
The Use of Runtime Verification for Identifying and

Responding to Cybersecurity Threats Posed to State

Actors During Cyberwarfare

Jeremy Straub

Institute for Cyber Security Education and Research

North Dakota State University

Fargo, ND, USA

jeremy.straub@ndsu.edu

Abstract— This paper considers the utility of the use of runtime

verification techniques for detecting and responding to

cybersecurity threats. To this end, it considers two questions:

First, it evaluates the efficacy of runtime verification for

identifying zero-day threats and threats that are not otherwise

widely known based up system operations. Second, it considers the

particular use of these techniques by state actors (i.e., nation states

engaged in declared or undeclared cyberwarfare) who are likely

to encounter a greater level of such vulnerability exploits than

individuals or private businesses during the normal operations.

Drawing on the analysis in the two foregoing areas, the paper

concludes by identifying key areas of needed future work to

support runtime verification's application in this area.

Keywords—runtime verification, cybersecurity, threats,

cyberattacks, cyberwarfare

I. INTRODUCTION

Information technologies are an integral part of the everyday
world and have created a new virtual battlefield. While
cyberwar may happen in a virtual space, the consequences of it
can often be felt in the real world. This includes consequences
such as the theft of individuals personal information [1]–[3] and
more pronounced impacts if cyber-physical systems – physical
hardware under computer control – are targeted and successfully
breached [4].

Cyberattacks and cyberwarfare can be used for a variety of
purposes. In some cases the goal of the attack is to compromise
specific systems for a targeted immediate goal [5]. In many
other cases, there is a larger goal related to positioning an
attacker (whether a nation state, criminal organization, terrorist
or individual attacker) to wield influence over the attacked party
[6], [7]. One key tool that sophisticated attackers have in their
arsenal is so-called ‘zero-day’ attacks [8]. These never-before-
used attacks, along with attacks that are still new enough that
software vendors may not have completed or distributed fixes,
can potentially be deployed against government and military
systems. However, attackers may also target civilian systems
that provide key architecture, such as SCADA systems [4], the
banking sector [9] and transportation [10], [11]. Traditional
attach signature-based models [12] are unable to effectively
detect or initiate a response against these inherently pre-
signature-availability attacks.

This paper builds on prior work in runtime verification [13]
and its application to anomaly detection [14] and cybersecurity
[15] to propose a paradigm to aid in solving this problem.
Specifically, a methodology for both the manual and
autonomous development and refinement of models for
anomaly-based incident detection is proposed. Further, its
efficacy for use by sophisticated state actors and those targeted
by them is discussed.

II. BACKGROUND

This section discusses prior work which provides a
foundation for the work presented in this paper. First,
cybersecurity threats and escalation are discussed. Second, a
brief discussion of runtime verification is presented. Finally,
prior work on runtime verification for cybersecurity purposes is
considered.

A. Cybersecurity Threats and their Escalation

A wide variety of cybersecurity threats exist across
numerous sectors. These range from threats targeting private
individuals to directly or indirectly capture their personal
information [2], [3], attacks targeting national security and
intelligence capabilities [16] to attacks targeting cyber-physical
systems that directly interact with the environment and humans
[17]. This last group represents a more immediate threat, as a
compromised cyber-physical system could prospectively injure
or kill a human bystander or proximal worker before the
compromise is detected. Given this, thinking of data as the
principal target of attack (e.g., [18]) fails to fully consider the
scope of the problem. Jang-Jaccard and Nepal [19] note that
“the development of more innovative and effective malware
defense mechanisms has been regarded as an urgent
requirement” due to the escalating threat.

B. Runtime Verification

Significant prior work exists related to runtime verification
[13], [20] that serves as a foundation for the current work. Prior
techniques have been proposed which include those based on
and using rules [21], state estimation [22] and predictive analysis
[23]. An event-triggered approach, which analyzed event traces,
was proposed by d’Amorim and Havelund [24]. Falcone,
Fernandez and Mounier [25] proposed a model that was based

83

2020 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-7624-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCI51800.2020.00021

on the identification of verifiable properties for “safety-process
classification”.

In addition to the foregoing, a number of frameworks (e.g.,
[26]) have been proposed for various applications. A number of
techniques considering linear temporal logic [27], [28] and
trimmed lineartime temporal logic [28] have also been proposed.

C. Prior Work on Runtime Verification for Cybersecurity

Prior work has also focused, specifically, on the use of
runtime verification techniques for cybersecurity purposes [15].
Applications have ranged from unmanned aerial systems safety
[29] and safety monitoring for embedded systems [30] to
protecting “combat systems” [31]. A wide variety of techniques
have been proposed including those using side-channel
fingerprinting [32], power profiles [33], temporal logic [34],
metamorphic testing [35], code mutation [36], chaos theory [15],
behavior and game theories [37] and return-oriented
programming [38], among others.

Robots [39], including UAVs [29], [40] and programmable
logic controllers [41] have been among the numerous
applications. These applications stand out, from a security
perspective, due to the prospective threat that they represent to
the public, if they are compromised.

III. RUNTIME VERIFICATION FOR ZERO-DAY DETECTION

The challenge presented by ‘zero-day’ vulnerability
exploitation is that a detection and response strategy cannot
presume that the attack or its particular outcomes (including data
theft, system maloperation or other results) have been seen
before. In fact, the most problematic attack to defend against
would incorporate a new attack vector that targeted a previously
unexploited vulnerability and had either a new maloperation
outcome or used a new data exfiltration method. Under these
circumstances, the attack may not trigger any pre-existing attack
signature-based intrusion detection tool.

This section presents an approach, thus, based on modeling
the existing system. It begins with a discussion of how a model
can be developed (either autonomously or with manual input)
and how the system can be characterized using this model.
Then, the use of this model for attack detection is discussed.

A. Development of a Model of the System

The development of a model, inherently, involves
characterizing the performance of the system. Attack signature-
based models seek to characterize how an attack behaves or how
a system behaves when subjected to a particular type of attack.
This approach benefits from being somewhat generic, as an
attack signature can be captured on one system and
prospectively used to detect similar attacks against a wide
variety of systems. However, as previously discussed, this
approach cannot be used against unknown and previously
uncharacterized attacks.

Fundamentally, thus, the goal of a model for responding to
new attacks must be to characterize the normal and acceptable
operations of the system. When the bounds of normal and
acceptable operations are known, anything outside of these
bounds is an anomaly that represents a potential threat which
should be investigated and potentially responded to.

The first key question, in this process, is to determine what
to characterize the system in terms of – that is, what to monitor
and measure. Two different approaches to this are proposed,
under the first, a system administrator uses her or his experience
to identify relevant metrics. The system collects data related to
these metrics and uses this to create and iteratively refine the
model of the system. Figure 1 depicts this process.

User Defined Metrics

System Operations

Create or Refine

Labeled Model

Collect

Metrics

Characterize

Performance

Model

Fig. 1. Model development from user-defined metrics.

However, this may not always be possible. Additionally,
system administrators may not be aware of all metrics that are
relevant to system characterization. For this reason, an alternate
approach, based on automated detection is proposed (and
depicted in Figure 2). Under this model, all of the metrics that
can be monitored by the monitoring toolkit are considered. This
process begins with an initial run to determine what metrics are
showing variance and appear relevant to characterizing system
performance. Once these metrics are identified, the
characterization system collects data on them and uses this for
system characterization. It is important to note that, typically,
the system will need to be characterized under several different
modes of operation. Relevant metrics should be identified based
on all of these modes and, in particular, metrics which are
different under different modes of operations should be
identified.

Typically, the system will need to be run under normal,
optimal and degraded conditions. While the goal is not to
characterize the system under compromised conditions (as this
would be an attack signature-based approach), running the
system under simulated compromised conditions may also be
helpful to identify metrics that are demonstrably different under
these conditions. Of course, different types of compromise may
have dramatically different impacts and affect different metrics.
Thus, while some simulation of compromise may be useful for
metric identification, focus should be on characterizing the
correctly-operating system in terms of relevant metrics, not
trying to identify metrics of compromise.

Metrics that are selected, whether autonomously or manually
identified, should have several key characteristics. They must

84

be observable with minimal impact to system operations
(particularly for metrics that will be used continuously to detect
symptoms for further escalation). Metrics that characterize
performance, as well as those that characterize outputs and
outcomes should both be selected.

System Operations

Create or Refine

Labeled Model

Collect

Metrics

Characterize

Performance

& Use

Surrogate

Measures to

Characterize

Performance

Model

All

Metrics

Identify Relevant

Metrics

Fig. 2. Model development with autonomous metric identification.

The metrics that are selected should fall into several different
groups. The factors that are used for this classification are the
difficulty and cost of collection, whether a metric is a leading
indicator of a problem, the percentage of problems that it serves
as an indicator-metric for and whether it is a metric for an issue
or characteristic of particular importance. This is depicted in
Figure 3. The resulting groups are summarized in Figure 4.

Level 1 metrics should include those that are general purpose
indicators of potential issues (i.e., those that broadly characterize
proper system operations or are likely to change if system
operations are impaired). Level 1 also includes metrics that
identify specific issues that are not covered by these general
metrics (level 1S metrics) and those that identify critically
important issues that should be continuously monitored for
(level 1I metrics). Ideally, all level 1 metrics will be leading
indicators of problems, allowing response before the problems
escalate. They should also be as low cost (in terms of
performance impact and other costs) as possible as they will be
run continuously.

Difficulty /

Cost of

Collection

Important

Problem(s)

Indicated?

% of Problems

Indicated

Leading

Indicator?

Level Classification

Fig. 3. Inputs to level classification.

Level 1 Low Cost | Leading | High % Prob

Level 1S Low Cost | Leading | Specific Problem Not

Included In Other Metrics

Ideally Ideally

Level 1I | | |

Level 2 | Leading | High % Prob

Level 3 | Leading | Lower % Prob

Level 4 | Leading | Specific

Level 4F | Leading | Specific

Ideally

Low Cost

Ideally

Leading

Moderate Cost

Moderate to

High Cost

Moderate to

High Cost

Moderate to

High Cost

Ideally

Ideally

High % Prob

or Specific

Identifies

Important

Problem

Ideally

Not

Fig. 4. Classification levels.

Level 2 metrics are those that have a higher cost and may
refine the understanding of the current system status provided
by the level 1 metrics. Level 3 metrics may be even higher cost
and should be more specific to begin to isolate the particular
causes of the detected issue or issues. Finally, level 4 metrics
should be specific to allow the particular anomalous system
operations to be isolated. Because of the specificity of these
(and the potential need to run numerous level 4 metrics, selected
based on the narrowing of the issue by the level 3 metrics) the
cost of these is expected to be higher than other metrics. Finally,
level 4F metrics collect forensic data about what is or has
happening and are not expected to be a leading indicator.

The different classifications of metrics determine how, when
and how frequently they are used by the monitoring system. The
use of these metrics and the comparative use of metrics of
different classifications is discussed in the subsequent section.

B. Measurement and Comparison to Model

Once metrics are identified and the system is characterized
in terms of them, the system being secured / verified must be
monitored using the metrics. Figure 5 depicts the relationship
between the two systems. While the monitoring can,
prospectively, be conducted on the primary system, this is not
ideal as an attack may potentially impair both the primary
system and the incident detection / verification system. Under
the ideal (two system) configuration, the metrics are requested
by the verifying system and returned to a database in near real
time. The verification system then processes this data on a near

85

real time basis. Notably, it is ideal that the verification system
be appropriately resourced to keep up with this data flow.
Otherwise, it will either lag behind real time, delaying issue
detection. It may also need to skip over data to maintain
temporal currency, which may result in attacks and issues being
missed over.

System

Operations

Runtime

Verification

System

Fig. 5. Interaction between system operations and runtime verification

module.

The overall model for the operations of the verification
system is presented in Figure 6. Specifically, the proposed
approach utilizes a model of escalation. The level 1 processes
(including L1, L1S and L1I) are run continuously. If a level 1
process metric shows an anomaly, then the level 2 metrics are
collected and evaluated (if level 2 metrics can be collected
continuously without significant cost, the metrics may be
continuously collected but only processed after triggering based
on a level 1 metric). A similar approach is taken with the level 3
and level 4 processes. Both are triggered based on an issue being
detected at the immediately lower level (level 2 and 3,
respectively).

Finally, if a level 4 process detects a problem, via one or
more of its metrics, then the level 4 forensics (level 4F)
processes are triggered to collect data. Additionally,
administrator notification and other system-specific processes
are triggered, based on the strong likelihood of system
compromise (or other similarly problematic anomalous
situation) having occurred.

IV. NATION STATES AND CYBER WARFARE

With a paradigm for identifying ‘zero-day’ and other
unknown-to-operator attacks proposed, a question exists as to its
efficacy for the issues of nation states engaged in cyberwarfare
and those engaged in cyberwarfare against (or targeted by) them.
A key question, thus, is what are the defensive and other related
needs of nation states engaging in cyberwarfare and those
targeted by them?

This is a complex question that cannot, for purposes of
brevity, be fully explored here. However, these needs can be
classified into two key areas. The first is the need to defend
systems. To this end, the proposed system must be able to
identify problems quickly enough to provide an opportunity to
respond to prevent or mitigate the impact of adversaries’ attacks.
The second need is the need for attribution to allow retaliatory
action via cyber or other means. The ability to attribute attacks
and retaliate is integral to deterrence [42], as this is the primary
inventive for an adversary to not attack in order to achieve
whatever aims it would otherwise desire. To meet this second
need, it is critical that the system collect data (as part of the level
4F processes and at other levels) that contains attack source data.
It is also critical that this data be protected from loss or
alteration. This is a key justification for the two-system model
shown in Figure 5.

Runtime Verification System

L1 Processes

(L1 + L1S + L1I)
Issue?

No

L2 ProcessesIssue?

L3 Processes Issue?

YesNo

L4 ProcessesIssue?

L4F Processes Notify

Admin

Other

Resp.

No

Yes

Yes
Yes

Yes

No
Yes

Fig. 6. Operations of the runtime verification module.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a paradigm for the use of runtime
verification as part of a detection and response system for ‘zero-
day’ and other unknown-to-operator attacks. It has, in
particular, focused on the efficacy of this model for use by nation
states and those who may be targeted by them. The paradigm
has been presented and explained and the different levels of
processes required for it have been discussed. The utility of the
system for meeting the needs of nation states have bene
considered.

Significant work remains to be done in this area, in the
future. In particular, additional work on the development and
evaluation of a system to demonstrate and assess the proposed
paradigm is required.

REFERENCES

[1] N. Perlroth, A. Tsang, and A. Satariano, “Marriott Hacking Exposes Data
of Up to 500 Million Guests - The New York Times,” New York Times,
2018. [Online]. Available:
https://www.nytimes.com/2018/11/30/business/marriott-data-
breach.html. [Accessed: 11-Dec-2018].

[2] T. Armerding, “The 18 biggest data breaches of the 21st century,” CSO
Magazine, 20-Dec-2018.

[3] D. Winder, “Data Breaches Expose 4.1 Billion Records In First Six
Months Of 2019,” Forbes, 20-Aug-2019.

[4] A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke, “SCADA
security in the light of Cyber-Warfare,” Comput. Secur., vol. 31, no. 4,
pp. 418–436, 2012.

[5] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secur.
Priv., vol. 9, no. 3, pp. 49–51, May 2011.

86

[6] J. Straub and T. Traylor, “Towards an Influence Model for Cybersecurity
and Information Warfare,” in Proceedings of the 2018 International
Conference on Computational Science and Computational Intelligence,
2018.

[7] J. Straub and T. Traylor, “Introduction of a maritime model for cyber and
information warfare,” in Proceedings - 2018 International Conference on
Computational Science and Computational Intelligence, CSCI 2018,
2018, pp. 25–29.

[8] A. Kuehn and M. Mueller, “Shifts in the Cybersecurity Paradigm: Zero-
Day Exploits, Discourse, and Emerging Institutions,” in Proceedings of
the 2014 workshop on New Security Paradigms Workshop, 2014, pp. 63–
68.

[9] A. L. Johnson, “Cybersecurity for Financial Institutions: The Integral
Role of Information Sharing in Cyber Attack Mitigation,” North Carolina
Bank. Inst., vol. 20, 2016.

[10] M. H. Eiza and Q. Ni, “Driving with Sharks: Rethinking Connected
Vehicles with Vehicle Cybersecurity,” IEEE Veh. Technol. Mag., vol. 12,
no. 2, pp. 45–51, Jun. 2017.

[11] G. C. Kessler, P. Craiger, and J. C. Haass, “A Taxonomy Framework for
Maritime Cybersecurity: A Demonstration Using the Automatic
Identification System,” TransNav, Int. J. Mar. Navig. Saf. Sea Transp.,
vol. 12, no. 3, pp. 429–437, Nov. 2018.

[12] A. M. Cansian, A. R. A. Da Silva, and M. De Souza, “An attack signature
model to computer security intrusion detection,” in Proceedings - IEEE
Military Communications Conference MILCOM, 2002, vol. 2, pp. 1368–
1373.

[13] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
J. Log. Algebr. Program., vol. 78, pp. 293–303, 2009.

[14] O. S. Pieczul, “Detecting Anomalous Events Through Runtime
Verification of Software Execution Using a Behavioral Model,” US
10,152,596 B2, 11-Dec-2018.

[15] H. Zhao, K. Kwiat, C. Kamhoua, and M. Rodriguez, “Applying Chaos
Theory for Runtime Hardware Trojan Detection,” in Proceedings of the
IEEE Symposium on Computational Intelligence for Security and
Defense Applications, 2015.

[16] 114th Congress Committee on Oversight and Government Reform of the
U.S. House of Representatives, “The OPM Data Breach: How the
Government Jeopardized Our National Security for More than a
Generation,” 2016.

[17] V. Bolbot, G. Theotokatos, L. M. Bujorianu, E. Boulougouris, and D.
Vassalos, “Vulnerabilities and safety assurance methods in Cyber-
Physical Systems: A comprehensive review,” Reliability Engineering and
System Safety, vol. 182. Elsevier Ltd, pp. 179–193, 01-Feb-2019.

[18] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang, “Data-
Driven Cybersecurity Incident Prediction: A Survey,” IEEE Commun.
Surv. Tutorials, vol. 21, no. 2, 2019.

[19] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in
cybersecurity,” in Journal of Computer and System Sciences, 2014, vol.
80, no. 5, pp. 973–993.

[20] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to
Runtime Verification,” Lect. Notes Comput. Sci., vol. 10457, pp. 1–33,
2018.

[21] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-Based
Runtime Verification,” in Proceedings of the International Workshop on
Verification, Model Checking, and Abstract Interpretation, 2004, pp. 44–
57.

[22] S. D. Stoller et al., “Runtime Verification with State Estimation,” in
Proceedings of the International Conference on Runtime Verification ,
2011, pp. 193–207.

[23] E. Bartocci et al., “Adaptive Runtime Verification,” in Proceedings of the
InInternational Conference on Runtime Verification, 2012, pp. 168–182.

[24] M. d’Amorim and K. Havelund, “Event-Based Runtime Verification of
Java Programs,” in Proceedings of the Workshop on Dynamic Analysis,
2005.

[25] Y. Falcone, J.-C. Fernandez, and L. Mounier, “Runtime Verification of
Safety-Progress Properties,” in Proceedings of the International
Workshop on Runtime Verification, 2009, pp. 40–59.

[26] F. Chen and G. Rosu, “MOP: An Efficient and Generic Runtime
Verification Framework *,” in Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming systems and
applications, 2007, pp. 569–588.

[27] G. Rosu and K. Havelund, “Rewriting-Based Techniques for Runtime
Verification,” Autom. Softw. Eng., vol. 12, pp. 151–197, 2005.

[28] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol, vol. 20, no. 14, 2011.

[29] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “R2U2: Monitoring and
Diagnosis of Security Threats for Unmanned Aerial Systems,” Runtime
Verification. p. 15, 2015.

[30] S. Gautham, G. Bakirtzis, M. T. Leccadito, R. H. Klenke, and C. R. Elks,
“A Multilevel Cybersecurity and Safety Monitor for Embedded Cyber-
Physical Systems,” in Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, 2019.

[31] J. Hamilton, “A High-Integrity Cybersecurity Framework for Combat
Systems,” in Proceedings of the European Conference on Cyber Warfare
and Security, 2017, pp. 157–164.

[32] S. Yang, A. Alaql, T. Hoque, and Swarup Bhunia, “Runtime Integrity
Verification in Cyber-physical Systems using Side-Channel Fingerprint,”
in Proceedings of the 2019 IEEE International Conference on Consumer
Electronics, 2019.

[33] M. F. Bin Abbas, A. Prakash, and T. Srikanthan, “Power Profile based
Runtime Anomaly Detection,” in Proceedings of the 2017 TRON
Symposium, 2017.

[34] O. Chowdhury, L. Jia, D. Garg, and A. Datta, “Temporal Mode-Checking
for Runtime Monitoring of Privacy Policies,” in Proceedings of the
International Conference on Computer Aided Verification, 2014.

[35] T. Y. Chen et al., “Metamorphic Testing for Cybersecurity,” Computer
(Long. Beach. Calif)., pp. 48–55, Jun. 2016.

[36] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from Mutants: Using Code
Mutation to Learn and Monitor Invariants of a Cyber-Physical System,”
in Proceedings of the 2018 IEEE Symposium on Security and Privacy,
2018.

[37] S. T. Hamman, “Improving the Cybersecurity of Cyber-Physical Systems
Through Behavioral Game Theory and Model Checking in Practice and
in Education,” Air Force Institute of Technology, Wright-Patterson Air
Force Base, Ohio, 2016.

[38] D. Andriesse, H. Bos, and A. Slowinska, “Parallax: Implicit Code
Integrity Verification Using Return-Oriented Programming,” in
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2015.

[39] S. A. Asadollah, D. Sundmark, S. Eldh, and H. Hansson, “A Runtime
Verification Tool for Detecting Concurrency Bugs in FreeRTOS
Embedded Software,” in Proceedings - 17th International Symposium on
Parallel and Distributed Computing, ISPDC 2018, 2018, pp. 172–179.

[40] W. Lu, S. Shu, H. Shi, R. Li, and W. Dong, “Synthesizing Secure Reactive
Controller for Unmanned Aerial System,” in Proceedings of the 6th
International Conference on Dependable Systems and Their Applications,
2019.

[41] L. Garcia, S. Zonouz, D. Wei, and L. P. de Aguiar, “Detecting PLC
Control Corruption via On-Device Runtime Verification,” in Proceedings
of the 2016 Resilience Week, 2016.

[42] J. Straub, “Mutual assured destruction in information, influence and cyber
warfare: Comparing, contrasting and combining relevant scenarios,”
Technol. Soc., vol. 59, p. 101177, Nov. 2019.

87

