tempo-
ral abstraction by breaking down an initial objective into a
sequence of subgoals. In our scenarios, the goal is to move
a box to a specific location. The subgoals are intermediate
positions which are easier to reach, while at the same time
advancing the box towards the desired end goal. We allow
for a maximum number of 10 time steps to reach a subgoal,
whereas one episode consists of a maximum of 50 time steps
for all environments. The action level must learn how to
achieve subgoals by manipulating the gripper of the robot.
This knowledge on how to move the cube to given subgoals
(fundamental motor skills of the problem) is transferred from
the baseline tasks to the new environments. The desired
behavior of an agent is depicted exemplary for the Push-
Gap task in Figure 4, highlighting the working principle and
decomposable nature of the hierarchical approach.

(a) Initial setup (b) First subgoal reached

(c) Second subgoal reached (d) end-goal reached

Fig. 4: A hierarchical agent solves the Push-Gap task. The
higher level generates subgoals (purple) for the lower level,
which learns suitable robot movements.

C. Pretraining and Transfer

Before the actual comparison of performance on the new
environments can be made, agents have to be trained on
the baseline environments to create transferable lower level
modules. The training performance can be seen in Figure 5.
Since previous tests showed that achieving higher success
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rates may require much more training, we deliberately set
a conservative performance threshold of a 90% success rate
as stop criterion for pretraining. This way we guarantee that
the pretraining will terminate after a reasonable amount of
episodes, which is crucial when including the pretraining in
the total amount of training effort required. With this setup
we pretrain the lower level for 2,200 episodes for the pushing
tasks and 5,500 episodes for the pick and place tasks.

(a) Pretraining on FetchPush (b) Pretraining on FetchPickAnd-
Place

Fig. 5: Training on the baseline environments to create the
transferable lower level modules.

After training on the baseline tasks, the weights of the lower
level is transferred to the respective task variations, where
training is resumed. After every 100 learning episodes, the
agents performance is evaluated by running 100 test runs with
the current policy and determining the average success rate.
In order to be able to evaluate the effects of the knowledge
transfer comparatively, agents were additionally trained from
scratch for all environments. For each scenario 16 runs were
conducted in parallel to account for deviations in performance
due to the random nature of RL.

IV. RESULTS AND DISCUSSION

The results of our experiments are depicted in Figure 6.
The success rate when learning from scratch is plotted in blue
and the performance of the transfer learning agents are shown
in green. The latter is also shifted by the amount of training
required for pretraining as reported in chapter III-C, resulting
in the red curves. It must be noted that this depiction must
be interpreted as a lower bound for the benefit of the transfer,
as it solely considers a one-to-one transfer. However, as one
pretrained policy was reused in multiple scenarios, the fixed
costs for pretraining lose significance with each additional
transfer.

In the Push-Gate task shown in Figure 6a, transfer learning
agents have a steeper learning curve than agents that learn
from scratch. They exceed a success rate of 50% after 3,300
episodes of training, while regular agents require 4,900 epochs
to reach this level. However, TL agents only have a definite
advantage until about episode 6,000, after which both variants
perform at a similar level. The Push-Gap environment (Figure
6b) does not show a clear transfer learning gain. Although
TL agents progress faster in the first 2,000 episodes, there is
no long-term benefit, with agents trained from scratch even
outperforming TL agents after episode 5,000.

(a) Push-Gate

(b) Push-Gap

(c) PickAndPlace-Wall

(d) PickAndPlace-Table

Fig. 6: Results of the comparative evaluation of transfer
learning and regular agents on the four environments
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The variations of the FetchPickAndPlace-v1 task (Figures
6c and 6d) show a significant transfer benefit in both cases.
When learning from scratch, most test runs do not make
any progress inside the first 5,000 episodes. The agents with
transferred lower level modules however show immediate
improvement on both tasks. This benefit remains even when
accounting for the cost of pretraining. In addition to a faster
training, the transfer fostered a more stable and consistent
training behavior.

Due to varying results regarding transferability for our
scenarios, we take a closer look at the Push-Gap scenario,
which was the least successful. We hereby exploit the explicit
hierarchical structure of the agent to gain insights into the
decision-making process. By determining the expected state-
action values of the higher level through sampling the critic
network and visualizing them for individual states, we are able
to deduce the agents behavior.

The Push-Gap task appears to share significant structures
of the original pushing environment, which makes the poor
transferability surprising. We find that transfer learning agents
as well as agents learning the task from scratch converge to
similar behaviors. As illustrated in Figure 7, the agents all
learned to skip the cube across the gap.

(a) The robot hits the
cube at high velocity.

(b) The cube skips
over the gap.

(c) The cube reaches
the subgoal.

Fig. 7: The agents learn to skip the cube over the gap instead
of moving around.

Figure 8 depicts the value-function on the tabletop of a
trained agent for the initial position and clearly shows that
the agents choose a goal which is behind the gap. While this
behavior risks the cube falling into the gap, this solution allows
the higher level policy of the agent to complete the task faster
compared to going safely around the gap.

In order to successfully skip the cube across the gap, the
lower level must hit the cube at a high velocity. We find that
this requirement is not initially met by the pretrained lower
level. This is not surprising considering the baseline task used
for pretraining does not include any obstacles and can be
solved with a more moderate strategy.

Contrary to the expectation of the higher level taking the
shortcomings of the pretrained lower level into account and
proposing more conservative subgoals around the gap, our ob-
servations imply that the higher level pressured the lower level
to learn the high risk-high reward strategy. While the lower
level is able to eventually adapt, the learning curves show
clearly that this behavior adjustment is inferior to learning the
desired strategy from scratch.

Fig. 8: Evaluation of the Q-value function of the higher level
of a transfer learning agent trained on Push-Gap.

With these findings we can also explain why the transfer to
the Push-Gate task was more successful. As the environment
does not allow for any shortcuts, at least none that neither we
nor the agents have found, the low-level skill of pushing the
cube in straight lines without accounting for cube velocity is
usable without significant adjustments by the higher level.

V. CONCLUSION AND FUTURE WORK

As demonstrated in this paper, the inherent skill-division of
HRL agents introduces opportunities for knowledge transfer
across related environments. By training on a simpler version
of a task we were able to pretrain reusable low-level skills. We
found that this approach can significantly improve sample effi-
ciency, even when the cost of pretraining is taken into account.
However, we also found that allowing the continued training
of the pretrained low-level skills may result in the higher level
pushing towards strategies which require significantly different
low-level behavior. In such cases it is more beneficial to learn
the desired low-level skills from scratch, instead of adapting
the pretrained policy.

Building upon our findings, we expect that the identified
shortcomings may be dealt with by constraining the adaption
of the lower level. This should effectively force the higher level
to find a suitable conservative, even if not optimal, solution
first. This approach might be extended by eventually relaxing
the constraints on the lower level, as to allow the agent to
strive for more optimal solutions.

Further, as the transferability significantly depends on the
task used for pretraining, we believe that a decomposition into
task- and robot-specific levels is crucial for the robust transfer
of hierarchical structures. The positive effect of this distinct
modularization on transfer was already shown by Devin et al.
[25] and Sharma et al. [26] proposed an unsupervised approach
to discovering robotic movement skills . We believe that
further research should investigate the creation and integration
of task-agnostic skills as method to further decouple the
hierarchical levels and towards universal transferability.
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