
Accelerated Gauss-Huard Algorithm on Hybrid
GPU-CPU: Look-Ahead with the Delayed

Algorithm Approach

Hisham G. Elzayyadi, Wafaa S. Sayed, Mona A. EL Naggar and Maha A. Hassanein
Engineering Mathematics and Physics Department, Faculty of Engineering, Cairo University

hisham.elzayadi@eng.cu.edu.eg wafaa.s.sayed@eng.cu.edu.eg

monaelnaggar@eng.cu.edu.eg hassanein.maha@eng.cu.edu.eg

Abstract—In this paper, we tackle a significant bottleneck - the
panel factorization step - in the Gauss-Huard algorithm through a
novel parallel computing approach. We address the open question
in the literature regarding the feasibility of applying look-ahead
in this context. Our strategy combines the use of the delayed
Gauss-Huard algorithm with random butterfly transformations
instead of the traditional partial pivoting. The proposed technique
not only allows for the application of look-ahead but also
enhances the overall efficiency of the Gauss-Huard algorithm
in a parallel computing environment, presenting possibilities for
further optimizations.

I. INTRODUCTION

Dense linear systems of equations are integral to many com-

putational applications, typically solved using direct methods

like Gaussian-Elimination (GE), the Gauss-Jordan algorithm

(GJ), and the Gauss-Huard algorithm (GH) [1], [2]. Despite

both Gauss-Huard (GH) and Gauss-Jordan (GJ) reducing the

matrix to a diagonal form, GH is as efficient as Gaussian

elimination (GE), requiring 2
3n

3 + O(n2) floating point op-

erations [3].

As the size of these systems increases, so does the com-

putational complexity, making fine-grain parallelism essential.

In this context, block algorithms have emerged as a pivotal

breakthrough in linear algebra computations. By processing

blocks of data instead of individual elements, these algorithms

offer distinct advantages over elementwise counterparts. They

excel in contemporary computer architectures that thrive on

data locality and efficient exploitation of memory hierarchies.

Moreover, block algorithms can leverage high-level Basic

Linear Algebra subroutines (BLAS) operations, shifting the

focus to dominant matrix multiplication operations. Thereby,

the performance across modern systems like multi-core CPUs,

GPUs, and other hardware accelerators is enhanced. Maintain-

ing stability is another challenge for numerical algorithms.

Pivoting techniques can improve stability, but introduce ad-

ditional time complexity, which can be mitigated by parallel

computing techniques.

While GH and GE have similar computational complexity,

GE is often favored in high-performance computing (HPC)

because of its potential for parallelism and its stability-

enhancing pivoting techniques. Notably, GE’s structure allows

the application of the look-ahead technique, which optimizes

overlapping operations [4], [5]. In contrast, GH’s higher data

dependency, particularly between panel factorization and other

algorithmic steps, limits the applicability of the look-ahead

technique [6]. GH initiates solutions before the full system

is available, making it promising for large, dense linear sys-

tems [3]. Yet, the panel factorization represents a bottleneck

that limits its use. Addressing the data dependency enhances

the GH performance, making it more competitive in HPC.

GH’s high data dependency stems from its restriction to partial

pivoting with column interchanges. If this is resolved, GH can

incorporate look-ahead, improving its performance.

To maintain the stability when forgoing partial pivoting, we

use random butterfly transformations (RBT), a preconditioning

step that randomizes the matrix for parallel computation, mak-

ing pivoting unnecessary [7], [8]. RBT stands out for its speed,

minimal preprocessing, and postprocessing overhead [4].

This work addresses the research gap concerning the appli-

cation of the look-ahead technique on the GH algorithm in

hybrid CPU-GPU platform. Our research validates that GH,

without pivoting, can apply look-ahead to resolve the panel

factorization bottleneck. Also, the RBT enables the application

of the look-ahead technique maintaining both the accuracy and

the stability.

In implementations of this work, we use the GPU library

cuBLAS, the CPU’s BLAS library, and the MAGMA library,

optimized for dense linear algebra on hybrid architectures.

II. PRINCIPLES OF GH ALGORITHM

GH algorithm is a method for transforming a square nonsin-

gular matrix A into an identity matrix. It was first introduced

by Pierre Huard in 1979 [2]. Huard, a French mathematician,

developed this method to optimize the GJ process of solving

systems of linear equations by applying elementary row oper-

ations to the matrix rows. To solve the linear system Ax = b,
the GH algorithm is applied to the augmented matrix (A|b).

The GH algorithm operates by iteratively constructing an

identity matrix of order i in the upper-left corner of the matrix.

This construction process involves three primary sequential

steps: row elimination, scaling, and column elimination [3]:

1) Row elimination: The (i − 1) elements preceding the

ith element in row i are annihilated by subtracting

appropriate multiples of previous rows.

1091

2023 International Conference on Computational Science and Computational Intelligence (CSCI)

2769-5654/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCI62032.2023.00180

Fig. 1: Gauss-Huard Algorithm with no pivoting (GHNP),

highlighting the use of cuBLAS Kernels at each step.

2) Scaling: The ith row is adjusted by scaling it to ensure

that the diagonal element becomes 1.

3) Column elimination: The initial (i − 1) elements of

column i are eliminated by subtracting suitable multiples

of row i

Figure 1 represents The operation of the GH algorithm with

no pivoting (GHNP) algorithm in FLAME notation. At the

end of the algorithm iterative process, the solution vector x
replaces the right-hand side b.

A. Block GH Algorithm

Figure 2 represents the Block variant of the GH algorithm

(BGHNP). This variant closely parallels the element-wise

version, with the primary distinction observed in the scaling

step.

In the Block GH approach, the scaling step modifies the sub-

matrix A11 into an identity matrix. The ideal method to con-

struct this identity matrix involves multiplying the augmented

matrix (A11|A12||b1) by the inverse of A11. However, it’s

unnecessary to directly compute the inverse of A11. Instead,

the update of the sub-matrix (A12||b1) can be achieved by

applying GHNP on the row panel.

This approach of avoiding the inverse computation of A11

then using GHNP allows the block GH algorithm to sig-

nificantly improve its compute throughput compared to its

unblocked counterpart.

B. GH Algorithm with Partial Pivoting

Partial pivoting is a pivoting technique adopted in numerical

computations, due to its efficiency. In the context of the GH

algorithm, the only viable pivoting technique is partial pivoting

with column interchanges (GHPP) [3]. This technique, that is

illustrated in Figure 3, involves swapping the matrix columns

such that the pivot element (Diagonal element used to elimi-

nate entries above or below it) has the largest absolute value

Fig. 2: Block Gauss-Huard Algorithm with no pivoting

(BGHNP), highlighting the use of cuBLAS kernels and other

functions at each step

in its row. This procedure is executed before the elimination

phase, hence improving the numerical stability of the algo-

rithm and enhancing its reliability in solving linear systems.

The reason for this exclusive use of column interchanges is

that the GH algorithm maintains a specific pattern of zeros in

the upper triangular part of the matrix, a pattern that would be

disrupted by row interchanges. To the best of our knowledge,

partial pivoting with row interchanges is not typically utilized

in GH due to these constraints. Consequently, other pivoting

techniques like complete pivoting and rook pivoting aren’t

suitable.

C. Block GH Algorithm with Partial Pivoting

The block variant of the GH algorithm incorporating partial

pivoting with column interchanges (BGHPP) is shown in Fig-

ure 4. During the panel factorization step, the GHPP algorithm

is employed, and column interchanges are performed on the

entire column, not just the panel’s portion.

III. APPLICATION OF LOOK-AHEAD WITH GH

The application of the look-ahead technique in the GH

algorithm is an open question in the literature [6]. The primary

challenge lies in the inherent complexity and data dependen-

cies associated with the Gauss-Huard algorithm implemented

with partial pivoting.

As highlighted by Catalán et al. [6], the panel factorization

presents a significant challenge in BGHPP, consuming up to

half of the execution time on some machines. However, the

same study also noted that as the machine’s peak performance

improves, this ratio decreases significantly, even though panel

factorization remains the primary bottleneck of BGHPP.

The objective of the look-ahead technique is to overlap

the time-consuming panel factorization step with some of

the remaining operations. This approach aims to mitigate the

impact of the bottleneck and enhance the overall execution

1092

Fig. 3: Gauss-Huard Algorithm with partial pivoting

(GHPP),highlighting the use of cuBLAS kernels and other

functions at each step

Fig. 4: Block Gauss-Huard algorithm with partial pivoting

(BGHPP), highlighting the use of cuBLAS kernels and other

functions at each step

Fig. 5: Block diagram of BGHNP with Look-Ahead

efficiency of the BGHPP algorithm. The main challenge is

that the row panel (A11|A12||b1) must be passed as a whole to

GHPP to factorize A11 and to influence the subsequent updates

to (A12||b1) as demonstrated by Figure 4. A potential solution

to this challenge involves initially factorizing A11 followed by

updating (A12||b1). Then we employ the look-ahead technique

between factorizing A11 in the panel factorization step and

updating (A12||b1) in the row elimination step. However, this

method necessitates abandoning partial pivoting, given that the

pivoting step requires the entire panel.

The block diagram in Figure 5 illustrates the incorporation

of the look-ahead technique into the GH algorithm.

The process proceeds as follows:

1) Tile (1) is updated through row elimination using the

matrices A and B.

2) Updated tile (1) is factored without pivoting. Concur-

rently, the panel (2) is updated using matrices A and C,

with the row elimination process utilizing the look-ahead

technique.

3) Panel (2) is finally updated as part of the panel factor-

ization step after factorizing tile (1) and row elimination

process of panel (2) is finished.

The process of factorizing A11 and influencing the subse-

quent updates to (A12||b1) can be effectively addressed by

utilizing GHNP and the GH Delayed algorithm (GHDEL) [9],

respectively.

IV. THE GH DELAYED ALGORITHM

The Gauss-Huard Delayed (GHDEL) algorithm was intro-

duced to address the challenge of solving linear systems with

multiple right-hand sides, particularly when these right-hand

sides are delayed and only become available after solving for

one right-hand side with GH [9]. Typically the GH algorithm

transforms the coefficient matrix into an identity matrix.

However, this process necessitates resolving the problem again

after restoring the coefficient matrix with the new right-hand

sides.

To overcome this complexity, the GH algorithm focuses

solely on the coefficient matrix. It bypasses the computation

of zeros and ones, and instead applies only the updates as

illustrated in Figs 1,3,2, and 4. This process results in a

1093

Fig. 6: Gauss-Huard delayed algorithm (GHDEL) given a

factored coefficient matrix A by Gauss-Huard algorithm

factored coefficient matrix, denoted as A, which can sub-

sequently be solved with any right-hand side. Considering

that the coefficient matrix A is transformed into A using the

unblocked version of the GH algorithm, the solution matrix X
is computed and takes the place of the right-hand side matrix

B, as detailed in Figure 6.

The row operations of the GHDEL are confined to the right-

hand sides B, with no involvement of the matrix A. The

algorithm carries out operations akin to triangular solvers in

the LU-based method, resulting in a computational cost that is

roughly 2n2 flops. This cost is matched to the cost of solving

a system via LU factorization, provided the triangular factors

L/U have been precomputed. A significant advantage of the

GH method is its need for a single matrix sweep, compared

to the double sweeps required by LU factorization [9].

Applying the delayed GH algorithm, the panel factorization

step is implemented as follows: the tile A11 is factored using

GHNP then the trailing row panel (A12||b) is updated using

GHDEL as shown by Figure 7.

Although implementing look-ahead with BGHNP enhances

the parallelism potential, it suffers from decreased accuracy

and stability. we propose using Random Butterfly Transfor-

mations (RBT) to maintain accuracy and stability compared to

those of BGHPP. BGHPP exhibits high stability [10] yet it isn’t

as suitable for parallel processing as BGHNP. Consequently,

RBT can solve these problems by combining the stability

of the butterfly scheme and the high parallelism potential in

BGHNP.

V. RANDOM BUTTERFLY TRANSFORMATIONS

A butterfly matrix is an n× n matrix defined as follows:

B =
1√
2

(
R0 R1

R0 −R1

)
,

where R0 and R1 are two random non-singular n/2 × n/2
diagonal matrices.

Fig. 7: Block Gauss-Huard algorithm without pivoting with

the Delayed algorithm in the Panel Factorization step

When examining a recursive butterfly matrix with a depth

of d, it displays a recursive pattern as documented by Baboulin

et al. [8]:

W (n,d) =

⎛
⎜⎜⎝

B
(n/2d−1)
1 · · · 0

...
. . .

...

0 · · · B
(n/2d−1)

2d−1

⎞
⎟⎟⎠× ..

..×
(

B
(n/2)
1 0

0 B
(n/2)
2

)
×B(n)

(1)

In this context, all the blocks denoted by B
(k)
i are butterfly

matrices of size k and B(n) is a butterfly matrix of size n.

The diagonal values employed in the butterflies are determined

randomly and are calculated as exp(r/10), where the value of

r is selected randomly from the range [−0.5, 0.5].
The steps followed are taken to solve the general linear

system Ax = b using RBT:

1) Calculate the randomized matrix Ar = UTAV , where

both U and V are recursive butterfly matrices of depth

d
2) Apply BGHNP on Ary = UT b to get the solution y.

3) Compute the solution x = V y.

When the depth d is less than log2n, the butterfly scheme

is called partial random butterfly transformations (PRBT). It

has been demonstrated in [8] that a depth of 1 or 2 is typically

sufficient, although iterative refinement may be necessary in

some cases.

VI. RESULTS

A. Test Environment

The remote machine used for computations is A100-SXM4-

40GB GPU having precision of u = 2.22 × 10−16 and

is licensed by Google Colaboratory. This machine has a

1094

theoretical peak performance at tensor cores double precision

of 19.49 TFLOPS and 9.7 TFLOPS for CUDA cores double

precision, L2 cache of 40 MB, L1 cache of 192 KB per

streaming multiprocessor (SM), DRAM of 40 GB, and a

memory bandwidth of 1555 GB/s. The CPU is an 8-core Intel

Xeon @ 2.20 GHz with 53 GB of RAM. The MAGMA library

version used is 2.7.2 and the linear system is initially read by

the CPU and stored in the RAM, and then transferred to the

global memory of the GPU for computation. Execution time

is recorded from the start of the algorithm iterations until the

production of the solution on the GPU. The initial transfer of

the system from the CPU to the GPU and the final transfer of

the solution back from the GPU to the CPU are not included

in the recorded execution time.

The performance of our implementations is assessed by

calculating the compute throughput because solving dense

linear systems with the block versions of GE and GH attains

relatively high arithmetic intensity. The compute throughput

is defined as the ratio between the number of FLOPs and the

execution time in seconds. Hence, it carries information about

both the utilized resources and the execution time. In order

to calculate the compute throughput for all implementations;

the number of FLOPs for either GE or GH is calculated by

the formula 2/3 n3 + 3/2 n2 − 7/6 n, where n is the matrix

dimension. The execution time in seconds is calculated by

taking the average of 100 runs and the block sizes are chosen

so that the execution time is minimum.

In the scaling step with GHNP, GHPP, and GHDEL, we

utilize the level 3 cuBLAS kernel DTRSM instead of the level

1 DSCAL. DSCAL in cuBLAS and its MAGMA wrapper only

accept a “const double” pointer and pass-by-value scalars,

respectively, necessitating additional operations to fetch and

pass the scalar. However, by interpreting the scaling process

as solving an upper triangular system with multiple right-hand

sides (where the matrix is the scalar and the vectors are the

right-hand sides), we bypass these complexities.

B. BGHPP Performance

The execution of BGHPP is exclusively GPU-based (GPUB-

GHPP) due to the absence of overlapping operations that can

run concurrently on the CPU and GPU. The block sizes used

are: 32 for (n = 1k − 3k), 64 for (n = 4k − 7k), and 128

(n = 8k − 20k). Figure 8 shows that our implementation

exhibits significantly low compute-throughput, achieving less

than 20% of the peak performance demonstrated by the tensor

cores at matrix size 20k.

The Nvidia Nsight system profiler was utilized in our study

to pinpoint performance bottlenecks. Figure 9 depicts a visual

representation of its analysis. The level 1 cuBLAS kernel,

IDAMAX, emerges as the kernel consuming the most time.

This kernel is leveraged for partial pivoting to identify the

index of the maximum absolute entry in the row.

Despite requiring no FLOPs, the IDAMAX kernel intro-

duces a substantial overhead as it performs (12n
2 − 1

2n)

comparisons. To overcome this inefficiency, we substituted

partial pivoting with PRBT (BGHPRBT), a method known

Fig. 8: Compute throughput of BGHPP in a GPU native

environment

Fig. 9: The time percentage of each BGHPP cuBLAS kernel

according to Nvidia Nsight systems

for its stability. Despite the overhead associated with the

preprocessing and postprocessing steps of PRBT, it is signif-

icantly less than that of partial pivoting, especially for larger

matrices. This leads to a significant enhancement in the overall

performance of the block GH algorithm.

C. BGHPRBT with Delayed Algorithm-Based Panel Factor-
ization

The BGHPRBT algorithm is implemented by firstly apply-

ing the randomization process, then employing BGHNP, as

detailed in Figure 7. The panel factorization step is executed by

factorizing the diagonal tile A11 using GHNP and updating the

trailing panel (A12||b1) using GHDEL as detailed in Figure 6.

The importance of the look-ahead technique becomes ev-

ident when comparing BGHPP and BGHPRBT with the

delayed algorithm (BGHPRBT DEL) without applying the

look-ahead, as shown in Figure 10. The block sizes chosen

for BGHPRBT DEL are 64 for (n = 1k − 2k), and 128

for(n = 3k− 20k). Both algorithms are implemented natively

on the GPU, with BGHPRBT DEL showing marginally higher

1095

Fig. 10: Compute throughput comparison between BGHPP and

BGHPRBT DEL for different matrix dimensions in a GPU

native environment

compute-throughput, primarily due to the absence of the level

1 cuBLAS kernel IDAMAX.

The use of look-ahead in algorithms allows greater overlap

between computational steps, providing significant improve-

ment in the compute-throughput, particularly within the al-

gorithm’s bottleneck panel factorization. In the GPU-native

implementation of BGHPRBT DEL with look-ahead (GPUB-

GHPRBT DEL LA), the block sizes used are the same as

BGHPRBT DEL. Figure 11 illustrates that the use of look-

ahead technique improves the compute throughput, achieving

a speedup of 1.18x with a matrix size of 20k.

Implementing the look-ahead with a hybrid approach al-

lows concurrent usage of the CPU and GPU. Additionally, it

transitions the computational architecture from Single Instruc-

tions Multiple Data (SIMD) to Multiple Instructions Multiple

Data (MIMD) paradigm. Figure 12 illustrates that the hybrid

approach yields a speedup of 1.03x at a matrix size of

20k compared to the GPU-native approach. However, it uses

different block sizes: 64 for n = 1k − 9k, and 128 for

n = 10k − 20k. This is due to the CPU’s speed advantage

when executing on small data sets.

The GPU experiences significant kernel latency, which

becomes dominant when handling small data sets or when

two kernels are executing concurrently, suggesting that the

increased latency may result from resource conflicts. The CPU,

with latency measured in ns rather than μs, outperforms the

GPU for small data sets, contributing to the slight superiority

of the hybrid implementation.

D. BGHPRBT with GHNP-Based Panel Factorization

In this work, we implemented BGHPRBT to perform the

panel factorization step across the entire row panel using

GHNP, as detailed in Fig 1 and Fig 2. In this implementation

the look-ahead is not applied. Figure 13 shows a performance

comparison between the GPU native BGHPRBT (GPUB-

GHPRBT) and both GPU native and hybrid variations of

Fig. 11: Compute throughput comparison between BGHPP,

BGHPRBT DEL, and BGHPRBT DEL LA for different

matrix dimensions in GPU native environment

Fig. 12: Compute throughput comparison between BGHPP,

BGHPRBT DEL, and BGHPRBT DEL LA in a GPU native

environment and BGHPRBT DEL LA in a hybrid environ-

ment for different matrix dimensions

BGHPRBT DEL LA. The block sizes for GPUBGHPRBT

are: 32 for n = 1k − 4k, 64 for n = 5k − 8k, and 128

for 9k−20k. GPUBGHPRBT slightly outperforms HybBGH-

PRBT DEL LA, primarily due to the suboptimal performance

of the delayed algorithm, as recorded by Benner et al. [9].

They demonstrated that the delayed algorithm underperforms

the triangular solvers of LU factorization in the cuBLAS

library or Intel MKL when dealing with more than 64 right-

hand sides.

The better performance of GPUBGHPRBT over GPUBGH-

PRBT DEL LA is largely due to reduced kernel latency. Both

GHNP and GHDEL utilize the same kernels and have identical

inner loop iterations. The only difference lies in their memory

access patterns. In BGHPRBT during the panel factorization,

using GHNP for the entire row panel (A11|A12||b1) results in

half the kernel calls compared to BGHPRBT DEL LA, which

1096

Fig. 13: Comparison of Compute Throughput between the

GPU native BGHPRBT and the delayed algorithm BGHPRBT-

DEL with look-ahead in a hybrid machine

uses GHNP for A11 factorization and GHDEL for updating

(A12||b1). Table I summarises the performance results for all

variations of BGHPRBT, illustrating the relative speedup of

each implementation in comparison to BGHPP.

TABLE I: Comparison of Speedups for Different Versions of

Block GH with PRBT vs. BGHPP, with a Matrix Size of 20k

and Block Size of 128.

Platform Panel Factorization Look-ahead Speedup
GPU GHNP-based not applied 1.524
GPU Delayed-based not applied 1.243
GPU Delayed-based applied 1.468
CPU-GPU Delayed-based applied 1.516

VII. CONCLUSION

This work offers valuable insights into the Gauss-Huard

algorithm, highlighting its potential particularly in heteroge-

neous environments. We propose a hybrid technique, termed

Gauss-Huard with Partial Random Butterfly Transformations,

which effectively addresses the bottleneck of panel factor-

ization. This is accomplished by utilizing the delayed algo-

rithm approach of GH in conjunction with the look-ahead

technique for the first time and ensuring stability through the

randomization scheme. Our results emphasize the potential for

parallelism of the Gauss-Huard algorithm. The implementation

of the look-ahead technique improves the performance on the

hybrid CPU-GPU platform. However, it does not deliver the

expected performance gains, primarily due to the high kernel

latency of the delayed algorithm. Additionally, our proposed

method demonstrates notable scalability characteristics. As

the problem size increases, the compute throughput steadily

approaches peak performance, indicating that our method can

effectively handle larger problem sizes without significant per-

formance degradation. This scalability, makes it a robust solu-

tion for large dense linear systems. Future research is expected

to focus on optimizing the delayed algorithm or exploring

alternative solutions to enable the look-ahead technique with

Gauss-Huard to significantly enhance the performance.

ACKNOWLEDGMENT

The authors would like to thank the software engineer Hady

Elzayyadi at Pixelogic media for his help in configuring the

project dependencies.

REFERENCES

[1] L. N. Trefethen and D. Bau III, “Numerical linear algebra, vol. 50,”
1997.

[2] P. Huard, “La méthode simplex sans inverse explicite,” EDB Bull,
Direction Etudes Rech. Sér. C Math. Inform, vol. 2, pp. 79–98, 1979.

[3] W. Hoffmann, “The gauss-huard algorithm and lu factorization,” Linear
algebra and its applications, vol. 275, pp. 281–286, 1998.

[4] S. Donfack, J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek,
and I. Yamazaki, “A survey of recent developments in parallel imple-
mentations of gaussian elimination,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 5, pp. 1292–1309, 2015.

[5] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and
S. Tomov, “A class of communication-avoiding algorithms for solving
general dense linear systems on cpu/gpu parallel machines,” Procedia
Computer Science, vol. 9, pp. 17–26, 2012.

[6] S. Catalán, P. Ezzatti, E. S. Quintana-Ortı́, and A. Remón, “The impact
of panel factorization on the gauss-huard algorithm for the solution of
linear systems on modern architectures,” in Algorithms and Architectures
for Parallel Processing: 16th International Conference, ICA3PP 2016,
Granada, Spain, December 14-16, 2016, Proceedings. Springer, 2016,
pp. 405–416.

[7] D. S. Parker, “A randomizing butterfly transformation useful in block
matrix computations,” 1995.

[8] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov, “Accelerating
linear system solutions using randomization techniques,” ACM Trans-
actions on Mathematical Software (TOMS), vol. 39, no. 2, pp. 1–13,
2013.

[9] P. Benner, P. Ezzatti, E. S. Quintana-Ortı́, and A. Remón, “Extending
the gauss–huard method for the solution of lyapunov matrix equations
and matrix inversion,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 9, p. e4076, 2017.

[10] T. Dekker, W. Hoffmann, and K. Potma, “Stability of the gauss-huard
algorithm with partial pivoting,” Computing, vol. 58, no. 3, pp. 225–244,
1997.

1097

