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ABSTRACT 
 

In this work, we propose an optimized data assignment 

algorithm for time dependent non-replicated 

distributed database systems based on a modified 

Dijkstra shortest path algorithm findings. Fragment 

assignment is determined from the access cost matrix 

and a threshold value obtained from the query matrix 

and site access record. Transmission, storage and 

computational overhead costs are computed and 

compared with existing algorithms. This model uses 

fragment preferred site technique to ensure non-

replication at sites and to avoid constraints violation if 

fragment replication occurs. The algorithm is 

demonstrated through detailed example and proved 

robust in terms of transmission cost while it lags 

behind in terms of storage cost.   
 

 

Keywords: Data Assignment, Real-time DDBS, 

Non-Replicated Databases, Interactivity. 
 

 

1. INTRODUCTION 

Real-time interactivity of fragment assignment 

in distributed databases is gaining more attention in 

recent years due to the vast expansion in the 

available state-of-the-art database technologies. 

Critical real time applications include, but are not 

limited to medical, military and business fields.  

With the increase in hardware capabilities both in 

memory access and CPU time, a need for robust 

algorithmic techniques is always there to make 

benefit of these developments. However, these 

algorithms did not consider real-time non-replicated 

environments. The main obstacle towards this goal 

remains finding an optimized method to calculate 

shortest path while re-allocating fragments to sites 

in real time. 

The rest of this paper presents paper focus and 

rationales in section 2. The literature review is 

expressed in section 3. The methodology for 

interactive non replicated dynamic data assignment 

is given in section 4, the model demonstration is 

made in section 5. Finally, paper conclusions and 

future work are presented in section 6. 

 

2. RESEARCH FOCUS AND 

RATIONALE  

In this work, we propose an optimized data 

assignment algorithm for time dependent non-

replicated distributed database systems based on a 

modified Dijkstra shortest path algorithm finding. 

Fragment assignment is determined from the access 

cost matrix and a threshold value obtained from the 

query matrix and site access record. Transmission, 

storage is seen reduced. This model uses fragment 

preferred site technique to ensure non-replication at 

sites and to avoid constraints violation if fragment 

replication occurs. The implemented algorithm 

proved robust in terms of computational overhead 

and transmission cost while it lags in terms of 

storage cost.   

The proposed work will allow for attributes 

replication across clusters when necessary, i.e. 

when more than one cluster have the same update 

cost, in this case replication is allowed. However, 

attribute replication is not allowed between sites 

within the same cluster. 

Since our method is dynamic and based on the 

extracted information from the existing DDBS, any 

changes in sites queries and their frequencies will 

affect the re-allocation process when repeated. 

 

 

3. LITERATURE REVIEW 

Numerous mathematical methods have been 

tested for finding the optimal shortest path for the 

targeted allocation site. Dynamic environments 

change over time is normally dealt with via 

computing access frequency [1-5]. Several 
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dynamically allocating fragments algorithms have 

reported in literature [3, 6-8]. Most of these 

algorithms are based on using modified Dijkstra’s 

shortest path techniques which are unfortunately 

expensive as complexity is O(n2) just for site 

selection. It is to be noted that Floyd – Warshall 

algorithm is hardly used due to its complex 

implementation effort though might be more 

efficient [9]. In [3], a thresholding algorithm for re-

allocation based on data access patterns with and 

without time constraints was proposed.  Recently, 

an efficient design technique for cost optimization 

in distributed database systems has been reported 

by [9, 10, 15]. This algorithm was based on the 

threshold technique of [2, 3]. It migrates fragment 

(Fi) to site (Sj) via optimizing the query cost, 

average transfer cost, and local access counter over 

several time intervals. The shortest path technique 

of Dijkstra was used to move fragment (Fi) to the 

new location. However, the algorithm of [9] did not 

consider real-time non-replicated database systems 

(DBSs). The aim of this work is to extend the 

algorithm of [9] to a more robust and interactive 

data assignment model. 

 
 

 

4. METHODOLOGY 

Our approach consists of the following major 

phases: 

Phase 1: Fragmentation, in a network environment 

that consists of m sites at time t, where each site has 

n(t) fragments. 

Phase 2: Transmission, using the proposed 

optimized algorithms. Migration conditions need to 

be satisfied for fragment Fi to be moved from site 

Sh to site Sj 

Phase 3: Fragments Assignment or allocation, 

where ach site has two constraints: fragment limit 

(FL) and site capacity (C). 

Phase 4: Non-Replication, to maintains non-

replication by ensuring that a fragment is allocated 

to only one site. Our model adopts a technique 

called Fragment Preferred Site (FPS) to be 

calculated on each site to decide on fragment 

assignment to the most suitable site. The site with 

the highest FPS value will be the candidate site to 

host the intended fragment 

 

Compared to the work presented in [2, 3, 13-15], 

this work will try to propose a new algorithm that 

can interactively minimize the transmission cost 

given the site constraints and time dimension.  The 

proposed technique is a potential improvement to 

the existing similar ones in enhancing the overall 

performance of the DDBSs. 

 

The proposed model will start by determining the 

shortest path values by running Dijkstra algorithm 

used in [12] in every site to obtain the shortest path 

from one site to every other site. This process is 

consistently repeated in real time until the shortest 

path between sites is obtained. 

 

Our model will adapt a technique called Fragment 

Preferred Site (FPS) to be calculated on each site to 

decide on fragment replication to the most suitable 

site. The site with the highest FPS value will be the 

candidate site to host the intended fragment. 

 
 

4.1.  DDBS ENVIRONMENT 

In a network environment that consists of m 

sites at time t, where each site has n(t) fragments 

currently distributed as shown in Figure1.  Every 

fragment Fi(t) at site Sj(t) has two variables; the 

LACi(t) (representing the number of local accesses 

to fragment Fi(t) at site Sj(t), and the RACi(t) 

(representing the number of remote accesses to 

fragment Fi at site Sj  and time t).  Every site Sj(t) 

has two constraints: Capacity Cj (indicating that no 

site will receive more than its capacity) and 

Fragment Limit FLj (representing the maximum 

number of fragments each site can handle). The 

following migration conditions need to be satisfied 

for fragment Fi to be moved from site Sh to site Sj at 

time t.  The condition for fragment migration for 

each time step reads: 
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and the fragment transmission cost obtained from

( )( ) ( )ij hj,
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The threshold function at each time step is 

suggested to be
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Equation (1) states that at any time the 

remote access counter should be greater than the 

local access counter for the fragment (Fi) to be 

moved. Equation (2) states that the average query 

cost between site Sh and site Sj should be higher 

than average query cost between site Sh and all 

other sites accessing fragment Fi (i ≠ j). Equation 

(3) computes the query cost between site Sh and site 

Sj .  The query cost between sites Sh and Sj can be 

calculated by multiplying the transmission cost 

between the two sites (TChj) by the volume of data 

being transmitted (DRhj) which represents the data 

obtained by executing site Sj queries that request a 

particular data volume from fragment Fi allocated 

at site Sh. Equation (4) gives fragment transmission 

cost between sites Sh and site Sj for fragment Fi. 

Equation (5) calculates the threshold value. 

Equation (6) states that the fragment transmission 

cost should be greater than the threshold value. It is 

to be noted that all these calculations are measured 

in real-time. 
 

When performing fragment assignments the 

following constraints have to be complied with at 

any time throughout the assignment process:  
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Equation (7) indicates that no site should 

receive more than its capacity. Equation (8) 

maintains non replication by ensuring that a 

fragment allocation to only one site. Equation (9) 

puts a limit to the number of fragments each site 

can handle called fragment limit (FL). Table 1 

shows the notation used in this work. All variables 

are time-dependent. 
 

Table1: Our Model Notations 

Z fragment size  

FI accessed Fragment Identifier 

QCh
j Average of query cost between Sh and Sj 

QCh
k Average of query cost between Sh and any other site 

Sk 

Reqij Equal 1, if Fi is required by Sj and 0, otherwise 

RFrj Retrieval frequency of retrieval operation from site j  

UFuj Update frequency of update operation from site j  

QFij Access frequency of the ith query at site j 

V Volume of fragment allocation i (characters) 

SC Storage cost ($ / 5,OOO char/month) 

Xij Equal 1, if Fi allocated to site Sj and 0, otherwise 

TCij Cost for site Si accessing a fragment located at site Sj 
 

 
 

4.2. THE ALGORITHM  

 

The algorithm starts by determining the shortest 

path values by running Dijkstra algorithm used in 

[10] in every site to obtain the shortest path from 

one site to every other site. This process is 

consistently repeated in real time until the shortest 

path between sites is obtained.  Having a weighted 

directed graph G = (V, E), with a weighted function 

W: E → R mapping edges of real valued weights 

with sites S1, S2, S3 and S4 (see Figure 1). The 

shortest path matrix would look like the one in 

Table 2; 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1: Network Sites at time t 

 

Table 2: Shortest Path Matrix 

Source Site Destination Site Path Path value 

S1 S2 S1----S2 3 

S1 S3 S1----S3 7 

S1 S4 S1---S2---S4 9 

S2 S3 S2---S1---S3 10 

S2 S4 S2----S4 6 

S3 S4 S3----S4 11 
 

 

 

 

Each fragment is accessed by at least one 

site. And based on these Site Access Records (SAR) 
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shown in table 7, the Access Cost Matrix (ACM) 

matrix is constructed as shown in table 3. Accesses 

are represented by the ACM matrix. ACMi,j gives 

the number of times site Sj accesses fragment Fi.  

 

             Table 3: Access Cost Matrix (ACM) 

S/F F1 F2 F3 F4 F5 F6 

S1 1 1 0 1 0 0 

S2 1 3 1 0 2 2 

S3 2 0 0 1 1 1 

S4 0 1 2 0 0 2 

 

The transmission cost matrix TCM (Table 4) 

gives the cost of accessing fragment Fi by site Sj. 

By multiplying these two matrices (ACM by TCM), 

the Fragment Usage Matrix (FUM) is produced. 

And based on the FUM  matrix the threshold value 

is computed. The site with the highest average 

access cost for fragment Fi will be the candidate 

site to host that fragment.  

 

Table 4: Transmission Cost Matrix (TCM); 

Sites S1 S2 S3 S4 

S1 0 5 9 18 

S2 5 0 16 4 

S3 9 16 0 11 

S4 18 4 11 0 

 

5. NON-REPLICATION TECHNIQUE 
 

Our model adopts a technique called Fragment 

Preferred Site (FPS) to be calculated on each site to 

decide on fragment replication  to the most suitable 

site. The site with the highest FPS value will be the 

candidate site to host the intended fragment, 

namely,  
 

FPS (Sj,Fi) = ∑ (QFhi * QShi ), 1 < = j < = m    (10) 

 

SQhi = ∑ TCMhi + ∑ FUMhi,    1 < = h < = h    (11) 
 

 

The fragments Preferred Site(FPS) technique 

gives the number of fragment accesses, i.e. it 

determinses how many times each site query (SQ) 

access the intended fragment. This is used if there 

are accesses for the same fragment Fi from more 

than one site with the same access cost for that 

fragment. In this case, If many sites require the 

same fragment (Fi), then run FPS technique at all 

sites requesting Fi, and assign the fragment to site 

(sj) having the highest FPS. 

5.1. MODEL DEMONISTRATION 
 

a. Assuming that there are a number of n fragments 

distributed across m sites, and each site can 

initially contains one or more fragments. Queries 

may access several fragments allocated at 

different sites. And each site has two constraints: 

fragment limit (FL) and site capacity (C) as 

shown in Table 5. 
 

b.  A separate data structure called Site Access 

Record (SAR) is kept for each site. The SAR 

stores information about fragments accesses at 

each site, denoted by SARk
j , indicating the kth 

accesses by site Sj, where (k = 1,2,3,…to 

unlimited access numbers, and j = 1,2,3,...m).  

SAR stores the following information for each 

access:  

1. Accessed Fragment Identifier (AFI), see 

table 6. 

2. Accessing Site Address (ASA).  

3. Data Record (DR) on executing a query Q 

from site Si on fragment Fi located at site Sj 

(in bytes).   

4. Access Time (AT) by site Sj to fragment 

Fi.  

5. Access Counter (AC) to keep the number 

of access times for each accessed site. 
 

c. Also for each site a data structure named Access 

Counter Record (ACR) is kept for every fragment 

in the site. The ACR record stores the following 

information about the fragment after each access:  

i. Candidate Site Address (CSA): The address 

of the site that incurred a query cost value 

that is higher than that of all other sites over 

a time interval (t1 to t2). Initially, CSA is set 

to the address of the site where the fragment 

is currently located.  

ii. The number of local accesses to the stored 

fragment (LAC). 

iii. The number of remote accesses to the stored 

fragment (RAC). 

iv. The time of the candidate site address 

selection (TCS). 
 

For each locally stored fragment, initialize both the 

local and remote counters to zero (LAC = 0, RAC = 

0). 

 

n 

i=1 

n 

i=1 

n 

i=1 
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5.2. RUNNING EXAMPLE 
 

The following example is to test the validity 

of our algorithm. In this example there is a network 

of four sites in which six fragments are initially 

distributed according to a random assignment 

method. Our proposed assignment method will be 

tested based on the information presented in tables 

(5 and 6). 
 

 

Table 5: Database Fragments Sizes 

Fragment F1 F2 F3 F4 F5 F6 

Size 810B 620B 900B 660B 521B 701B 
 

Table 6: Sites Sizes 

Site S1 S2 S3 S4 

Capacity 2350B 1650B 2020B 3200B 

Fragment Limit 3 1 3 4 
 

We first apply the minimum algorithm of [9, 

12] on the communication cost matrix to obtain the 

shortest path matrix. Then we keep the shortest 

paths values based on the given network graph. 

Then, assuming that multiple accesses are 

performed, the site access record (SAR) is 

constructed (data not shown). And based on the 

sites access records (SAR), the Access Cost Matrix 

(ACM) will be constructed as mentioned earlier and 

shown in Table 3. The fragment usage matrix is 

computed by multiplying the ACM matrix by the 

TCM matrix (FUM = ACM * TCM), FUM matrix is 

presented in Table 7; 

 
 

Table 7: Fragments Usage Matrix (FUM) 

S4 S3 S2 S1  F/S 

44 25 37 23 F1 

58 54 9 33 F2 

4 38 8 41 F3 

29 9 21 9 F4 

19 32 16 19 F5 

19 54 24 55 F6 
 

 

Based on FUM matrix, the threshold value 

can be calculated for fragments and sites 

individually when needed. Finally, based on 

threshold values and the access counter records, the 

migration decision will be made for each fragment 

as shown in Table 8. 

 

 
 

 

Table 8: Migration Decision 

FI 
Migration 

(Y/N) 

Constraints 

violations 

(Y/N) 

Threshold 

value 

Migration Fails 

(F)/successes (S) 

1 N N 24,  34.6 F 

2 Y N 45,5, 32 S 

3 N N - F 

4 N N - F 

5 Y Y 
24,    

23.3333 

Migration fails 

because 

violation of S2 

constraints 

6 Y N 
36,75,  

32.68 
S 

 

6. CONCLUSIONS and FUTURE ASPECTS 

In this work, based on a modified Dijkstra 

shortest path algorithm findings, we proposed an 

optimized data assignment algorithm for time 

dependent non-replicated distributed database 

systems. Using a toy example, we have 

demonstrated the efficiency and robustness of a 

proposed real time distributed database system for 

non-replicated real time environnent.   The proposed 

algorithm is set to be the most efficient and since it 

has improved the performance through minimizing 

traffic and modifying shortest path calculation, the 

algorithm was found to be robust.  However, the 

algorithm lags behind with respect to the storage 

space factor due to the added complexity which will 

be dealt with in a future work. In future work, an 

experimental implementation is going to be 

extensively made on big datasets in such way to 

significantly improve and extend the work of [16]. 

In doing so, we examine algorithm efficiency with 

other algorithms in literature.  
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