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Abstract—Controller Area Network (CAN) is the dominant
communication standard for intra-vehicle communications in
automobiles. The CAN protocol is designed to be light-weight
in order to increase speed and efficiency. However, this severely
limits the protocol’s ability to support any kind of security
countermeasures. Some of the devices that utilize CAN lack
the resources to perform the required cryptographic compu-
tations. The rapid increase in automobile communications has
exacerbated the need for efficient security solutions. This paper
addresses requirements for such CAN security solutions.

Index Terms—Controller Area Network, vehicular security,
long short-term memory, support vector machine

I. INTRODUCTION

The rapid and omnipresent expansion of intra-vehicle net-

works has increased the number of vulnerabilities to such

networks. Most modern vehicles implement various physical

layer and data link layer technologies. Such networks not

only interface among themselves but some interface with

external networks. Vehicles are becoming increasingly smart,

connected and part of the Internet. This has given rise to

multiple attack surfaces and vectors. Miller and Valasek [1]

demonstrated successful hacking into a car in motion on an

interstate by jamming the transmission system and disabling

the brakes at low speeds.

Controller Area Network (CAN) is one such serial bus

system that is used to connect devices. The connected devices

are commonly called Electronic Control Units (ECU) although

there is a subtle distinction that we outline later in this paper.

An electronic control unit controls an electrical subsystem in a

vehicle. Most newer vehicles contain an average of 80 ECUs.

ECUs are used in transmission control, engine control, speed

control, airbag control, powertrain control, and many other

vehicle subsystems.

II. CONTROLLER AREA NETWORK

CAN with flexible data-rate (CAN FD) is the latest com-

munication standard that provides higher data rates. Classical

CAN was introduced in 1986 and implemented in 1988 and

CAN FD was launched in 2012 and internationally standard-

ized in 2015 in ISO 11898-1. Figure 1 shows the format of

a CAN data frame. A CAN frame is a sequence of dominant

and recessive bits. Any device is allowed to access the CAN

bus at any time. All devices transmitting a recessive level

lose arbitration to devices transmitting a dominant level. Such

devices then switch to listening mode. A 29-bit arbitration ID

Fig. 1. CAN-FD Frame Format

is used to determine priority. If two nodes are transmitting

simultaneously then the node with the lower arbitration ID

maintains control of the bus. Classical CAN used an 11-bit

message identifier. The 29-bit message identifier consists of

the regular 11 bit base identifier and an 18 bit extension. A

dominant IDE bit indicates an 11 bit message identifier and

a recessive IDE bit indicates a 29 bit identifier. A distinction

is made between high-speed CAN transceivers and low-speed

CAN transceivers. High-speed CAN transceivers support data

rates up to 1 Mbps. Low-speed CAN transceivers only sup-

port data rates up to 125 kbps. However, low-speed CAN

transceivers ensure a fault-tolerant layout of the bus interface.

There are four types of frames - data, remote, error, and

overload. The Start of Frame (SOF) field indicated the begin-

ning of data and remote frames. The Arbitration field contains

the message identifier and the Remote Transmission Request

(RTR) bit. The RTR bit is used to distinguish between data and

remote frames. Remote frames are used to solicit transmission

of data from another node. SOF is used for synchronization.

Bit stuffing is used to guarantee appropriate framing. ISO

11898-1 prescribes that senders must transmit a complemen-

tary bit at the latest after transmitting five homogeneous bits; a

stuff bit is added even if a complementary bit followed the five

homogeneous bits anyway. The Control Field is used to indi-

cate the message identifier length and the size of the data. Data

field contains data in a data frame and is empty in a remote

frame. The Cyclic Redundancy Check (CRC) field contains a

15-bit frame check sequence which is computed over SOF to

the Data field. The CRC delimiter bit is always recessive. The

Acknowledgement field contains an ACK bit which is used

to indicated a successful CRC check and a delimiter bit that

is always recessive. The End of Frame (EOF) is a sequence

of seven recessive bits and the intermission field (IMF) is

3-bits long. Frame transmission consists of arbitration, data

transmission, and acknowledgement phases. The maximum

data rate during the arbitration and acknowledgement phases
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is 1 Mbps whereas the data transmission phase can have a

higher rate depending on end-device resources.

Error frames are transmitted when an error is detected.

Cyclic Redundancy Check (CRC), Frame check, and ACK

bits are used to perform error control. The CRC safeguards

the information in the data frame by adding redundant check

bits at the transmission end. At the receiver end, these bits

are re-computed and tested against the received bits. There

is no error correction mechanism other than retransmission.

An error frame is transmitted when a node detects an error

in a message. A node detecting an error condition sends

an error flag and discards the currently transmitted frame.

All nodes receiving an error flag discard the message. This

results in all other devices in the network sending an error

frame. All other nodes recognize the error frame sent by

the node(s) that detected it and sent by themselves a second

time, which results in an eventually overlapping error frame.

The active Error Frame is made of six dominant bits and

an 8-bit recessive delimiter followed by the IMF. The CAN

standard uses bit stuffing when more than five consecutive

recessive or dominant bits are present. All bit streams of more

than five consecutive recessive or dominant bits signifies an

error condition. The CAN error frame consists of at least six

consecutive dominant bits. An overload frame is transmitted

to perform flow-control. Although the overload frame is not

currently used, it is designed to stem the flow of data when a

device needs more processing time.

III. ATTACKS ON CAN COMMUNICATIONS

The following attack scenarios are possible:

• Modification - Malicious ECU sniffs frame and changes

frame data

• Interception - Passively scan all traffic on CAN

• Replay - Lack of temporal information in the frame makes

it easy to launch replay attacks

• Fabrication - Malicious ECU generates frame that is

supposed to be generated by other ECU(s)

• Interruption - Denial of Service attack where malicious

ECU continuously sends frames with lower IDs to thwart

transmission of higher priority frames

CAN is extensively used to connect ECUs in vehicles.

Miller and Valasek [1] were successful in their attacks by

sending specific messages on the CAN bus. All communi-

cation in a CAN is broadcast. Hence, an analysis of the

bus information can be used to determine all meta data for

CAN messages. The transmission is neither confidential nor

authenticated. Each CAN message has a priority which is used

to resolve contention and thereby provide multiple access to

ECUs. Priority is used to meet specific timing constraints for

individual ECUs.

All vehicles are equipped with an On Board Diagnostic

(OBD-II) port which is used run various diagnostics on the

vehicle. OBD-II dongles have been used to connect cars to

cellular networks. Such dongles can be exploited using SMS

messages or hosted server software [2]

Fig. 2. High speed and low speed CAN buses

There are multiple wireless interfaces that operate over

short ranges such as Bluetooth, Remote Keyless Entry, RFIDs,

Tire Pressure Monitoring Systems, and WiFi. Bluetooth has

become the defacto standard for supporting hands-free calling

in automobiles and is standard in mainstream vehicles sold

by all major automobile manufacturers. Class 2 devices used

in automotive implementations have a range of 10 meters,

but others have demonstrated that this range can be extended

through amplifiers and directional antennas. A majority of

automobiles use RF-based remote keyless entry systems to

remotely open doors, activate alarms, flash lights and, in some

cases, start the ignition. The adversary can place a wireless

transmitter in proximity to the car’s wireless receiver. For all of

these channels, if there is a vulnerability in the ECU software

responsible for parsing channel messages, then an adversary

may compromise the ECU by transmitting a malicious input

within the automobile’s vicinity.

CAN transmission data can be compressed by up to 81.06

percent [3]. CAN transmission data are further reduced by

up to 22 percent with the method proposed in [3], compared

to enhanced data reduction algorithm. Design of safe and

optimized CAN-based communication system that accounts

for message offsets is detailed in [4].

Using cellular communications, repair technicians can con-

nect remotely with a vehicle. Tesla uses an over-the-air

firmware update - systems in the vehicle can receive updates,

without visiting service centers.

The CAN protocol has the following weaknesses due to its

design:

• Broadcast: All nodes broadcast their messages on the

CAN. A malicious node on the CAN can easily sniff

all traffic.

• Low-latency requirement: CAN messages are supposed to

be sent and received in real-time. Any security protocol

will significantly add to the delay.

• Lack of authentication: There is no support for source and

message authentication. This makes the CAN network

vulnerable to integrity violations and replay attacks.

IV. BACKGROUND WORK

In this section we review work done in the areas of con-

fidentiality and integrity of CAN communications. Kleberger,
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Olovsson, and Jonsson [5] survey the current research related

to securing the connected car, with a focus on the security of

the in-vehicle network.

An attack model using a malicious smartphone application

in the connected car environment is outlined in [6]. A smart

phone was paired with using Bluetooth to an OBD scan tool

and an app on the phone was used to launch the attack.

CAN frames were collected using a passive attack and then

the smartphone app sent malicious frames to distort the dash

board, stop the engine, and control acceleration. The authors

propose a protocol using a keyed-hash and symmetric en-

cryption but does not sufficiently address the key-distribution

problem as well as does not provide any protection against

active replay attacks.

Kang and Kang propose an efficient intrusion detection

system based on a deep neural network for the security

of in-vehicular network [7]. DNN parameters are trained

with probability-based feature vectors extracted from the in-

vehicular network packets by using unsupervised pre-training

method of deep belief networks, followed by the conventional

stochastic gradient descent method. The DNN provides the

probability of each class to discriminate normal and malicious

packets, and, thus the system can identify any malicious attack

to the vehicle as a result.

A clock-based intrusion detection system (CIDS) was pro-

posed in [8] to detect intrusions by fingerprinting ECUs

on CAN. CIDS derived the fingerprints by extracting the

ECUs’ clock skews from message arrival times. While the

main objective of CIDS was to detect intrusions, the authors

mentioned that the thus-derived fingerprints may also be used

for attacker identification, but only when attack messages are

injected periodically.

Song, Kim, and Kim propose a light-weight IDS based on

analysis of time intervals of CAN messages for in-vehicle

networks [9]. This system can successfully detect message

injection attacks in a millisecond. Design, evaluation, ver-

ification and integration of the Lightweight Authentication

for Secure Automotive Networks (LASAN) is presented in

[10] . LASAN is designed to achieve high performance, even

in environments with low computational power and network

bandwidth.

The authors of [11] used the Mean Squared Error (MSE) of

voltage measurements as fingerprints of ECUs. However, they

were shown to be valid only for the voltages measured during

the transmission of CAN message IDs, and more importantly

when voltages were measured on a low-speed (10 kbps) CAN

bus; this is far from contemporary vehicles that usually operate

on a 500 kbps CAN bus.

There is very little real data available on the experimental

evaluation of the bit error rate for a CAN bus. [12] presents

a study on a vehicle in which the amount of error caused by

electro-magnetic interference is qualitatively estimated based

on the number of message retransmissions and the correspond-

ing message delays because of errors (the actual bit or frame

error rate is not provided). According to the author’s conclu-

sions, CAN is shown to be a robust communication protocol

in the harsh, real-world vehicle environment with significant

electromagnetic activity. In the presented experiments, the bus

was able to recover quickly from all errors, with no loss of

data or significant delay.

Kang, Baek, et. al. [13] focus on how to authenticate

electronic control units (ECUs) in real-time. They propose a

lightweight authentication protocol with an attack-resilient tree

algorithm, which is based on one-way hash chain. The protocol

is deployed in CAN by performing an ECU firmware update.

The protocol does not considerably add to the delay.

Sensors are authenticated and the integrity of data sent by

sensors to a central server is maintained using elliptic curve

digital signature algorithm (ECDSA) [14]

A security mechanism that can be used to retro-fit the CAN

protocol to protect it from cyber-attacks such as masquerade

and replay attacks has been proposed [15]. This mechanism

has a low communication overhead and does not need to

maintain global clock.

Knowledge-based intrusion detection approaches look for

runtime features that match a specific pattern of misbehavior.

One major advantage of this category is a low FPR. By

definition, these approaches only react to known bad behavior;

the basic idea is that a good node will not exhibit the attack

signature. The key disadvantage of this category is that the

techniques must look for a specific pattern.

Recently, a monitoring technique for detecting DOS attacks

in Wireless Mesh Networks has been proposed [16]. The

performance of the algorithm has been evaluated based on

packet delivery ratio, average packet drops and delay metrics.

It has been shown that proposed IDS successfully removes the

malicious nodes and increases the packet delivery ratio while

reducing the packet drop by integrating a priority mechanism

into the system. However, the performance of the proposed

approach is only tested for static mesh networks and its

performance under mobile networks has not been analyzed

yet.

Behavior-based intrusion detection approaches look for run-

time features that are out of the ordinary. The basic idea is

to construct models that characterize the expected/acceptable

behavior of the entities. The key advantage of behavior-based

approaches is they do not look for something specific. This

eliminates the need to fully specify all known attack vectors

and keep this attack dictionary current. An advantage of this

approach is its potential for detecting unknown attacks. One

major disadvantage of this category is the susceptibility to

false positives.

The use of Support Vector Machines (SVM) for the de-

tection of DoS attacks have been discussed in [17]. The

performance of the proposed method has been validated ex-

perimentally and shown that proposed SVM-based detection

approach achieves very high detection accuracy. However, the

performance improvement of the network environment with

the use of the suggested algorithm has not been analyzed.

Sekar et al. [18] combine specification-based with statisti-

cal anomaly detection techniques to ease the task of model

construction and to reduce false alarm rate. Another major
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disadvantage of this category is the training/profiling phase,

during which the system is vulnerable.

SVM is a supervised machine learning model which is well-

known for its great performance in pattern recognition and

classification tasks with high dimensional data [19]. Nguyen

et al. [20] describe ML techniques for Internet traffic classifi-

cation. The techniques described therein do not rely on well-

known port numbers but on statistical traffic characteristics.

Somwang et al. [21] propose a new intrusion detection

technique by using hybrid methods of unsupervised/supervised

learning. Their technique integrates the Principal Component

Analysis (PCA) with SVM. The PCA is applied to reduce

high dimensional data vectors and distance between vectors

including its projection onto the subspace. SVM is then used

to classify different groups of data, normal and anomalous.

Signature-based detection is a commonly used technique.

As the number of attacks increases, the number of signatures

also increases, making the usage of the whole set of signatures

impractical for online detection.

Anomaly-based detection consists of creating a behavior

model that is used to detect deviations from normal behavior.

An anomaly-based classifier assigns a class to each event .

This approach can often detect attack variations, but it tends

to produce higher false-alarm rates than the signature-based

approach [22].

Machine learning is often employed to implement anomaly-

based intrusion detection. The network traffic is collected from

the Network Interface Card or from a packet capture file

containing previously captured network traffic. The packets

are then filtered and sent to a feature extraction engine,

which computes flow-based and header-based attributes. These

attributes are assembled into a feature vector, which provides

the input data for the training or classification phases of

a classifier. Tavallaee M. et al. [23] proposed an anomaly

detection scheme using the correlation information contained

in groups of network traffic samples. The main idea is to

compare the signs in the covariance matrix of a group of

sequential samples with the signs in the covariance matrix

of the normal data obtained during the training process. Ma-

chine learning techniques have been widely used in detecting

network anomalies because machine learning can construct

models automatically based on the given training data. Ma-

chine learning techniques have achieved good performance

on anomaly-based detection systems. Some typical methods

used in network traffic anomaly detection include Bayesian

networks, support vector machine [24], fuzzy logical [25],

genetic algorithm [26], and decision trees.

V. CAN SECURITY REQUIREMENTS

CAN messages are broadcast and do not contain the sender’s

address. All frames are received by all ECUs and each ECU

determines whether to accept the frame based on the message

identifier. An inherent flaw in any broadcast transmission is

that malicious nodes can easily eavesdrop on all the frames

transmitted by other nodes.

Data on the CAN is not encrypted. It is easy to perform

traffic analysis on CAN traffic. This allows attackers to pas-

sively monitor and collect detailed metrics about CAN traffic.

At present, it is not possible to verify that a message was

indeed sent by an ECU claiming to send it. Any node can

potentially respond to a remote frame. Such malicious frames

can contain data that might disable critical control systems.

Regardless of sender integrity being maintained, there is

no mechanism to verify data integrity. The message space is

limited thereby complicating the data integrity verification. A

majority of ECUs send very similar messages with only minor

changes to the content of the message. This makes it easier to

replay messages. Our proposed security requirements aim to

provide sender integrity, data integrity, and protection against
replay attacks.

There are multiple interfaces into the CAN. The OBD-II

port provides direct physical access to the CAN. The OBD-

II port only provides wired access to the CAN. A majority

of modern automobiles are equipped with a multi-functional

telematics system, which supports GPS, media entertainment,

Bluetooth, cellular among others. All such interfaces are

potential vulnerabilities that can be used in any of the afore-

mentioned attack scenarios.

ECUs can be broken down into three separate sets based on

available resources. Electronic Control Modules (ECMs) are

high-powered control units. The next set of ECUs is composed

of medium-powered control units (MPCUs). The last set of

ECUs is composed of low-powered sensors (LPSs). CAN

messages are sent and received within and across ECU sets.

The differing computing resources require different schemes

for integrity checks.

For example, Delphi MT88 Engine Control Module consists

of two separate 32-bit, 80 MHz RISC microprocessors with up

to 1.5 MB flash memory for independent engine management

and transmission control. This enables high-speed processing

and in-vehicle memory updates. Delphi MT05 Engine Control

Module consists of a 16-bit, 40 MHz microprocessor with

up to 256K flash memory. It is capable of high-speed data

processing.

The Mass Airflow Sensor reports the amount of air entering

the engine to the Powertrain Control Module (PCM). The PCM

uses this input to calculate engine load. The sensor is one of

the LPSs and does not have a processor. It has an interface

the CAN that is uses to report data.

Cross-domain communications occur frequently. CAN mes-

sages are sent and received within and across ECU domains.

ECM to ECM communications occurs on a high-speed bus

and ECMs possess required resources to perform authenti-

cation. Figure 3 illustrates the three types of cross-domain

communications that require consideration when designing an

authentication scheme. When an LPS is sending a message

to an ECM, it is not computationally feasible for the LPS

to perform classical cryptographic operations. For example, a

proximity sensor does not have the resources to encrypt and

decrypt data that is exchanged with the adaptive cruise control

module. The resource limitations on LPSs and MPCUs sensors
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will increase the authentication delay. This makes classical

integrity enforcement mechanisms unfeasible for communica-

tions shown in Figure 3.

Fig. 3. Critical Cross-Domain Communication

One of the goals is to address the issues of entity authenti-

cation of ECUs and data integrity of CAN messages. We use

the term delay to indicate time spent performing an operation.

The delays that need to considered are transmission delay

(tt), queuing delay (tq), propagation delay (tp), processing

delay (tr), and authentication delay (ε). At present, there is no

authentication of CAN messages. Any proposed authentication

solution should be designed by limiting the delay that will

be introduced by such a solution. Transmission delay is the

amount of time it takes for an entire CAN message to be put

on the bus. Transmission delay is a function of the size of

the message. Propagation delay is the amount of time of time

it take for the message to travel from source to destination.

Propagation delay is a function of the transmission speed.

Queuing delay is the amount of time that a message has

to wait until all higher priority messages and successfully

transmitted. Processing delay is the amount of time spent a

node to process the CAN frame. Authentication delay is the

sum of the amounts of time spent by the sender to generate a

digest and by the receiver to complete verification. Let t be the

maximum allowable response time for a CAN message. Any

proposed authentication solution should satisfy the following:

tt + tq + tp + tt + ε = t (1)

There is a need for an authentication scheme for LPSs. Such

devices possess limited computing power. Their memory and

storage are limited. The absence of granular clocks is a

significant challenge for any type of synchronization.

The absence of a source address in a CAN frame requires

that each ECU be assigned a unique identifier. Such an

identifier is not secret but can be used as one of the inputs

to a hash function. As the average number of ECUs continues

to increase dramatically, a 16-bit identification number will be

sufficient to support the expansion of ECUs in the long-term

future.

To enforce source integrity, the presence of a secret key

is required. This key should be known to (or be able to be

generated by) only the sender and the receiver. Key generation

and distribution as well as re-keying are challenges that will

need to be addressed.

CAN Message space is limited. Traffic on CAN is not

encrypted. It is fairly easy to capture CAN traffic and analyze

it for traffic and message patterns. All of this makes a replay

attack fairly easy to execute. To thwart a replay attack, a nonce

needs to be used to ensure freshness of the message. Such a

nonce can be computed a function of the last sent message

and current time.

VI. CONCLUSION AND FUTURE WORK

Based on the architecture of the CAN, properties of de-

vices that connect to the CAN, and functional and safety

requirements of the vehicle, we conclude that the most im-

portant requirements for any security solution for the CAN

are minimal latency, combination of offline and real-time

computation, low resource requirements, temporal nonce as

a function of prior messages, and hardware-based operations.

We believe an intrusion detection system using support vector

machines or recurrent neural networks that can be trained

offline and used in real-time is one such possible solution. Our

support vector machine based solution [27] has demonstrated

successful results with certain limitations. To overcome these

limitations, we are working on a solution that utilizes Long

Short-Term Memory (LSTM). Our LSTM-based approach has

demonstrated promising results in our initial experiments.
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