

An Interactive Data Assignment Algorithm for Non-Replicated
DDBMSs

Hassan I. Abdalla1, Abdelmonim M. Artoli2

1College of Technological Innovation, Zayed University, P.O. Box 144534, Abu Dhabi 11543, UAE
2Computer Science Department, College of Computer and Information Sciences, King Saud University

P.O.Box 51178, Riyadh 11543, Kingdom of Saudi Arabia

hassan.abdalla@zu.ac.ae; aartoli@ksa.edu.sa;

ABSTRACT

In this work, we propose an optimized data assignment

algorithm for time dependent non-replicated

distributed database systems based on a modified

Dijkstra shortest path algorithm findings. Fragment

assignment is determined from the access cost matrix

and a threshold value obtained from the query matrix

and site access record. Transmission, storage and

computational overhead costs are computed and

compared with existing algorithms. This model uses

fragment preferred site technique to ensure non-

replication at sites and to avoid constraints violation if

fragment replication occurs. The algorithm is

demonstrated through detailed example and proved

robust in terms of transmission cost while it lags

behind in terms of storage cost.

Keywords: Data Assignment, Real-time DDBS,

Non-Replicated Databases, Interactivity.

1. INTRODUCTION

Real-time interactivity of fragment assignment

in distributed databases is gaining more attention in

recent years due to the vast expansion in the

available state-of-the-art database technologies.

Critical real time applications include, but are not

limited to medical, military and business fields.

With the increase in hardware capabilities both in

memory access and CPU time, a need for robust

algorithmic techniques is always there to make

benefit of these developments. However, these

algorithms did not consider real-time non-replicated

environments. The main obstacle towards this goal

remains finding an optimized method to calculate

shortest path while re-allocating fragments to sites

in real time.

The rest of this paper presents paper focus and

rationales in section 2. The literature review is

expressed in section 3. The methodology for

interactive non replicated dynamic data assignment

is given in section 4, the model demonstration is

made in section 5. Finally, paper conclusions and

future work are presented in section 6.

2. RESEARCH FOCUS AND

RATIONALE

In this work, we propose an optimized data

assignment algorithm for time dependent non-

replicated distributed database systems based on a

modified Dijkstra shortest path algorithm finding.

Fragment assignment is determined from the access

cost matrix and a threshold value obtained from the

query matrix and site access record. Transmission,

storage is seen reduced. This model uses fragment

preferred site technique to ensure non-replication at

sites and to avoid constraints violation if fragment

replication occurs. The implemented algorithm

proved robust in terms of computational overhead

and transmission cost while it lags in terms of

storage cost.

The proposed work will allow for attributes

replication across clusters when necessary, i.e.

when more than one cluster have the same update

cost, in this case replication is allowed. However,

attribute replication is not allowed between sites

within the same cluster.

Since our method is dynamic and based on the

extracted information from the existing DDBS, any

changes in sites queries and their frequencies will

affect the re-allocation process when repeated.

3. LITERATURE REVIEW

Numerous mathematical methods have been

tested for finding the optimal shortest path for the

targeted allocation site. Dynamic environments

change over time is normally dealt with via

computing access frequency [1-5]. Several

388

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00073

mailto:aartoli@ksa.edu.sa
mailto:aartoli@ksa.edu.sa

dynamically allocating fragments algorithms have

reported in literature [3, 6-8]. Most of these

algorithms are based on using modified Dijkstra’s

shortest path techniques which are unfortunately

expensive as complexity is O(n2) just for site

selection. It is to be noted that Floyd – Warshall

algorithm is hardly used due to its complex

implementation effort though might be more

efficient [9]. In [3], a thresholding algorithm for re-

allocation based on data access patterns with and

without time constraints was proposed. Recently,

an efficient design technique for cost optimization

in distributed database systems has been reported

by [9, 10, 15]. This algorithm was based on the

threshold technique of [2, 3]. It migrates fragment

(Fi) to site (Sj) via optimizing the query cost,

average transfer cost, and local access counter over

several time intervals. The shortest path technique

of Dijkstra was used to move fragment (Fi) to the

new location. However, the algorithm of [9] did not

consider real-time non-replicated database systems

(DBSs). The aim of this work is to extend the

algorithm of [9] to a more robust and interactive

data assignment model.

4. METHODOLOGY

Our approach consists of the following major

phases:

Phase 1: Fragmentation, in a network environment

that consists of m sites at time t, where each site has

n(t) fragments.

Phase 2: Transmission, using the proposed

optimized algorithms. Migration conditions need to

be satisfied for fragment Fi to be moved from site

Sh to site Sj

Phase 3: Fragments Assignment or allocation,

where ach site has two constraints: fragment limit

(FL) and site capacity (C).

Phase 4: Non-Replication, to maintains non-

replication by ensuring that a fragment is allocated

to only one site. Our model adopts a technique

called Fragment Preferred Site (FPS) to be

calculated on each site to decide on fragment

assignment to the most suitable site. The site with

the highest FPS value will be the candidate site to

host the intended fragment

Compared to the work presented in [2, 3, 13-15],

this work will try to propose a new algorithm that

can interactively minimize the transmission cost

given the site constraints and time dimension. The

proposed technique is a potential improvement to

the existing similar ones in enhancing the overall

performance of the DDBSs.

The proposed model will start by determining the

shortest path values by running Dijkstra algorithm

used in [12] in every site to obtain the shortest path

from one site to every other site. This process is

consistently repeated in real time until the shortest

path between sites is obtained.

Our model will adapt a technique called Fragment

Preferred Site (FPS) to be calculated on each site to

decide on fragment replication to the most suitable

site. The site with the highest FPS value will be the

candidate site to host the intended fragment.

4.1. DDBS ENVIRONMENT

In a network environment that consists of m

sites at time t, where each site has n(t) fragments

currently distributed as shown in Figure1. Every

fragment Fi(t) at site Sj(t) has two variables; the

LACi(t) (representing the number of local accesses

to fragment Fi(t) at site Sj(t), and the RACi(t)

(representing the number of remote accesses to

fragment Fi at site Sj and time t). Every site Sj(t)

has two constraints: Capacity Cj (indicating that no

site will receive more than its capacity) and

Fragment Limit FLj (representing the maximum

number of fragments each site can handle). The

following migration conditions need to be satisfied

for fragment Fi to be moved from site Sh to site Sj at

time t. The condition for fragment migration for

each time step reads:

(). . . . , 1,2, ., 1j i j iS F RAC S F LAC j m = 

()

1 1

 , , 1,2, ., , 2
m n

j k

h h

j i

QC QC k h m m j
= =

 =    

with the query cost given by

()
1

 * 3
m

j

QChj DRhj TChj
=

=

389

and the fragment transmission cost obtained from

()() ()ij hj,

 Req * TC , 1 j, h m 4FTC= = 

The threshold function at each time step is

suggested to be

()
1 1

 * / 5
m n

ij hj

j i

Threshold value Req TC n
= =

 
=  

 


() 6 FTC threshold value

Equation (1) states that at any time the

remote access counter should be greater than the

local access counter for the fragment (Fi) to be

moved. Equation (2) states that the average query

cost between site Sh and site Sj should be higher

than average query cost between site Sh and all

other sites accessing fragment Fi (i ≠ j). Equation

(3) computes the query cost between site Sh and site

Sj . The query cost between sites Sh and Sj can be

calculated by multiplying the transmission cost

between the two sites (TChj) by the volume of data

being transmitted (DRhj) which represents the data

obtained by executing site Sj queries that request a

particular data volume from fragment Fi allocated

at site Sh. Equation (4) gives fragment transmission

cost between sites Sh and site Sj for fragment Fi.

Equation (5) calculates the threshold value.

Equation (6) states that the fragment transmission

cost should be greater than the threshold value. It is

to be noted that all these calculations are measured

in real-time.

When performing fragment assignments the

following constraints have to be complied with at

any time throughout the assignment process:

()
1

* , 1 7
n

ij j

i

q Z C j m
=

  

()
1

 1, 1 8
n

ij

i

q i n
=

=  

()
1

 ,1 9
m

ij

j

q FL i n
=

  

Equation (7) indicates that no site should

receive more than its capacity. Equation (8)

maintains non replication by ensuring that a

fragment allocation to only one site. Equation (9)

puts a limit to the number of fragments each site

can handle called fragment limit (FL). Table 1

shows the notation used in this work. All variables

are time-dependent.

Table1: Our Model Notations

Z fragment size

FI accessed Fragment Identifier

QCh
j Average of query cost between Sh and Sj

QCh
k Average of query cost between Sh and any other site

Sk

Reqij Equal 1, if Fi is required by Sj and 0, otherwise

RFrj Retrieval frequency of retrieval operation from site j

UFuj Update frequency of update operation from site j

QFij Access frequency of the ith query at site j

V Volume of fragment allocation i (characters)

SC Storage cost ($ / 5,OOO char/month)

Xij Equal 1, if Fi allocated to site Sj and 0, otherwise

TCij Cost for site Si accessing a fragment located at site Sj

4.2. THE ALGORITHM

The algorithm starts by determining the shortest

path values by running Dijkstra algorithm used in

[10] in every site to obtain the shortest path from

one site to every other site. This process is

consistently repeated in real time until the shortest

path between sites is obtained. Having a weighted

directed graph G = (V, E), with a weighted function

W: E → R mapping edges of real valued weights

with sites S1, S2, S3 and S4 (see Figure 1). The

shortest path matrix would look like the one in

Table 2;

Figure 1: Network Sites at time t

Table 2: Shortest Path Matrix

Source Site Destination Site Path Path value

S1 S2 S1----S2 3

S1 S3 S1----S3 7

S1 S4 S1---S2---S4 9

S2 S3 S2---S1---S3 10

S2 S4 S2----S4 6

S3 S4 S3----S4 11

Each fragment is accessed by at least one

site. And based on these Site Access Records (SAR)

F4, F5

F3
F6

F1, F2

18

11

20

3

 6

 7

S

S2

S3

S

4

390

shown in table 7, the Access Cost Matrix (ACM)

matrix is constructed as shown in table 3. Accesses

are represented by the ACM matrix. ACMi,j gives

the number of times site Sj accesses fragment Fi.

 Table 3: Access Cost Matrix (ACM)

S/F F1 F2 F3 F4 F5 F6

S1 1 1 0 1 0 0

S2 1 3 1 0 2 2

S3 2 0 0 1 1 1

S4 0 1 2 0 0 2

The transmission cost matrix TCM (Table 4)

gives the cost of accessing fragment Fi by site Sj.

By multiplying these two matrices (ACM by TCM),

the Fragment Usage Matrix (FUM) is produced.

And based on the FUM matrix the threshold value

is computed. The site with the highest average

access cost for fragment Fi will be the candidate

site to host that fragment.

Table 4: Transmission Cost Matrix (TCM);

Sites S1 S2 S3 S4

S1 0 5 9 18

S2 5 0 16 4

S3 9 16 0 11

S4 18 4 11 0

5. NON-REPLICATION TECHNIQUE

Our model adopts a technique called Fragment

Preferred Site (FPS) to be calculated on each site to

decide on fragment replication to the most suitable

site. The site with the highest FPS value will be the

candidate site to host the intended fragment,

namely,

FPS (Sj,Fi) = ∑ (QFhi * QShi), 1 < = j < = m (10)

SQhi = ∑ TCMhi + ∑ FUMhi, 1 < = h < = h (11)

The fragments Preferred Site(FPS) technique

gives the number of fragment accesses, i.e. it

determinses how many times each site query (SQ)

access the intended fragment. This is used if there

are accesses for the same fragment Fi from more

than one site with the same access cost for that

fragment. In this case, If many sites require the

same fragment (Fi), then run FPS technique at all

sites requesting Fi, and assign the fragment to site

(sj) having the highest FPS.

5.1. MODEL DEMONISTRATION

a. Assuming that there are a number of n fragments

distributed across m sites, and each site can

initially contains one or more fragments. Queries

may access several fragments allocated at

different sites. And each site has two constraints:

fragment limit (FL) and site capacity (C) as

shown in Table 5.

b. A separate data structure called Site Access

Record (SAR) is kept for each site. The SAR

stores information about fragments accesses at

each site, denoted by SARk
j , indicating the kth

accesses by site Sj, where (k = 1,2,3,…to

unlimited access numbers, and j = 1,2,3,...m).

SAR stores the following information for each

access:

1. Accessed Fragment Identifier (AFI), see

table 6.

2. Accessing Site Address (ASA).

3. Data Record (DR) on executing a query Q

from site Si on fragment Fi located at site Sj

(in bytes).

4. Access Time (AT) by site Sj to fragment

Fi.

5. Access Counter (AC) to keep the number

of access times for each accessed site.

c. Also for each site a data structure named Access

Counter Record (ACR) is kept for every fragment

in the site. The ACR record stores the following

information about the fragment after each access:

i. Candidate Site Address (CSA): The address

of the site that incurred a query cost value

that is higher than that of all other sites over

a time interval (t1 to t2). Initially, CSA is set

to the address of the site where the fragment

is currently located.

ii. The number of local accesses to the stored

fragment (LAC).

iii. The number of remote accesses to the stored

fragment (RAC).

iv. The time of the candidate site address

selection (TCS).

For each locally stored fragment, initialize both the

local and remote counters to zero (LAC = 0, RAC =

0).

n

i=1

n

i=1

n

i=1

391

5.2. RUNNING EXAMPLE

The following example is to test the validity

of our algorithm. In this example there is a network

of four sites in which six fragments are initially

distributed according to a random assignment

method. Our proposed assignment method will be

tested based on the information presented in tables

(5 and 6).

Table 5: Database Fragments Sizes

Fragment F1 F2 F3 F4 F5 F6

Size 810B 620B 900B 660B 521B 701B

Table 6: Sites Sizes

Site S1 S2 S3 S4

Capacity 2350B 1650B 2020B 3200B

Fragment Limit 3 1 3 4

We first apply the minimum algorithm of [9,

12] on the communication cost matrix to obtain the

shortest path matrix. Then we keep the shortest

paths values based on the given network graph.

Then, assuming that multiple accesses are

performed, the site access record (SAR) is

constructed (data not shown). And based on the

sites access records (SAR), the Access Cost Matrix

(ACM) will be constructed as mentioned earlier and

shown in Table 3. The fragment usage matrix is

computed by multiplying the ACM matrix by the

TCM matrix (FUM = ACM * TCM), FUM matrix is

presented in Table 7;

Table 7: Fragments Usage Matrix (FUM)

S4 S3 S2 S1 F/S

44 25 37 23 F1

58 54 9 33 F2

4 38 8 41 F3

29 9 21 9 F4

19 32 16 19 F5

19 54 24 55 F6

Based on FUM matrix, the threshold value

can be calculated for fragments and sites

individually when needed. Finally, based on

threshold values and the access counter records, the

migration decision will be made for each fragment

as shown in Table 8.

Table 8: Migration Decision

FI
Migration

(Y/N)

Constraints

violations

(Y/N)

Threshold

value

Migration Fails

(F)/successes (S)

1 N N 24, 34.6 F

2 Y N 45,5, 32 S

3 N N - F

4 N N - F

5 Y Y
24,

23.3333

Migration fails

because

violation of S2

constraints

6 Y N
36,75,

32.68
S

6. CONCLUSIONS and FUTURE ASPECTS

In this work, based on a modified Dijkstra

shortest path algorithm findings, we proposed an

optimized data assignment algorithm for time

dependent non-replicated distributed database

systems. Using a toy example, we have

demonstrated the efficiency and robustness of a

proposed real time distributed database system for

non-replicated real time environnent. The proposed

algorithm is set to be the most efficient and since it

has improved the performance through minimizing

traffic and modifying shortest path calculation, the

algorithm was found to be robust. However, the

algorithm lags behind with respect to the storage

space factor due to the added complexity which will

be dealt with in a future work. In future work, an

experimental implementation is going to be

extensively made on big datasets in such way to

significantly improve and extend the work of [16].

In doing so, we examine algorithm efficiency with

other algorithms in literature.

ACKNOWLEDGMENT

The authors would like to thank and appreciate

the support received from the Research Office of

Zayed University for providing the necessary

facilities to accomplish this work. This research

has been supported by Research Incentive Fund

(RIF) Grant Activity Code: R20056–Zayed

University, UAE.

392

RERFERENCES

[1] Hassan I. Abdalla and Abdel Monim Artoli,

“Towards an Efficient Data Fragmentation,

Allocation, and Clustering Approach in a

Distributed Environment”, Information Journal of

MDPI, 10, 112, March 2019.

[2] A. Singh and K.S. Kahlon, "Non-replicated

Dynamic Data Allocation in Distributed Database

Systems", IJCSNS International Journal of

Computer Science and Network Security, vol. 9 no.

9, pp. 176-180, September 2009.

[3] T. Ulus and M. Uysal, “A Threshold Based

Dynamic Data Allocation Algorithm - A Markove

Chain Model Approach”, Journal of Applied

Science, vol. 7(2), pp 165-174, 2007.

[4] Amer, A. Data Replication Impact on DDBS

System Performance. Semantic Web Science and

Real-World Applications, 1st ed., M. Lytras, N.

Aljohani, E. Damiani and K. Chui, Ed. IGI Global,

pp. 134-162, 2018.

[5] Nashat, D. and Amer, A. A Comprehensive

Taxonomy of Fragmentation and Allocation

Techniques in Distributed Database Design. ACM

Computing Surveys, 51(1), pp.1-25, 2018.

[6] R. Karimi Adl, S. M. T. Rouhani Rankoohi, “A

new ant colony optimization-based algorithm for

data allocation problem in distributed databases”,

Knowl. Inf. Syst., 20:349–373, 23 Jan 2009.

[7] I. Ahmad, K. Karlapalem, Y. K. Kwok and S.

K. So., “Evolutionary Algorithms for Allocating

Data in Distributed Database Systems”,

Distributed and Parallel Databases, 11: 5-32, 2002.

[8] W.J. Lin and B. Veeravalli, “A Dynamic Object

Allocation and Replication Algorithm for

Distributed System with Centralized Control,”

International Journal of Computer and Application,

Vol. 28, no. 1,pp. 26-34, 2006.

[9] Hassan I. Abdalla, Ali Amer and H. Mathkour,

“A Novel Vertical Fragmentation, Replication and

Allocation Model in DDBSs”, ISI Journal of

Universal Computer Science Volume 20, Issue 10,

Pages 1469–1487. 2014.

[10] Amer, A., Sewisy, A. and Elgendy, T. An

optimized approach for simultaneous horizontal

data fragmentation and allocation in Distributed

Database Systems (DDBSs). Heliyon, 3(12),

p.e00487, 2017.

[11] J. O. Hauglid, N. H. Ryeng, “DYFRAM:

dynamic fragmentation and replica management in

distributed database systems”, Distributed and

Parallel Databases 28: 157–185, 2010.

[12] R. W. Floyd, "Algorithm 97: Shortest Path".

Communications of the ACM 5 (6): 345, 1962; S.

Warshall, "A theorem on Boolean matrices".

Journal of the ACM 9 (1): 11–12, 1962.

[13] F. Castro-Medina, L. Rodríguez-Mazahua, A.

López-Chau, I. Machorro-Cano and M. A. Abud-

Figueroa, "Design of a Horizontal Data

Fragmentation, Allocation and Replication Method

in the Cloud," 2019 IEEE 15th International

Conference on Automation Science and

Engineering (CASE), Vancouver, BC, Canada,

2019, pp. 614-621, doi:

10.1109/COASE.2019.8842934.

[14] Amer, A.A., Mohamed, M.H., & AlAsri, K.

ASGOP: An aggregated similarity-based greedy-

oriented approach for relational DDBSs design.

Heliyon, 6. 2020.

[15] Amer, A.A. On K-means clustering-based

approach for DDBSs design. J Big Data 7, 31

(2020). https://doi.org/10.1186/s40537-020-
00306-9

[16] Hassan I. Abdallaha, Ali A. Amer, Hassan M.

Performance optimality enhancement algorithm in

DDBS (POEA). Computers in Human Behavior 30,

419-426, 2014.

393

https://doi.org/10.1186/s40537-020-00306-9
https://doi.org/10.1186/s40537-020-00306-9
https://doi.org/10.1186/s40537-020-00306-9
https://doi.org/10.1186/s40537-020-00306-9

