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Abstract—Access control policies are mandatory for organi-
zations whose operation involves sharing resources that must
be kept private. In this paper, we address the problem of
evaluating the accuracy of access control policies distributed in
an interaction network modeled from a social network. Such
network models granted access to documents owned by a large
set of users. Since denied accesses are not included in the input
network, we discuss a method based on Network Science to
include complementary edges to have an approximate evaluation
of ACPs’ accuracy. The synthetic interactions allow the evaluation
of ACPs by assessing the explicit and implicit intentions of
the owners. We present an evaluation strategy to measure the
accuracy of the generated ACPs. The results will be of interest
to academics who want to synthesize information for similar
phenomena.

Index Terms—Access Control Policies, Complex Networks,
Synthesize Information

I. INTRODUCTION

Two critical types of failures related to access control

decisions are accesses that should be denied but are not or

accesses that should be allowed but are not. Naturally, the

consequences of these failures have different impacts on the

security and privacy of the information [1, 2].

When users or organizations need to guarantee the security

and privacy of their information, it is essential to identify and

reduce possible failures related to low restrictive or highly

over-adjusted access control policies (ACPs) [3, 4].

From a social network the set of interactions between a large

set of users sharing information, complex network techniques

can be applied to model a network of interactions, where

vertices depict users (owners and consumers), and edges depict

the explicit permissions between owners and consumers to

interact with their content. In this scenario, the ACP assigned

to that interaction can: (a) preserve or (b) break the accesses.

However, in an interaction-based graph, as well as in many

other social network phenomena, only one type or part of the

information is modeled or available. In the above scenario,

only explicit access permissions are reflected. Therefore, it

is necessary to define a mechanism that allows enhancing

the information, to evaluate whether the explicit permissions

continue to be preserved and if the implicit permissions are

kept.

There is a need for synthetic data generation methods to

perform proper inferences from them. Particularly, they play a

special role when potential disclosure restricts the availability

of the original data. Data collections have been used to produce

synthetic versions of datasets when no real information is

available.

In 1993 Rubin proposed a multiple imputation framework

for synthetic data. Further contributions by Raghunathan et al.

[5], provided a detailed methodology for making inferences

from synthetic data. The authors simulated multiple copies of

the population and release a random sample from each of these

synthetic populations. Each synthetic dataset depicts the target

population based on the collected data. Similarly, Penny et al.

[6] evaluate the use of hierarchical Bayes imputation models

for creating synthetic categorical data.

Benedetto et al. [7], in partnership with the U.S. Census

Bureau, report the creation of a partially synthetic Census

Bureau data product called the SIPP Synthetic Beta (SSB).

The SSB has been extensively tested, looking for analytic

validity over the years as new versions have been released.

Similarly, Snoke et al. [8] evaluate and recommend methods

to judge whether synthetic data have a distribution that is

comparable to that of the original data. They also evaluate

the extension of existing global and specific measures of

utility and perform comparisons for data generated by different

methods of synthesis.

As can be observed, works in the literature focuses on

generating synthetic datasets that accurately model the original

data, but there is a gap when trying to complete a dataset

modeling the opposite behavior to the real one.

In this paper, we present a methodology based on Network

Science to comprehensively address the problem of evaluating

the accuracy of access control policies distributed in an

interaction network modeled from a social network, which

indicates explicit access to documents owned by a large set

of users. Since denied accesses are not included in the input

network, we discuss a method based on Network Science to

include complementary edges in order to have an approximate

evaluation of ACPs’ accuracy. Our method takes advantage

of the underlying information discovered when modeling the

interactions between the documents and the users as a complex

network.

We have tested our approach with a real dataset from the

Instagram social network. Evaluating the accuracy of the ACPs

associated with the users, the results showed that the proposed
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method allows us to adequately limit the number of synthetic

edges to be added to the graph. Furthermore, it is shown that

the synthetic edges adequately depict the opposite meaning to

the real edges since they had an impact of up to 4% when

considering the synthetic edges.

In Section II we provide the background of the proposed

method. Section III describes the proposed methodology to

generate synthetic interactions. Section IV describes the pro-

posed evaluation methodology. Section V describes the ex-

perimental evaluation and the achieved results. Finally, some

conclusions are discussed in Section VI.

II. BACKGROUND

Complex networks show properties that only emerge when

modeling real massive phenomena, and in some human-made

systems such as the internet network. Complex networks have

been studied due to the particular characteristics they present

in comparison to other types of networks. Characteristics as

small-world effect, clustering, degree distribution, community

structure, have been widely used to understand the modeled

phenomenon [9].

An interaction network is a graph G(VG, EG) that models

a large set of interactions between documents and the users

who use them. The set of vertices depict users (owners and

consumers), and the edges depict the explicit permissions

between owners and consumers to interact with their content.

The interaction network can be processed through complex

network techniques to generate, based on the underlying

information its partition from two axes, horizontal and vertical.

Horizontal partitioning groups users into communities and

sub-communities, while a hierarchy of consumers and owners,

depicted by k-shells, is created on the vertical axis.

Each vertex in the interaction graph has an associated ACP,

which defines the consumers who can access the content of

an owner. By using the interaction graph, the accuracy of

the set of associated ACPs can be evaluated by analyzing

whether a consumer fulfills the policy of a producer. However,

only explicit accesses are covered in the graph, limiting the

accuracy evaluation.

A. Definition of the Accuracy Metric

In binary classification, data is divided into two different

classes, positives (P) and negatives (N). The binary model then

classifies the input instances as positive or negative. Given

the inputs, the model outputs (classification), and the actual

(reference) outputs, 4 groups of results are identified; 2 types

of correct classification (true), true positive (TP) and true

negative (TN); and two types of incorrect classification, false

positive (FP) and false negative (FN) [10].

A 2x2 table formulated with these four outcomes is called

a confusion matrix, which is used to describe the performance

of a classification model in a dataset for which both true values

and the resulting values from the model are known [11, 12].

Fig. 1 shows a typical confusion matrix. Cells in green

represent correct model predictions, while red ones represent

incorrect predictions.

Predicted/Classified Class
Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Fig. 1: Illustrative example of a binary confusion matrix.

Once defined the positive and negative possible outcomes,

the accuracy can be defined as the ratio of the correctly

classified inputs to the whole dataset. Formally, the accuracy

is defined as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

III. METHOD TO COMPLEMENT THE USER INTERACTIONS

Given the lack of real datasets having all the necessary

cases to evaluate social phenomena, here we describe the

proposed methodology based on network science to synthesize

complementary interactions that model implicit denied access

in a network of interactions.

The proposed methodology consists of two steps, synthesis

of a large set of possible complementary interactions followed

by sampling a representative set of them. The set of ACPs

associated with the users must preserve the real accesses;

however, given the nature of the information, there is a

possibility that ACPs do not fulfill the original authorizations

of the owners. The ACPs could: preserve or break the real

interactions.

Furthermore, in an interaction-based graph, only explicit

access permissions are reflected. Therefore, it is necessary to

define a mechanism that allows enhancing the information, not

only to evaluate whether the explicit permissions continue to

be preserved (TP, FN) but also if the implicit permissions (TN,

FP) are kept.

As a result of evaluating the ACPs, there are only two

possible outputs, the policy allows or denies access. TP and

FN are two cases implicit in the graph. To include the two

remaining cases, TN and FP, it would be necessary to evaluate

the set ESG of all the possible combinations of edges not

explicitly present in the set EG, where ESG → {{v, w} /∈
EG, | v, w ∈ VG}.

Since the interaction graph behaves like a complex network,

it is sparse. Only those complementary edges (also called

synthetic) in the scope of users and having meaningful char-

acteristics need to be included. In addition, the set of possible

missing interactions is large enough and only a small subset

of them, lower than the real number of interactions, needs to

be incorporated in an accuracy analysis, otherwise, the real

interactions would be hidden.

A. Construction Based on Graph Partitioning

Partitions in the graph are used to generate synthetic edges

that imitate the behavior of the original ones. That is, 1)

consider only vertices within the same community or sub-

community, 2) preserve the hierarchy. Only edges from lower

shells to upper ones would be considered, as well as only

vertices in the same partition.
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We assume that, since users are ranked from consumers to

producers, from lower k-shell to higher k-shell, it would be

unlikely the existence of synthetic edges whose source is a

vertex in an upper k-shell towards nodes in lower k-shells.

B. Filtering Based on Similarity

The selection of possible synthetic edges to be added to the

set ESG can be further refined by applying strategies used in

the link identification problem. The Resource Allocation Index

(RAI) is defined as the number of resources a node w receives

from a node v through indirect neighbors [13].

Let δi be the set of nodes adjacent to vertex i, the resource

allocation index is defined as,

SIRA(v, w) =
∑

z∈δv∩δw

1

k(z)
, (2)

where k(i) denotes the degree of i. To follow the topology of

the interactions (from lower k-shells to upper ones), only the

outgoing edges are taken from the neighborhood of vertex v,

and for the neighborhood of node w, only the incoming edges

are considered.

RAI with the above modification is used to compute the

similarity between pairs of nodes. For each pair of vertices, the

similarity is associated with the possible synthetic link formed

between them. High similarity values depict edges with similar

meaning as the real ones. But our goal is to add edges with

the opposite meaning, so instead of considering the higher

similarity values, the lower ones are used. However, the lower

similarity range can have a bias, also called flattening, asso-

ciated with the neighborhood wideness used in the similarity

metric. Nevertheless, since users are grouped into communities

and sub-communities, neighborhoods cannot extend beyond

these.

C. Sampling Based on a Probability Distribution

Using only vertex similarity to filter possible edges could

generate to many cases. To overcome this, an edge-sampling

procedure based on a probability distribution function FX is

being used to select a random subset, E′G, of ESG.

The Algorithm 1 describes the complete process to generate

the edges for the set E′G that will complement the edges

of the graph. The algorithm receives as input the interaction

graph G(VG, EG), a function associated with a probability

distribution FX and a probability of selection PE′ . The

function FX and the probability PE′ are used in the sampling

process to control the number of edges that will be added to

E′G. As output, the Algorithm 1 returns the augmented graph

G+(VG, EG ∪E′G), which includes the synthetic edges; those

will be considered the TN and FP cases.

IV. MEASURING POLICY ACCURACY

A. Simple Node-Based Strategy

The node-based evaluation process is simple and straight-

forward. For each vertex v, its output neighborhood δoutv is

evaluated. For each neighbor w ∈ δoutv , the result of the ACP

is evaluated, obtaining the proportion of real edges that are

Algorithm 1: Process to generate the synthetic edges.

Data: G(VG, EG): Graph of interactions
FX : Probability Distribution Function
PE′ : Selection Probability

Result: G+: Graph complemented with the synthetic edges

1 E′
G ← {}

2 C ← getCommunities(G)
3 foreach c ∈ C do
4 GC ← subgraph(G, c)
5 SC ← getCommunities(GC)
6 foreach sc ∈ SC do
7 GSC ← subgraph(GC , sc)
8 KS ← getOrderedKS(GSC)
9 foreach k ∈ KS do

10 Vks ← v ∈ VGSC
| ks(v) == k

11 foreach v ∈ Vks do
12 Wks ← w ∈ VGSC

| ks(w) > k ∪ {v, w} /∈ EG

13 foreach w ∈Wks do
14 s← Similarity(v, w)
15 p← P (v, w, s, FX)
16 if p ≤ PE′ then
17 E′

G ← E′
G ∪ {v, e}

18 end
19 end
20 end
21 end
22 end
23 end
24 return G+(VG, EG ∪ E′)

TP and FN, and the proportion of synthetic edges which are

TN and FP. Based on the edge type, real or synthetic, and the

result of v’s policy validation against the w’s one, the edge

is counted in one of the four possible cases: 1) real edges

and positive access into TP, 2) real edges and denied access

into FN, 3) synthetic edges and positive access into FP, 4)

synthetic edge and denied access into TN. Algorithm 2 shows

the complete process to compute the node-based evaluation.

The accuracy value is calculated based on the Definition 1.

B. Edge-Weighted Node Strategy

Each real edge in the interaction graph may have an

associated weight (interaction weight). The greater the rela-

tionship between a pair of users, the greater their weight. The

interaction weight can be used to weigh the positive or negative

cost due to an ACP. Then, the impact of each relationship will

be linked to its weight, thus having weighted TP (wTP) and

weighted FN (wFN).

Edge weights can have different meanings, such as quality,

importance, strength, security level, etc., then using edge

weights can help to enhance the meaning of the accuracy

value. However, it is necessary to introduce weights to the

synthetic edges for the FP or TN type of interactions.

1) Assigning weights to synthetic edges: To compute the

weights for the synthetic edges, two strategies are proposed.

Let z ← SIv,w be the set of edges’ weights linking the nodes

that are in the intersection of v and w neighborhoods. If z
is not empty, the weight is obtained by a random number

with normal distribution with parameters μz and σz , where

μz and σz are the mean and the standard deviation of the

weights associated with the edges in z. If z is empty, the
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Algorithm 2: Node-based Evaluation Process.

Data: G(VG, EG ∪ E′
G): Graph of interactions

Result: accuracy: Accuracy value for the ACPS assigned to the
graph

1 TP, TN, FP, FN ← 0
2 foreach v ∈ VG do
3 foreach w ∈ δoutv do
4 if {v, w} ∈ EG then
5 if ACPv satisfiesACPw then
6 TP ← TP + (1/|δoutv |)
7 else
8 FN ← FN + (1/|δoutv |)
9 end

10 else if {v, w} ∈ E′
G then

11 if ACPv satisfiesACPw then
12 FP ← FP + (1/|δoutv |)
13 else
14 TN ← TN + (1/|δoutv |)
15 end
16 end
17 end
18 end
19 accuracy = TP+TN

TP+TN+FP+FN
20 return accuracy

weight is obtained using the mean and standard deviation from

the weights associated to the set in the intersection of outgoing

edges of v and incoming edges of w.

2) Using the edge weights: The node-based and edge-based

approaches can be reformulated to consider weights. In the

node-based weighted approach, lines 6, 8, 12, and 14 of the

Algorithm 2 are replaced by using eq. 3, where X stands for

one of the four cases wTP, wFN, wTN, or wFP.

Equation 4 shows the function to calculate the total weight

of the outgoing neighborhood of node v, value that is needed

to calculate the proportion of weight for each interaction. Once

the total weight is calculated, the values of wTP, wFN, wFP,

and wTN would be calculated as defined in eq. 3,

X ← X + weight(v, w)/W v
tot (3)

W v
tot ←

∑

w∈δout
v

weight(v, w) (4)

where v is a node, δoutv is the set of outgoing neighbors of v, X
may be one of the confusion matrix values, and weight(v, w)
is the weight of the edge from v to w.

C. Simple Edge-Based Strategy

Unlike the node-based method, in the edge-based approach,

all the edges are considered individually, evaluating the source

and target vertices.

All edges of the augmented graph, G+, are evaluated to

generate the values of the confusion matrix, according to the

type of edge (real or synthetic) and the ACP validation of the

adjacent vertices.

ACPs assigned to vertices joint by real edges should pre-

serve access (TP). If the ACP denies access, the edge is

counted as FN. On the contrary, all ACPs assigned to vertices

joint by synthetic edges should deny access and must be

counted as TN. Otherwise, they would be FP.

D. Edge-Weighted Based Strategy

Edges weights can be used to refine the quality of the accu-

racy metric. Simple counters can be replaced with operations

such as X ← X +weight(v, w), where X can be any of the

four values of the confusion matrix, and weight(v, w) is the

weight associated with the edge joining v and w. In this way,

each interaction will be weighted by its associated weight.

V. EVALUATION

We tested our proposal using a dataset of real users and their

interactions. The dataset was modeled as a complex network,

which was analyzed using complex network techniques to

deliver a graph with the partitioning this methodology requires.

Also, each user has been assigned an ACP.

We build a prototype that performs all tasks presented in

Section III. The prototype was coded in python and igraph
library.

A. Dataset Description

The dataset consists of 17K Instagram users having more

than 173K interactions. The dataset was crawled through the

Instagram API by Ferrara et al. [14]. It contains anonymized

public media and user information from the social media

Instagram.com.

The full graph has 173K edges, Avg., Path Length: 3.44,

Cluster Coefficient: 0.11, Diameter: 12, and Assortativity In-

dex: 0.101. As can be seen, the graph fulfills the properties of a

complex network despite the relatively low cluster coefficient.

The vertices of the graph were grouped into 96 communities

which are partitioned into 312 sub-communities and 237 k-

shells. 54% of the communities are further partitioned into 2

to 28 different sub-communities. The average number of sub-

communities per community is 10.81.

For simplicity, here we show the results obtained for com-

munity 23, the largest and most representative community of

the network. Its main characteristics are: 3150 vertex, 23K

edges, Average Path Length 2.83, Cluster Coefficient 0.183,

and Diameter 6.

B. Results of the filtering based on similarity

After applying the method to generate synthetic edges

based on graph partitioning, only 78,904 synthetic edges were

generated from the 4.9 million possible for the community 23.

Fig. 2a shows the histogram with the similarity distribution for

the set of synthetic edges. The normalized similarity values are

shown on the horizontal axis. Each image shows a different

range, the left image shows the range [0, 0.01) having 56,013

edges, the upper-right figure shows the range [0.01, 0.03) with

18,626 edges, and the lower-right shows the range [0.03, 1]
with the remaining 4,265 edges. The vertical axis shows the

number of edges for each bucket.

In the left graph of Fig. 2a, it can be observed the flattening

effect for the lowest similarity values having more than 8K ver-

tices. Further, in the range [0, 0.001] there are 15,301 vertices,

which is just over twice the real interactions in that community.

Therefore, according to the second consideration in generating
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(a) Histogram of similarity values of the complete set of generated
synthetic edges.

(b) Similarity values of edges sampled
with normal distribution.

(c) Similarity values of edges sampled with
χ2 distribution.

Fig. 2: Distribution histograms of similarity values assigned to the generated synthetic edges. Sampled histograms are the

average of 32 executions of the sampling schemes using a proportion of 20% regarding the real edges.

synthetic edges, only the edges in the range [0, 0.001] are

considered. This range varies according to community sizes.

C. Results of the sampling based on a probability distribution

Two different probability distribution functions were tested:

normal and chi-square (χ2). The uniform distribution was

selected as the base case since its density function is constant

for all elements in the range, i.e., all the synthetic edges

would have the same probability of being selected. On the

other hand, chi-square (χ2) distribution was selected due to the

shape of their density function, assigning a higher probability

to edges with a lower similarity value, see Fig. 2. The two

different probability functions illustrate different ways of edge-

sampling, and here are used to show the accuracy loss trend

while adding synthetic edges.

The input parameters to shape the probability distributions

are selected in such a way that it extended in the selected

similarity range ([0.0, 0.001] for community 23). For the

uniform distribution, the range of similarity is equivalent to

the range defined for the distribution, i.e., [0.0, 0.001). For the

chi-square distributions (χ2), were used the values, k = 3 and

a scale 1×10−3. For each probability distribution, Fig. 2 shows

the histogram with the average number of sampled edges.

As can be observed in Fig. 2, by using a uniform dis-

tribution, all synthetic edges have the same probability of

being selected. By using the chi-squared distribution, the range

selected is skewed towards the upper range of similarity.

D. Results Using Both Real and Synthetic Edges

Since the information in E′G is generated synthetically, for

the purpose of this work, its acceptable range is limited to

0 ≤ |E′G| ≤ |EG|, thus maintaining a balance between the

amount of real data and the number of synthetics.

By introducing more synthetic edges, accuracy is decreased

from the value obtained only with real edges. The different

sampling by a distribution function also affects the accuracy.

Fig. 3 shows the results when evaluating accuracy for

different proportions (in the range 0 ≤ |E′G| ≤ |EG|) of

synthetic edges. The figure resumes the accuracy results for

the four evaluation schemes described in Section IV.

The proportion of edges added to the set E′G is shown on

the horizontal axis of Fig. 3. The left end means no synthetic

edges added and the right end (1.0) means as many synthetic

edges added as the number of edges in the original graph.

Each point in the graphs shows the average accuracy values

obtained for 32 runs for each proportion test of synthetic edges

added.

All the results in Fig. 3 start in the base case, i.e., when no

synthetic edges have been added, and from there, a reduction

is observed as more synthetic edges are added. As can be

seen in the figure, the base values are 92.11 and 93.28, for

the simple and weighted vertex-based assessment, and 87.21

and 83.88 for the simple and weighted edge-based evaluation.

In the four cases, from the base value, low loss in accuracy

is observed, which is more pronounced at the beginning

(synthetic edges proportions < 50%) and slightly smoother

at the end (proportions > 50%).

The difference between including or not the weights in the

vertex-based evaluation has a positive impact of 1.17% in the

base value and only 0.18% when considering a proportion

of 100% and chi-square distribution. For the edge-based

evaluation, the impact is also positive on both ends, having

3.33% in the base value and 1.0% on the other side and the

chi-square distribution.

It can be observed that the accuracy loss trend is more

or less the same in any case. Adding a number of synthetic

edges greater than 100% of original edges would introduce

too much noise to the information since synthetic data cannot

fully replicate real data, especially if it tries to replicate non-

existent behaviors; therefore, the more synthetic data is used,

the less relevant the data could be.

To preserve an adequate balance between the source set and

the synthetic data, a reasonable proportion of synthetic edges

would be less than 30%. This range will allow the evaluation

of the implicit accesses of the owners (unauthorized access),

without detracting from the quality of the information.

Figure 4 shows the behavior of the four variables of the

confusion matrix. As can be seen, in the base case, there are

no TN or FP values. It can be seen in the figure that the

proportion of FN on average is kept for all cases, while the TP

value decreases as the TN and FP values increase, indicating

that the ACPs have some FP-type faults, which in turn affects

the accuracy.
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Fig. 3: Results of the Accuracy evaluation using the four evaluation
approaches and the three random filtering schemes for the complete interaction
graph G+. Values are the average of 32 independent runs. Vertical line
indicates a suitable value for the proportion of synthetic edges.

Based on the results, it can be concluded that the syn-

thetic edges adequately generate both FN and FP cases. The

synthetic edges allowed to prove that in addition to the FN

cases identified in the ACPs, there is also a portion of ACPs

that allow unauthorized access (FP), which contributed to the

accuracy decrease.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach based on complex

networks to take advantage of the underlying information

discovered to generate complementary interactions in an in-

teraction network modeled from a social network. In our

study case, the set of interactions models the accesses allowed

between a large set of users that share an equally large set

of documents. However, the method can easily be applied

to complement the information of other phenomena modeled

equivalently. The synthetic edges allowed the evaluation of

both explicit and implicit actions of the owners.

Achieved results show that our proposal properly evaluates

the policies that had been assigned to the users, showing

that the synthetic interactions in effect depicted an opposing

behavior regarding the real interactions. If the policies were

error-free, the values for the synthetic edges would have been

distributed only in TN values, which would not affect the

accuracy value. However, the observed reduction shows that

in addition to FN, the policies allow some FP, which can have

a great impact on security and access control scenarios.

We are testing our scheme with other similar datasets, and

also, we are exploring a general model to complement the

information in the graphs that can be applied to different

phenomena.
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