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Abstract— This paper considers the utility of the use of runtime 

verification techniques for detecting and responding to 

cybersecurity threats. To this end, it considers two questions: 

First, it evaluates the efficacy of runtime verification for 

identifying zero-day threats and threats that are not otherwise 

widely known based up system operations. Second, it considers the 

particular use of these techniques by state actors (i.e., nation states 

engaged in declared or undeclared cyberwarfare) who are likely 

to encounter a greater level of such vulnerability exploits than 

individuals or private businesses during the normal operations. 

Drawing on the analysis in the two foregoing areas, the paper 

concludes by identifying key areas of needed future work to 

support runtime verification's application in this area.  

Keywords—runtime verification, cybersecurity, threats, 

cyberattacks, cyberwarfare 

I.   INTRODUCTION 

Information technologies are an integral part of the everyday 
world and have created a new virtual battlefield.  While 
cyberwar may happen in a virtual space, the consequences of it 
can often be felt in the real world.  This includes consequences 
such as the theft of individuals personal information [1]–[3] and 
more pronounced impacts if cyber-physical systems – physical 
hardware under computer control – are targeted and successfully 
breached [4].  

Cyberattacks and cyberwarfare can be used for a variety of 
purposes.  In some cases the goal of the attack is to compromise 
specific systems for a targeted immediate goal [5].  In many 
other cases, there is a larger goal related to positioning an 
attacker (whether a nation state, criminal organization, terrorist 
or individual attacker) to wield influence over the attacked party 
[6], [7].  One key tool that sophisticated attackers have in their 
arsenal is so-called ‘zero-day’ attacks [8].  These never-before-
used attacks, along with attacks that are still new enough that 
software vendors may not have completed or distributed fixes, 
can potentially be deployed against government and military 
systems.  However, attackers may also target civilian systems 
that provide key architecture, such as SCADA systems [4], the 
banking sector [9] and transportation [10], [11].  Traditional 
attach signature-based models [12] are unable to effectively 
detect or initiate a response against these inherently pre-
signature-availability attacks. 

This paper builds on prior work in runtime verification [13] 
and its application to anomaly detection [14] and cybersecurity 
[15] to propose a paradigm to aid in solving this problem.  
Specifically, a methodology for both the manual and 
autonomous development and refinement of models for 
anomaly-based incident detection is proposed.  Further, its 
efficacy for use by sophisticated state actors and those targeted 
by them is discussed. 

II.   BACKGROUND 

This section discusses prior work which provides a 
foundation for the work presented in this paper.  First, 
cybersecurity threats and escalation are discussed.  Second, a 
brief discussion of runtime verification is presented.  Finally, 
prior work on runtime verification for cybersecurity purposes is 
considered. 

A.   Cybersecurity Threats and their Escalation 

A wide variety of cybersecurity threats exist across 
numerous sectors.  These range from threats targeting private 
individuals to directly or indirectly capture their personal 
information [2], [3], attacks targeting national security and 
intelligence capabilities [16] to attacks targeting cyber-physical 
systems that directly interact with the environment and humans 
[17].  This last group represents a more immediate threat, as a 
compromised cyber-physical system could prospectively injure 
or kill a human bystander or proximal worker before the 
compromise is detected.  Given this, thinking of data as the 
principal target of attack (e.g., [18]) fails to fully consider the 
scope of the problem.  Jang-Jaccard and Nepal [19] note that 
“the development of more innovative and effective malware 
defense mechanisms has been regarded as an urgent 
requirement” due to the escalating threat. 

B.   Runtime Verification 

Significant prior work exists related to runtime verification 
[13], [20] that serves as a foundation for the current work.  Prior 
techniques have been proposed which include those based on 
and using rules [21], state estimation [22] and predictive analysis 
[23].  An event-triggered approach, which analyzed event traces, 
was proposed by d’Amorim and Havelund [24].  Falcone, 
Fernandez and Mounier [25] proposed a model that was based 
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on the identification of verifiable properties for “safety-process 
classification”. 

In addition to the foregoing, a number of frameworks (e.g., 
[26]) have been proposed for various applications.  A number of 
techniques considering linear temporal logic [27], [28] and 
trimmed lineartime temporal logic [28] have also been proposed. 

C.   Prior Work on Runtime Verification for Cybersecurity 

Prior work has also focused, specifically, on the use of 
runtime verification techniques for cybersecurity purposes [15].  
Applications have ranged from unmanned aerial systems safety 
[29] and safety monitoring for embedded systems [30] to 
protecting “combat systems” [31].  A wide variety of techniques 
have been proposed including those using side-channel 
fingerprinting [32], power profiles [33], temporal logic [34], 
metamorphic testing [35], code mutation [36], chaos theory [15], 
behavior and game theories [37] and return-oriented 
programming [38], among others. 

Robots [39], including UAVs [29], [40] and programmable 
logic controllers [41] have been among the numerous 
applications.  These applications stand out, from a security 
perspective, due to the prospective threat that they represent to 
the public, if they are compromised. 

III.   RUNTIME VERIFICATION FOR ZERO-DAY DETECTION 

The challenge presented by ‘zero-day’ vulnerability 
exploitation is that a detection and response strategy cannot 
presume that the attack or its particular outcomes (including data 
theft, system maloperation or other results) have been seen 
before.  In fact, the most problematic attack to defend against 
would incorporate a new attack vector that targeted a previously 
unexploited vulnerability and had either a new maloperation 
outcome or used a new data exfiltration method.  Under these 
circumstances, the attack may not trigger any pre-existing attack 
signature-based intrusion detection tool. 

This section presents an approach, thus, based on modeling 
the existing system.  It begins with a discussion of how a model 
can be developed (either autonomously or with manual input) 
and how the system can be characterized using this model.  
Then, the use of this model for attack detection is discussed. 

A.   Development of a Model of the System 

The development of a model, inherently, involves 
characterizing the performance of the system.  Attack signature-
based models seek to characterize how an attack behaves or how 
a system behaves when subjected to a particular type of attack.  
This approach benefits from being somewhat generic, as an 
attack signature can be captured on one system and 
prospectively used to detect similar attacks against a wide 
variety of systems.  However, as previously discussed, this 
approach cannot be used against unknown and previously 
uncharacterized attacks. 

Fundamentally, thus, the goal of a model for responding to 
new attacks must be to characterize the normal and acceptable 
operations of the system.  When the bounds of normal and 
acceptable operations are known, anything outside of these 
bounds is an anomaly that represents a potential threat which 
should be investigated and potentially responded to.   

The first key question, in this process, is to determine what 
to characterize the system in terms of – that is, what to monitor 
and measure.  Two different approaches to this are proposed, 
under the first, a system administrator uses her or his experience 
to identify relevant metrics.  The system collects data related to 
these metrics and uses this to create and iteratively refine the 
model of the system.  Figure 1 depicts this process. 

 

User Defined Metrics

System Operations

Create or Refine 

Labeled Model

Collect 

Metrics

Characterize 

Performance

Model

 

Fig. 1. Model development from user-defined metrics. 

However, this may not always be possible.  Additionally, 
system administrators may not be aware of all metrics that are 
relevant to system characterization.  For this reason, an alternate 
approach, based on automated detection is proposed (and 
depicted in Figure 2).  Under this model, all of the metrics that 
can be monitored by the monitoring toolkit are considered.  This 
process begins with an initial run to determine what metrics are 
showing variance and appear relevant to characterizing system 
performance.  Once these metrics are identified, the 
characterization system collects data on them and uses this for 
system characterization.  It is important to note that, typically, 
the system will need to be characterized under several different 
modes of operation.  Relevant metrics should be identified based 
on all of these modes and, in particular, metrics which are 
different under different modes of operations should be 
identified. 

Typically, the system will need to be run under normal, 
optimal and degraded conditions.  While the goal is not to 
characterize the system under compromised conditions (as this 
would be an attack signature-based approach), running the 
system under simulated compromised conditions may also be 
helpful to identify metrics that are demonstrably different under 
these conditions.  Of course, different types of compromise may 
have dramatically different impacts and affect different metrics.  
Thus, while some simulation of compromise may be useful for 
metric identification, focus should be on characterizing the 
correctly-operating system in terms of relevant metrics, not 
trying to identify metrics of compromise. 

Metrics that are selected, whether autonomously or manually 
identified, should have several key characteristics.  They must 
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be observable with minimal impact to system operations 
(particularly for metrics that will be used continuously to detect 
symptoms for further escalation).  Metrics that characterize 
performance, as well as those that characterize outputs and 
outcomes should both be selected. 
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Fig. 2. Model development with autonomous metric identification. 

The metrics that are selected should fall into several different 
groups.  The factors that are used for this classification are the 
difficulty and cost of collection, whether a metric is a leading 
indicator of a problem, the percentage of problems that it serves 
as an indicator-metric for and whether it is a metric for an issue 
or characteristic of particular importance.  This is depicted in 
Figure 3.  The resulting groups are summarized in Figure 4.   

Level 1 metrics should include those that are general purpose 
indicators of potential issues (i.e., those that broadly characterize 
proper system operations or are likely to change if system 
operations are impaired).  Level 1 also includes metrics that 
identify specific issues that are not covered by these general 
metrics (level 1S metrics) and those that identify critically 
important issues that should be continuously monitored for 
(level 1I metrics).  Ideally, all level 1 metrics will be leading 
indicators of problems, allowing response before the problems 
escalate.  They should also be as low cost (in terms of 
performance impact and other costs) as possible as they will be 
run continuously. 
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Fig. 3. Inputs to level classification. 
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Fig. 4. Classification levels. 

Level 2 metrics are those that have a higher cost and may 
refine the understanding of the current system status provided 
by the level 1 metrics.  Level 3 metrics may be even higher cost 
and should be more specific to begin to isolate the particular 
causes of the detected issue or issues.  Finally, level 4 metrics 
should be specific to allow the particular anomalous system 
operations to be isolated.  Because of the specificity of these 
(and the potential need to run numerous level 4 metrics, selected 
based on the narrowing of the issue by the level 3 metrics) the 
cost of these is expected to be higher than other metrics.  Finally, 
level 4F metrics collect forensic data about what is or has 
happening and are not expected to be a leading indicator. 

The different classifications of metrics determine how, when 
and how frequently they are used by the monitoring system.  The 
use of these metrics and the comparative use of metrics of 
different classifications is discussed in the subsequent section. 

B.   Measurement and Comparison to Model 

Once metrics are identified and the system is characterized 
in terms of them, the system being secured / verified must be 
monitored using the metrics.  Figure 5 depicts the relationship 
between the two systems.  While the monitoring can, 
prospectively, be conducted on the primary system, this is not 
ideal as an attack may potentially impair both the primary 
system and the incident detection / verification system.  Under 
the ideal (two system) configuration, the metrics are requested 
by the verifying system and returned to a database in near real 
time.  The verification system then processes this data on a near 
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real time basis.  Notably, it is ideal that the verification system 
be appropriately resourced to keep up with this data flow.  
Otherwise, it will either lag behind real time, delaying issue 
detection.  It may also need to skip over data to maintain 
temporal currency, which may result in attacks and issues being 
missed over. 
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Fig. 5. Interaction between system operations and runtime verification 

module. 

The overall model for the operations of the verification 
system is presented in Figure 6.  Specifically, the proposed 
approach utilizes a model of escalation.  The level 1 processes 
(including L1, L1S and L1I) are run continuously.  If a level 1 
process metric shows an anomaly, then the level 2 metrics are 
collected and evaluated (if level 2 metrics can be collected 
continuously without significant cost, the metrics may be 
continuously collected but only processed after triggering based 
on a level 1 metric). A similar approach is taken with the level 3 
and level 4 processes.  Both are triggered based on an issue being 
detected at the immediately lower level (level 2 and 3, 
respectively). 

Finally, if a level 4 process detects a problem, via one or 
more of its metrics, then the level 4 forensics (level 4F) 
processes are triggered to collect data.  Additionally, 
administrator notification and other system-specific processes 
are triggered, based on the strong likelihood of system 
compromise (or other similarly problematic anomalous 
situation) having occurred. 

IV.   NATION STATES AND CYBER WARFARE 

With a paradigm for identifying ‘zero-day’ and other 
unknown-to-operator attacks proposed, a question exists as to its 
efficacy for the issues of nation states engaged in cyberwarfare 
and those engaged in cyberwarfare against (or targeted by) them.  
A key question, thus, is what are the defensive and other related 
needs of nation states engaging in cyberwarfare and those 
targeted by them? 

This is a complex question that cannot, for purposes of 
brevity, be fully explored here.  However, these needs can be 
classified into two key areas.  The first is the need to defend 
systems.  To this end, the proposed system must be able to 
identify problems quickly enough to provide an opportunity to 
respond to prevent or mitigate the impact of adversaries’ attacks.  
The second need is the need for attribution to allow retaliatory 
action via cyber or other means.  The ability to attribute attacks 
and retaliate is integral to deterrence [42], as this is the primary 
inventive for an adversary to not attack in order to achieve 
whatever aims it would otherwise desire.  To meet this second 
need, it is critical that the system collect data (as part of the level 
4F processes and at other levels) that contains attack source data.  
It is also critical that this data be protected from loss or 
alteration.  This is a key justification for the two-system model 
shown in Figure 5.  
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Fig. 6. Operations of the runtime verification module. 

V. CONCLUSIONS AND FUTURE WORK 

This paper has presented a paradigm for the use of runtime 
verification as part of a detection and response system for ‘zero-
day’ and other unknown-to-operator attacks.  It has, in 
particular, focused on the efficacy of this model for use by nation 
states and those who may be targeted by them.  The paradigm 
has been presented and explained and the different levels of 
processes required for it have been discussed.  The utility of the 
system for meeting the needs of nation states have bene 
considered. 

Significant work remains to be done in this area, in the 
future.  In particular, additional work on the development and 
evaluation of a system to demonstrate and assess the proposed 
paradigm is required. 
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