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Abstract—Over the years, space systems have evolved consider-
ably to provide high-quality services for demanding applications
such as navigation, communication, and weather forecast. Mod-
ern space systems rely on extremely fast commercially available
off-the-shelf (COTS) processing units, with built-in GPU, DSP,
and FPGA in light-weight, energy-efficient hardware. Since such
devices are not necessarily designed with security features as
a priority, there must be an adaptive controller to protect this
mission-critical space system from potential malicious attacks,
such as memory leaks, packet drops, algorithmic trojans, and so
on. These attacks can lead the system to substantial inefficiency
or complete failure. Considering the hardware diversity in
current space systems, we propose a framework to explore both
diversity and redundancy not only of hardware but also of
software to make the overall system fault-tolerant. Our approach
deploys mechanisms for monitoring and orchestrating actions of
redundancy, diversity, and randomization to render the system
resilient unpredictably dynamic, and optimize efficiency as much
as possible during abnormalities. Yet, we use rule-based and
adaptive engines to keep track of the various computing units to
learn the best strategies to take when the system is under attack.
The robustness of our approach lies in the fact that it makes the
system highly unpredictable to potential attackers and tolerates
attacks to some extent, which is crucial for any mission-critical
application.

Index Terms—Diversity, Dynamic Orchestration, Redundancy,
Detection, Space System

INTRODUCTION

Space systems provide essential civil, commercial, and

military services. These areas heavily rely on navigation,

communication, and remote sensing services. Technological

advancements over the last few decades have resulted in the

development of smaller, lighter, and more powerful devices

for use in space. This transformation has led to using efficient

computational hardware known as Heterogeneous Computing

Platform (HCP) [1]–[3].

HCPs can integrate various processing units, including

CPUs, GPUs, DSPs, and FPGAs, into a single chip, making

them highly efficient in terms of both performance and power

consumption. HCPs can render space systems relatively cost-

effective when used with the appropriate software. However,

modern space systems typically rely on commercial-off-the-

Fig. 1. Proposed HCP Orchestration & Monitoring Mechanism

shelf (COTS) platforms, which are heterogeneous and primar-

ily used to reduce price and development time. The downside

of this strategy is that COTS platforms are not necessarily

designed with robust built-in security features, which can make

the systems vulnerable to attacks.

Space has become increasingly crowded and competitive,

which raises concerns about their security. While commercial

space systems have grown exponentially in recent years,

military expansion in space has complicated matters further.

Moreover, a gap exists in the literature regarding investigating

the security aspects of HCP platforms. As a result, there is

a pressing need to explore ways to develop security solutions

for the HCP-based computing environment [4]–[8].

PROPOSED HCP ORCHESTRATION & MONITORING

MECHANISM

The proposed HCP orchestration and monitoring mech-

anism consists of one computation Orchestrator (O), one

Monitoring unit (M), and multiple Computation units (Ci),
as shown in Fig. 1. The O is responsible for directing the

computation process of each compute unit and assigning an

907

2023 International Conference on Computational Science and Computational Intelligence (CSCI)

2769-5654/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCI62032.2023.00151



algorithm to each unit from a set of algorithms A = {ai}.

The M collects the computation response from each Ci,
aggregates it, and provides the final computation response.

Additionally, the M assesses the computation performance of

each compute unit and maintains reputation metrics of each Ci.
The reputation is also shared with the O. Each Ci is responsible

for performing the assigned tasks using the assigned algorithm,

which is determined by the O. It is important to note that the

architecture assumes that the O and the M can communicate

with each Ci through a communication channel. The O and the

M can communicate between themselves as well. However,

there does not exist any communication channel between any

two compute units.

THREAT MODEL

We assume that the O and the M are trustworthy com-

ponents while an adversary can compromise one or multiple

Ci. This paper considers two classes of attacks: (i) result
manipulation attack: attacks that target the output results,

(ii)performance degradation attack: attacks that impact the

performance of the compute units but not necessarily alter

the output. Possible attack surfaces include data manipulation,

output alteration, algorithmic trojan, packet drop, and memory

leakage. We assume that the adversary can access the source

code for conducting these sophisticated attacks. However, we

assume that the adversary cannot compromise the commu-

nication channel between the O and M. The adversary can

introduce multiple attacks simultaneously. The description of

the attacks is given below.

Result Manipulation Attacks:

Below is the description of different types of result manip-

ulation attacks.

1) Data Manipulation: In this type of attack, the adversary

arbitrarily manipulates the input data, and to make it realistic,

the adversary can select the manipulated data from the original

distribution. For example, if the input array is: [5, 3, 10, 1, 6]
after data manipulation attack it turns into [5, 3, 10, 1, 5] where

6 is replaced by 5.

2) Output Alteration: In this attack, the adversary manipu-

lates the computation output. For example, if the sorted result

of a sorting algorithm is [1, 3, 5, 6, 10], the adversary can

modify it as [1, 3, 5, 10, 6].
3) Packet Drop:: The adversary drops data packets from

the communication channel between the Ci and the M. An

adversary can modify the communication between one or

multiple compute units to the monitor.

Performance Degradation Attacks

The following are two types of performance degradation

attacks:

4) Algorithmic Trojan: This type of attack involves the

adversary manipulating the algorithm, which may or may not

affect the output. The motivation of this attack can be one or

both of the following: one is to pose an impact on the output,

and the other one is to drain out the resources, i.e., energy

and/or compute hour of the Ci. For example, pivot tweaking

(picking the max or min value at each iteration) in quick sort

does not impact the sorting result. Still, it can successfully

degrade the computation performance by ensuring the worst-

case behavior of the quick sort algorithm.

5) Memory Leakage: In this attack, the attacker injects

arbitrary memory-consuming instructions in the source code,

which will lead to draining unnecessary memory of the com-

pute units. In the worst case, it can lead to buffer overflow.

This attack does not affect the output result but drastically

reduces the compute capability of Ci.
HCP RESILIENCY

HCP resiliency is defined as the platform’s capability to

execute its computing task accurately, even in the presence of

adversarial events or abnormalities. Each HCP platform has

a different level of tolerance to adversarial events based on

its attributes. An HCP platform’s resiliency depends on three

key features: the ability to identify abnormal events, respond

to them, and recover from them. A platform is considered

more resilient than others if it can ensure these three features

efficiently and promptly without compromising the ongoing

computing accuracy.

COMPUTATION STRATEGY

This section outlines different computation strategies that

can be adopted by the O to enhance the resiliency of HCP,

depending on the computation application.

Computation Partition (CP): This strategy involves parti-

tioning a computation task into multiple sub-tasks, with each

C〉 responsible for performing one or more of the sub-tasks.

The O assigns the sub-tasks to each unit Ci and determines the

algorithm or sub-task execution process. Finally, the M accu-

mulates the results of each sub-task from each Ci, combines

them, and outputs the final result.

Triple Modular Redundancy (TMR): In this strategy, three

compute units perform an identical task/sub-task, using the

same algorithm or execution process.

Triple Modular Diversity (TMD): This approach involves at

least three compute units performing identical tasks/sub-tasks

but with different task execution processes/algorithms. The O
determines the process/algorithm for each unit.

Hybrid Strategy: In this strategy, both the algorithm and

compute unit can change over time. It can be performed

consistently with CP and/or TMR/TMD.

HIERARCHICAL DETECTION MECHANISMS

This section provides an overview of various attack detec-

tion strategies along with their merits and demerits. The moni-

toring system can use one or more of these strategies to detect

attacks in Ci, depending on the application’s requirements.

Brute Force Approach: In this approach, the M checks each

smallest segment of the output result. The definition of the

smallest segment depends on the characteristics of the applica-

tion. For example, in sorting, the smallest segment is each pair

of two consecutive elements. However, this method may not

908



work for applications where there is no single absolute correct

result, such as a compression algorithm. Moreover, checking

every output segment may consume lots of computational

power.

Probabilistic Approach: In the probabilistic approach, the

M obtains some predefined specific portions of the correct

computation results beforehand. It matches them with the com-

puted ones from the Ci. The advantage of this approach is that

it reduces the burden on the monitor, while the disadvantage

is that it trades off the detection guarantee.

Fingerprinting: In the Fingerprinting approach, the M
accumulates execution statistics, such as memory usage, com-

putation time consumed, etc., from each Ci and maps those

statistics with standard or acceptable ones to detect any

abnormality. The monitor can use a machine learning model or

other statistical method for detection. However, accumulating

those statistics accurately is challenging.

Hashing Based Approach: In this approach, the M obtains

the hash value of a portion of correct output from the O and

matches it with the result from Ci. This approach consumes

fewer resources during detection and is also accurate. How-

ever, getting the hash value of outputs for all applications may

not be possible.

Attribute-based Checksum Approach: In this approach, the

M collects some attributes of the input data/output results (not

actual result) from the O and matches those attributes with the

output from Ci. The attribute differs in different applications.

This method also trades between attack detection possibility

and detection resource consumption. For example, in a sorting

application, the M can acquire the sum of all elements from

the O and match that sum to the output of the Ci.
ADAPTIVE ORCHESTRATION MECHANISMS

The use of adaptive orchestration mechanisms has the

potential to provide resiliency, and defend against cyber-

attacks. There are two primary types of adaptive orchestration

mechanisms: rule-based adaptation and machine learning-

based adaptation.

Rule-based Adaptation: This strategy is based on pre-

defined rules that dictate how the orchestration process and

components should be changed based on performance data

provided by the monitoring system. While this approach can

respond to attacks, it is static, which means that an adversary

can predict the response if they observe the platform’s behavior

for a sufficient time, allowing them to execute advanced cyber-

attacks.

Machine Learning-based Adaptation: This strategy uses

data-driven models to create an adaptive orchestration strategy.

This approach collects training data from the platform and

uses supervised, such as deep neural networks, or adaptive

machine-learning models, such as reinforcement learning, to

create data-driven models. With the requirements and criti-

cality of the application, the orchestration system can adopt

a continual learning framework. This type of orchestration is

adaptive to the changing behavior of the adversary and can

change the orchestration strategy dynamically with appropriate

modifications. However, to make the orchestration unpre-

dictably dynamic the objective function of machine learning

model should contain a randomization term.

BASELINE ORCHESTRATION MECHANISMS

The baseline orchestration mechanisms, such as random

orchestration and round-robin orchestration, are unresponsive

to any attack or abnormality in the platform.
Random Orchestration: In this mechanism, the orchestra-

tion system randomly assigns the execution algorithm and

component to Ci during each execution cycle. Thus, the O
is unresponsive to any attack or abnormality in the platform.

Round-robin Orchestration: In this mechanism, the orches-

tration system assigns the execution algorithm and component

to Ci in a round-robin manner during each execution cycle.

Therefore, this method is also unresponsive to any adversary.

CONCLUSION

The use of heterogeneous computing platforms (HCP) has

expanded beyond space computing and is now widely used

in various applications such as critical infrastructure, edge

computing, and AI. This paper proposes a framework for mon-

itoring and orchestrating HCP using detection and adaptation-

based strategies. These strategies can be modified to suit

different applications such as sorting, compression, gradient

descent calculation, and machine learning algorithms. Overall,

this paper presents a versatile approach to manage HCP for a

range of applications.
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