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Abstract—Time expression (a.k.a., timex) normalization is a
fundamental task for many downstream researches and applica-
tions. Previous researches mainly developed deterministic rules
and machine-learning methods for the end-to-end task of timex
recognition and normalization (TERN). However, deterministic
rules heavily depend on specific domains while machine-learning
methods are somewhat unexplainable. To better understand
the task, we analyze three diverse benchmark datasets for the
characteristics of timex types and values. According to these char-
acteristics, we propose a rule-based method termed MetaTime1

with three kinds of meta time information to normalize timexes
into standard type and value formats. MetaTime is independent
of specific domains and textual types. Experimental results on
three diverse benchmark datasets demonstrate that MetaTime
outperforms four representative state-of-the-art methods.

Index Terms—time expression normalization, meta time infor-
mation, token triples, mapping relations, priority relationship

I. INTRODUCTION

Time expression (i.e., timex) recognition and normalization

(TERN) is a fundamental task for numerous downstream

researches and applications, such as temporal event extrac-

tion [19], [31], [32], [34], timeline construction [1], [11],

[23], temporal reasoning [18], [27], and temporal question

answering [13], [14]. TERN includes two sub-tasks: timex
recognition and timex normalization. Timex recognition has

achieved considerable progress in the pass few years [8], [10],

[35]–[40]. However, timex normalization remains a challenge.

Timex normalization aims to normalize timexes to the

standard formats of type and value. It contains two sub-tasks:

type classification and value normalization. For example, for

the timex “September 18, 2021”, the goal of the task is to

normalize it into the type of DATE and the value of “2021-09-

18”. Previously, timex normalization was mainly resolved by

deterministic rules [6], [7], [20], [28], [29], [33] and learning

methods [2], [3], [5], [9], [17]. However, deterministic rules

heavily depend on specific domains, which lacks flexibility;

while learning-based methods are somewhat unexplainable.

To our knowledge, there is no research that systematically

analyzes what factors affect timex types and values.

In this paper, we analyze timexes from three diverse bench-

mark datasets for the characteristics of timex types and values.

∗Mengyu An and Chenyu Jin contributed equally. #Xiaoshi Zhong is the
corresponding author. This research was mainly supported by the Agency for
Science, Technology and Research (A*STAR) under its AME Programmatic
Funding Scheme (Project #A18A2b0046).

1Source codes will be available at https://github.com/xszhong/MetaTime.

Our analysis uses the three kinds of token types (i.e., time
token, modifier, and numeral) defined by [40] for timex con-

stituents. From the analysis we have three observations. Firstly,

time tokens and timex types have strong mapping relations (see

Observation 1 for details). Secondly, there exists a priority

relationship among the four timex types (see Observation 2).

Thirdly, standard timex values have only some formats and

these value formats are mainly composed of different types of

time tokens and numerals (see Observation 3).
According to these observations, we propose a rule-based

method termed MetaTime to normalize timexes into standard

type and value formats. Specifically, MetaTime uses three

kinds of meta time information (i.e., token triples, mapping

relations from time tokens to timex types, and priority among

timex types; see Section IV-A) to capture the information of

all the words of a timex and stores these meta information

in a structure called MetaInfo (see Section IV-B2). Finally,

MetaTime uses the MetaInfo to determine a timex’s standard

type and value (see Section IV-B). MetaTime designs rules

on top of token types and therefore is independent of specific

domains and specific textual types.
We evaluate the quality of MetaTime on three benchmark

datasets (i.e., TE-3 [31], WikiWars [22], and Tweets [40])

against four representative state-of-the-art methods (i.e., Hei-

delTime [29], SUTime [7], UWTime [17] and ARTime [9]).

Experimental results demonstrate that MetaTime achieves the

best results in type classification on all the three datasets and

the best results in value normalization on the TE-3 and Tweets

datasets, in comparison with the four state-of-the-art methods

(See Section V for details). Moreover, MetaTime runs in real-

time and can be easily used as a basic tool for other time-

related linguistic tasks, such as temporal reasoning [18], [27]

and temporal question answering [13], [14].
To summarize, we mainly make the following contributions.

• We analyze three benchmark datasets to understand the

task of timex normalization and summarize three statis-

tical characteristics about timex types and values.

• We propose a simple rule-based method termed Meta-

Time to normalize timexes into standard type and value

formats. MetaTime is independent of specific domains

and textual types, and runs in real-time and can be easily

used as a basic tool for other time-related tasks.

• Experiments on three datasets demonstrate that MetaTime

outperforms four representative state-of-the-art baselines.
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II. RELATED WORKS

Many researches on timex normalization are reported in the

series of TempEval competitions [31], [34]. The methods for

timex normalization could be categorized into two main types:

rule-based methods and learning-based methods.

Rule-based Methods for Timex Normalization. Rule-based

time taggers like HeidelTime and SUTime mainly design de-

terministic rules to normalize timexes [6], [7], [20], [28]–[30],

[33]. Many of them are designed for TERN (e.g, HeidelTime

and SUTime). Some time taggers are designed with mixed

methods. For example, ManTime [12], ClearTK-TimeML [4],

and CogCompTime [24] propose learning methods for timex

recognization while develop rules for timex normalization.

Learning-based Methods for Timex Normalization. Many

learning-based methods for timex normalization are also devel-

oped for the TERN task. [2] define a compositional grammar

and employ an EM-style method to learn a latent parser

for TERN. UWTime [17] leverages a combinatory catego-

rial grammar (CCG) and employ L1-regularization to learn

linguistic information from context for TERN. [9] propose

to automatically generate rules from training data for timex

normalization. In fact, most learning-based methods design

rules to determine the final timex values, such as TIPSem [21]

and ClearTK-TimeML [4]. [16] normalize clinical timexes by

a neural-network method while [15] normalize multilingual

timexes with masked language models.

MetaTime is a rule-based time normalizer and focuses on

English. Compared with previous rule-based methods that

design rules in a deterministic way, MetaTime designs rules

in a heuristic and flexible way and is independent of spe-

cific domains and textual types. Compared with learning-

based methods that are somewhat unexplainable, MetaTime

is based on a systematic analysis of the characteristics about

timex types and values and provides detailed explanation for

experimental results. Moreover, MetaTime runs in real-time.

III. DATA ANALYSIS

A. Datasets

We analyze the following three benchmark datasets for the

characteristics of timex types and values: TimeBank [26],

WikiWars [22], and Tweets [40]. TimeBank contains 183 news

articles and is used in TempEval competitions [31], [32],

[34]. WikiWars is a domain-specific dataset collected from

Wikipedia articles about 22 famous wars. Tweets is a dataset

about timexes in informal text and consists of 942 tweets

collected from Twitter. Table I summarizes the statistics of

the three benchmark datasets.

B. Observations

While the three datasets are varied in many aspects (e.g.,

corpus sizes and domains), we will see that the types and

values of their timexes demonstrate similar characteristics.

Observation 1: Time tokens and timex types have strong

mapping relations: a specific type of time tokens mainly appear

in a specific type of timexes.

TABLE I: Statistics of the three benchmark datasets

Dataset #Words #Timex #DATE #TIME #SET #DURATION

TimeBank 61418 1243 1016 22 16 189
WikiWars 119468 2671 2247 118 13 258
Tweets 18199 1129 761 181 36 151

Table II reports the percentage of time tokens that appear

in the four types of timexes within individual dataset. The

format of results in Table II is “Pr/Pr1”, where Pr denotes

the percentage of time tokens that appear in the type of the
whole timexes, as defined by Eq. (1); while Pr1 denotes the

percentage of time tokens that appear in the type of the one-
word timexes, as defined by Eq. (2).

Pr(W,T ) =
Count(W,T )

Count(W )
(1)

where T denotes a specific timex type and T ∈
{DATE,TIME,DURATION,SET}, W denotes a specific type

of time tokens. (There are 17 types of time tokens in total;

see the first column of Table II.) Count(W ) denotes the total

number of the W type of time tokens, while Count(W,T )
denotes the number of the W type of time tokens that

appear in the T type of all timexes. For each W , we have∑
T Pr(W,T ) = 100%.

Pr(W,T ) calculates the percentage of the W type of time

tokens that appear in the T type of timexes by considering

the whole timexes. By contrast, Pr1(W,T ) calculates the

percentage by considering only the one-word timexes:

Pr1(W,T ) =
Count1(W,T )

Count1(W )
(2)

where Count1(W ) denotes the total number of the W type of

time tokens that appear in only the one-word timexes, while

Count1(W,T ) denotes the number of the W type of time

tokens that appear in the T type of the one-word timexes.

Pr1(W,T ) indicates that within one-word timexes, the per-

centage of the W type of time tokens that appear in the T type

of timexes. Similarly, for each W ,
∑

T Pr1(W,T ) = 100%.

Table II shows that a specific type of time tokens mainly

appear in a specific type of timexes in both the whole timexes

and only the one-word timexes. The high percentages indicate

strong mapping relations from time tokens to timex types. For

example, 100% of TIME appearing in TIME indicates that if

a timex contains a TIME, then the timex will be classified as

TIME. When considering only the one-word timexes (where

each timex contains and only contains a time token, without

any modifier or numeral), almost all the percentages increase

to a very high level, especially, many reach 100%. That means

these mapping relations are very strong. The mapping relations

are summarized in Table III.

Observation 2: There exists a general priority among the

four timex types: DATE < TIME < DURATION < SET.

Modifiers and numerals may change the type of a timex from

low priority to high priority.
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TABLE II: Percentage of a specific type of time tokens that appear in a specific type of timexes. The result format is “Pr/Pr1”.

The percentage greater than 50% is in boldface. “-” indicates no such type of time tokens that appear in the type of timexes.

Time Token TimeBank (%) WikiWars (%) Tweets (%)

DATE TIME SET DURATION DATE TIME SET DURATION DATE TIME SET DURATION

YEAR 100/100 -/- -/- -/- 99/100 0.8/- -/- 0.5/- 93/95 5.9/5.3 -/- 0.9/-
MONTH 98/100 1.0/- 1.0/- -/- 98/100 1.3/- -/- 0.4/- 97/100 2.8/- -/- -/-
WEEK 93/100 5.4/- 2.0/- -/- 80/100 20/- -/- -/- 81/100 12/- 7.7/- -/-
DATE -/- -/- -/- -/- -/- -/- -/- -/- 100/100 -/- -/- -/-
TIME - 100/- -/- -/- -/- 100/100 -/- -/- -/- 100/100 -/- -/-
DAYTIME -/- 94/100 5.9/- -/- -/- 98/100 -/- 2.4/- -/- 96/100 4.2/- -/-
TIMELINE 99/99 1.2/0.7 -/- -/- 100/100 -/- -/- -/- 99/100 0.3/- -/- 0.3/-
TIMEUNITS 89/50 -/- 1.6/- 9.6/50 69/100 2.5/- 1.0/- 27/- 67/94 2.4/2.0 4.2/- 26/4.1
TIMEUNITC 16/- -/- -/- 84/100 27/- 2.5/29 -/- 70/71 5.1/- -/- 1.3/- 94/100
TIMEUNITD -/- -/- 89/- 11/- -/- -/- -/- -/- -/- -/- 100/100 -/-
SEASON 92/100 -/- 8.3/- -/- 100/100 -/- -/- -/- 100/100 -/- -/- -/-
DECADE 80/- -/- -/- 20/- 100100 -/- -/- -/- -/- -/- -/- -/-
PERIODICAL -/- -/- 75/75 25/25 -/- -/- 100/- -/- -/- -/- 100/100 -/-
DURATION 64/65 -/- -/- 37/35 6.7/8.3 -/- -/- 93/92 -/- -/- 7.1/- 93/100
HOLIDAY -/- -/- -/- -/- 90/100 10/- -/- -/- 88/100 5.9/- -/- 5.9/-
TIMEZONE -/- 100/- -/- -/- -/- 100/- -/- -/- -/- 100/- -/- -/-
ERA -/- -/- -/- -/- 100/100 -/- -/- -/- -/- -/- -/- -/-

TABLE III: Mapping relations from time tokens to timex types

Time Token Timex Type

YEAR, MONTH, WEEK, DATE, TIMELINE, ERA,
TIMEUNITS , SEASON, DECADE, HOLIDAY

DATE

TIME, DAYTIME, TIMEZONE TIME
PERIODICAL, TIMEUNITD SET
TIMEUNITC , DURATION DURATION

TABLE IV: Number of time tokens of a timex type appearing

in other three types of timexes. “{·}” denotes the set of

time tokens in Table III that map to the timex type; for

example, {TIME} denotes time tokens TIME, DAYTIME, and

TIMEZONE that map to TIME.

Dataset Time Tokens Timex Type

DATE TIME DURATION SET

TimeBank

{DATE} - 24 2 11
{TIME} 0 - 0 2

{DURATION} 0 0 - 0
{SET} 0 0 1 -

WikiWars

{DATE} - 93 53 0
{TIME} 0 - 1 0

{DURATION} 0 0 - 0
{SET} 0 0 0 -

Tweets

{DATE} - 39 9 8
{TIME} 0 - 1 5

{DURATION} 0 0 - 2
{SET} 0 0 0 -

Table IV reports the number of the time tokens of a timex

type appearing in other three timex types. “{·}” denotes the set

of time tokens listed in Table III that map to the timex type.

For example, {TIME} denotes the three time tokens TIME,

DAYTIME, and TIMEZONE that map to the timex type TIME.

Table IV shows that (1) time tokens {DATE}2 widely appear

2Note that {DATE} denotes the set of time tokens that map to the timex type DATE,
instead of the timex type DATE itself.

in other three timex types, (2) time tokens {TIME} appear in

DURATION and SET but do not appear in DATE, (3) time

tokens {DURATION} appear in SET but neither appear in

DATE nor in TIME, and (4) time tokens {SET} generally do

not appear in other three timex types. This suggests a clear

priority relationship among the four timex types: DATE <
TIME < DURATION < SET.

Such priority indicates that if a timex contains a high-

priority time token, then the timex is hardly classified into

a low-priority type. For example, a timex that contains a

PERIODICAL will neither be classified as DATE nor as TIME
nor as DURATION; the timex will be classified as SET. A

timex that contains a DAYTIME will not be classified as a

DATE; it may be classified as TIME or DURATION or SET.

Generally, a modifier or numeral may increase a timex

to a higher-priority type. For example, in the timex “every

afternoon”, while the time token “afternoon” (a DAYTIME)

maps to TIME, the modifier “every” (a PERIOD MOD)

changes the timex to SET.

Observation 3: Standard timex values have only certain

formats and these formats are composed of different types

of time tokens and numerals.

We observe that each type of tiemxes have only certain stan-

dard value formats. The second column of Table V summarizes

from training data the formats of timex values under each

timex type. It shows that while there may be tons of timexes

in a dataset, the value formats of these timexes are relatively

fixed. We also find that only 0.56% of timexes in TimeBank,

0.08% in WikiWars, and 0.27% in Tweets have multiple time

tokens with the same token type. This indicates that timex

values are mainly composed of different types of time tokens

and numerals. In addition, we find that most modifiers do not

affect timex values.

697



TABLE V: Standard formats of timex values under each timex type and the attribution compositions for each format. “CC”

indicates a specific century; “DDD” indicates a specific decade; “YYYY” a specific year; “MM” a specific month; “ww” the

week of year; “w” the day of week; “DD” the day of month; “hh” a specific hour; “mm” a specific minute; “ss” a specific

second; “dd” daytime (MO/AF/NI); “SS” a specific season (SP/SU/FA/WI); “N” a specific number; “U” indicates the time

unit greater than a day; “u” indicates the time unit less than a day.

Type Value Format Timex Example ValueExample Attribute Composition

DATE PRESENT REF,
PAST REF, FUTURE REF

now PRESENT REF ·TIMELINE

CC 20th century 19 ·CENTURY
DDD the late 1960s 196 ·DECADE
YYYY 2013 2013 ·YEAR
YYYY-MM April 2018 2018-04 ·MONTH, ·YEAR
YYYY-MM-XX January day 2013-01-XX ·MONTH, ·YEAR, ·TIMEUNIT S=D,
YYYY-MM-DD March 21, 2013 2013-03-21 ·DATE, ·MONTH, ·YEAR, ·NUMBER
EEYYYY 493 BC BC0493 ·ERA, ·YEAR, ·NUMBER
EEYYYY-MM April 480 BC BC0480-04 ·MONTH, ·YEAR, ·ERA
YYYY-Www the last week 2013-W11 ·TIMEUNIT S=W, ·WEEKOFYEAR
YYYY-Www-WE this weekend 2013-W40-WE ·TIMEUNIT S=WE
YYYY-SS last summer 2012-SU ·SEASON

TIME YYYY-MM-
DDThh:mm:ss, YYYY-
MM-DDThh:mm, YYYY-
MM-DDThh

15:00 Saturday 2013-03-23T15:00 ·DATE, ·WEEK, ·TIME

YYYY-MM-DDTdd Friday afternoon 2013-03-22TAF ·WEEK, ·DATE, ·DAYTIME
SET XXXX, XXXX-XX,

XXXX-XX-XX, XXXX-
WXX

annually XXXX ·PERIODICAL, ·TIMEUNIT D

XXXX-XX-XXTdd every morning XXXX-XX-
XXTMO

·DAYTIME

XXXX-WXX-w every Friday XXXX-WXX-5 ·WEEK
XXXX-SS every winter XXXX-WI ·SEASON

DURATION PNU, PTNu 24 hours PT24H ·TIMEUNIT C, ·NUMBER
PXU, PTXu few minutes PTXM ·TIMEUNIT C
PNU, PTNu a month P1M ·TIMEUNIT S, ·NUMBER

IV. METATIME: META TIME INFORMATION

MetaTime uses a set of token types to group timex tokens

and store the values that are assigned to these tokens. On

top of the token types, MetaTime designs simple heuristic

rules to normalize timexes into standard type and value for-

mats. Figure 1 shows the overview of MetaTime for timex

normalization in practice. MetaTime mainly contains two

components: MetaTime construction and timex normalization.

A. MetaTime Construction

MetaTime is constructed by importing heuristic rules to

implement the functions of the three kinds of meta time
information: (1) token triples, (2) mapping relations from time

tokens to timex types, and (3) priority relationship among

timex types. Note that in this stage, MetaTime does not process

any text, but only implements the functions of meta time

information. In this subsection, we only describe the three

kinds of meta time information, and in next subsection, we

detail how heuristic rules implement the functions of the three

kinds of meta time information when processing text.

Token Triples. We collect token regular expressions (regexes)

of timexes and their token types (including time token, mod-
ifier, and numeral)3 from SynTime [40]. Since SynTime

focuses only on timex recognition, we further divide these

token types to fine-grained ones for timex normalization. There

are seventeen time tokens used in MetaTime and these time

tokens are summarized in the first column of Table II. Besides

token types, we also collect the values4 from SUTime [6] for

these token regexes, according to the annotation scheme of

TimeML [25] and TimeBank [26].

These token regexes, token types, and token values form

a group of token triples. Each token triple is composed of a

token regex, token type, and token value in the format:

Token triple := <token regex, token type, token value>

All the time tokens and numerals have values. As Observa-

tion 3 indicates that most modifiers do not affect timex values,

the token triples of most modifiers have no values.

3https://github.com/xszhong/syntime/tree/master/syntime/resources/syntimeregex
4https://github.com/stanfordnlp/CoreNLP/tree/main/src/edu/stanford/nlp/time/rules
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Timex Normalization

MetaInfo Construction

Input Raw Text

Output Annotated Text

Mapping Relations

(from Time Tokens

to Timex Types)

Timex-Type

Priority Relationship

Token Triples

Value NormalizationType Classification

Timex-Token Type and

Value Identification

MetaTime Construction

Fig. 1: Overview of MetaTime for timex normalization. The

left-hand side shows the MetaTime construction, with three

kinds of meta time information: (1) token triples, (2) mapping

relations from time tokens to timex types, and (3) priority

among timex types. The right-hand side shows the main steps

of MetaTime normalizing timexes into standard formats.

Mapping Relations from Time Tokens to Timex Types.
Observation 1 indicates strong mapping relations from time

tokens to timex types, as summarized in Table III. These

mapping relations play a crucial role in MetaTime.

Priority among Timex Types. Observation 2 indicates a gen-

eral priority relationship among the four timex types: DATE <
TIME < DURATION < SET. This priority relationship plays

an important role in timex normalization.

B. Timex Normalization

In this stage, we detail how MetaTime implements the

functions of the meta time information when processing text

and normalizing timexes into standard type and value formats.

Such process contains three steps: (1) timex-token type and

value identification, (2) MetaInfo construction, (3) timex type

classification and value normalization. We use the example

shown in Figure 2 to detail these steps.

1) Token Type and Value Identification: The identification

of token types and values for a timex is straightforward and

simple, through looking all the words of the timex at token

triples. If a word is matched by a token regex, then MetaTime

assigns the word with the corresponding token type and value,

which form a pair of <token type, token value>. As shown

in Figure 2, by looking at the token triples, MetaTime assigns

the word “September” with the pair <MONTH, 09>.

2) MetaInfo Construction: MetaInfo. MetaInfo is a struc-

ture created to store the information of token types and values

identified in previous stage. MetaInfo defines 18 attributes for

time tokens and numerals, 1 for reference date, and 1 for the

timex type of a MetaInfo instance. The MetaInfo construc-

tion mainly contains two phases: MetaInfo initialization and

MetaInfo merge.

MetaInfo Initialization. A MetaInfo instance is initialized for

an identified time token. Taking the “September” shown in

September 18 , 2021 10:27:00

<MONTH, 09> <NUMBER, 18><COMMA, null><YEAR, 2021> <TIME, 10:27:00>

·timexType: DATE

·MONTH: 09

·NUMBER: 18

metaInfo1

·timexType: DATE

·YEAR: 2021

metaInfo2

·timexType: TIME

·TIME: 10:27:00

metaInfo3

·timexType: TIME

·YEAR: 2021

·MONTH: 09

·NUMBER: 18

·TIME: 10:27:00

metaInfo

Timex Type: TIME Timex Value: 2021-09-18T10:27:00

Fig. 2: An example of MetaTime normalizing timex into

standard formats. MetaTime firstly assigns each word with

a <token type, token value> pair, then initializes a MetaInfo

instance for each identified time token, after that merges all the

individual MetaInfo instances into a final MetaInfo instance,

and finally determines the timex’s type and value.

Figure 2 as an example, MetaTime does the following things

in the initialization phase for a time token:

• Stores the pair <token type, token value> of the identified

time token to the attribute in the MetaInfo instance. For

example, for the “September”, MetaTime stores its as-

signed pair <MONTH, 09> to the attribute “·MONTH”

with the value of “09” in metaInfo1.

• Assigns a timex type to the attribute “·timexType” ac-

cording to the token type of the identified time token

and the mapping relations. For example, MetaTime sets

the attribute “·timexType” of metaInfo1 by the timex

type DATE, because the token type of “September” is

MONTH and MONTH maps to DATE according to the

mapping relations summarized in Table III.

• Sets the attribute “·refDate”.

• Searches both sides of the identified time token for

modifiers and numerals, without exceeding the previous

and next time tokens within a timex. If encountering a nu-

meral, then MetaTime updates the attribute “·NUMBER”

or “·ORDINAL”; if encountering a QUANT MOD, then

MetaTime sets the “·timexType” by DURATION; if en-

countering a PERIOD MOD, then MetaTime sets the

“·timexType” by SET.

MetaInfo Merge. All the MetaInfo instances for individual

time tokens are merged into a final MetaInfo instance for

the timex. Observation 3 indicates that timex values are

composed of different types of time tokens and numerals.

That means within a timex, different MetaInfo instances

generally have different attributes. For example, metaInfo1
has “·MONTH” and “·NUMBER”, metaInfo2 has “·YEAR”,

while metaInfo3 has “·TIME”. Therefore, MetaTime simply

merges all the attributes into the final MetaInfo instance. The

“·timexType” of the final MetaInfo instance is set by the
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highest-priority timex type among those individual MetaInfo

instances. For example, as shown in Figure 2, the attributes

“·MONTH” and “·NUMBER” of metaInfo1, “·YEAR” of

metaInfo2, and “·TIME” of metaInfo3 are merged into the

final instance metaInfo, and the “·timexType” of metaInfo
is set by TIME because TIME is the highest-priority timex

type among metaInfo1 (DATE), metaInfo2 (DATE), and

metaInfo3 (TIME).

After all the individual MetaInfo instances are merged into

the final MetaInfo instance, the final instance is used to

determine the final type and value of the timex.

3) Timex Type Classification: The final type of a timex

is set by the “·timexType” of final MetaInfo instance of the

timex. As shown in Figure 2, for example, the final timex type

of “September 18, 2021 10:27:00” is set by the “·timexType”

of metaInfo: TIME.

4) Timex Value Normalization: Generating the timex value

from a final MetaInfo instance mainly contains two steps:

determining value format and determining final value.

Determining Value Format. Observation 3 indicates that a

specific type of timexes have certain value formats, therefore,

for each final MetaInfo instance, MetaTime firstly selects

candidate value formats from the second column of Table V

according to its “·timexType”. From these candidate value

formats, MetaTime then determines the final value format

according to the final MetaInfo instance’s attributes and the

attribute compositions listed in the last column of Table V.

As shown in Figure 2, for example, the “·timexType” of

metaInfo is TIME, MetaTime firstly determines the follow-

ing candidate value formats: “YYYY-MM-DDThh:mm:ss”,

“YYYY-MM-DDThh:mm”, “YYYY-MM-DDThh”, “YYYY-

MM-DDTdd”; then according to metaInfo’s attributes,

namely “·YEAR:2021”, “·MONTH:09”, “·NUMBER:18”, and

“·TIME:10:27:00”, MetaTime determines that the value format

of the example timex is “YYYY-MM-DDThh:mm:ss”.

Determining Final Value. MetaTime uses the attribute:value
information of the final MetaInfo instance to determine the

timex’s final value. Observation 3 indicates that each value

format is composed of different types of time tokens and

numerals, which correspond to different types of attributes.

Therefore, MetaTime leverages the values of these attributes

to fill in the value format’s positions. As shown in Figure 2,

for example, the attribute value “2021” fills in the position of

“YYYY”, “09” fills in “MM”, “18” in “DD”, and “10:27:00”

in “hh:mm:ss”; finally, MetaTime normalizes the example

timex into the standard value “2021-09-18T10:27:00”.

V. EXPERIMENTS

We evaluate the quality of MetaTime on three diverse

benchmark datasets (i.e., TE-3 [31], WikiWars [22], and

Tweets [40]) for the task of timex normalization (including

timex type classification and value normalization) against four

representative state-of-the-art methods, including two rule-

based methods (i.e., HeidelTime [28] and SUTime [6]) and two

learning-based methods (i.e., UWTime [17] and ARTime [9]).

A. Experimental Setup

Datasets. The three datasets used to evaluate MetaTime are

TE-3 [31], WikiWars [22], and Tweets [40]. The original Wiki-

Wars dataset was constructed under the TIMEX2 scheme with-

out timex types. To fully analyze the characteristics of timex

types and values, we manually annotate types for WikiWars

timexes. Specifically, we teach two annotators the knowledge

about timexes according to the standards of TimeML and

TimeBank, then the two annotators manually assign timex

types to all the WikiWars timexes independently. The initial

agreement of their annotations is 98.94%, then they discuss to

reach final agreement. The statistics of the three datasets are

summarized in Table I.

TE-3 treats TimeBank as the training set and TE3Platinum

as the test set [31]. For WikiWars and Tweets, we follow

previous research to set their training and test sets. The

performance of a model is reported on the test sets.

State-of-the-art Baselines. We compare MetaTime with four

state-of-the-art methods: HeidelTime [28], SUTime [6], UW-

Time [17], and ARTime [9]. HeidelTime and SUTime are rule-

based methods while UWTime and ARTime are learning-based

methods. Both HeidelTime and SUTime design deterministic

rules for the end-to-end TERN task. UWTime uses a com-

binatory categorial grammar (CCG) and L1-regularization to

learn linguistic information from context for the TERN task.

ARTime learns from training data to automatically generate

normalization rules for timex normalization.

Since HeidelTime, SUTime, and UWTime are designed

for the end-to-end TERN task, we report only their timex-

normalization performance by applying their codes on the

TERN task. ARTime reports the timex-normalization perfor-

mance from both pure timex-normalization and end-to-end

TERN tasks by using PTime [10] as its recognition model.

In our experiments, we report ARTime’s timex-normalization

performance from both tasks. In pure timex-normalization

task, timexes are assumed to be correctly recognized.

Evaluation Metric. Like previous researches, we use the

toolkit of TempEval-3 [31] to report the standard metric F1

for both timex type classification and value normalization.

B. Experimental Results

Table VI reports the overall performance of MetaTime and

the four state-of-the-art baselines on the three benchmark

datasets.5

MetaTime achieves five best and six second best results

among six measures. Particularly, MetaTime significantly out-

performs the four baselines in type classification. Specifically,

under pure timex normalization, MetaTime achieves the F1 in

type classification with 92.8% on TE-3, 94.8% on WikiWars,

and 98.4% on Tweets; under TERN, MetaTime achieves the

F1 with 90.7% on TE-3, 91.3% on WikiWars, and 96.9% on

Tweets. This confirms the importance of mapping relations

from token times to timex types (see Observation 1) and

5For the end-to-end TERN task, MetaTime uses Syntime [40] as its recognition model.
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TABLE VI: Overall performance of timex normalization. “Pure” indicates the performance is reported from the pure timex-

normalization task while “TERN” indicates the performance from the TERN task. For each measure, the best result is in

bold-face while the second best is underlined. Some results are reported from their original papers.

Method Task TE-3 WikiWars Tweets

Type Value Type Value Type Value

HeidelTime [29] TERN 82.1 77.6 89.3 74.7 76.4 71.3
SUTime [7] TERN 80.3 67.4 85.3 38.8 82.5 67.4

UWTime [17] TERN 85.4 81.4 90.3 78.1 80.0 82.4

ARTime [9]
Pure 84.8 75.4 83.2 57.3 93.7 85.9

TERN 83.0 74.1 90.3 47.4 92.1 82.4

ARTime+H [9]
Pure 90.6 81.9 85.2 57.8 94.4 92.7

TERN 86.0 78.7 91.0 47.9 92.9 89.1

MetaTime
Pure 92.8 82.6 94.7 76.2 98.3 93.7

TERN 90.7 82.0 91.3 75.3 96.9 93.5

MetaTime w/o Priority
Pure 87.7 79.0 94.4 74.1 92.0 88.2

TERN 85.6 78.4 91.0 72.3 89.8 87.3

the priority relationship among the four timex types (see

Observation 2) in timex type classification.

MetaTime achieves the best results in value normalization

on TE-3 and Tweets. That is mainly because MetaTime is

designed under the annotation scheme of TimeML [25] and

TimeBank [26], and both TE-3 and Tweets are constructed

under the same scheme. On WikiWars, MetaTime performs

worse than UWTime (76.7% vs. 78.1%), mainly because

many timexes in WikiWars are quite descriptive [40] and their

values are somewhat deviated from the TimeML scheme. For

example, under the TimeML scheme, the timex “two days after

his arrival in Jerusalem” in WikiWars should be pruned to “two

days”. UWTime leverages CCG to capture the information

of linguistic structure and learns from training data to adapt

to new annotation scheme. MetaTime lacks such ability of

adapting to new annotation scheme.

MetaTime vs. Rule-based Baselines. We particularly com-

pare MetaTime with rule-based baselines, under pure timex

normalization. Table VI shows that MetaTime significantly

outperforms HeidelTime and SUTime on all the three datasets

by large margins of 2.0∼14.4 points in type classification and

0.6∼22.3 points in value normalization. Especially on TE-3

and Tweets, the margin in type classification reaches 8.6∼14.4

points and the one in value normalization reaches 5.2∼22.3

points. The reason is that HeidelTime and SUTime design

deterministic rules in a fixed way without a deep understanding

of timex types and values. By contrast, MetaTime leverages

three kinds of meta time information (i.e., token triples,

mapping relations, and timex-type priority) based on three

characteristics about timex types and values (see Section III-B)

to capture timex information in a flexible way.

Factor Analysis. In MetaTime, token triples and mapping

relations are necessary, so we analyze the impact of the priority

among timex types. We remove the priority component from

MetaTime by setting the ·timexType of the first MetaInfo as

the final timex type. The results are reported in Table VI,

indicated by “MetaTime w/o Priority”. After removing the

priority component, MetaTime performs worse in both type

classification and value normalization on all the three datasets

under both pure timex-normalization and TERN tasks, with

decreases of 0.3∼7.1 points in type classification and 2.6∼6.3

points in value normarlization. This indicates the importance

of the priority relationship in timex normalization.

Error Analysis. There are mainly three types of errors in

MetaTime’s evaluation: (1) annotation errors in datasets, for

example, TE-3 annotates “the next decade” with the value

“P10Y” while annotates “the following decade” with “P1DE”;

(2) a lack of time-related keywords, for example, MetaTime

does not collect descriptive words like “tenure” and “digital”

for token triples; and (3) incorrect reference date, for example,

MetaTime normalizes a Tweets timex “last week” to “2014-

W22” while the ground-truth is “2014-W21”.

VI. CONCLUSION

We analyze timexes from three diverse benchmark datasets,

and summarize three important statistical characteristics about

the types and values of timexes. According to these character-

istics, we propose a simple rule-based method termed Meta-

Time with three kinds of meta time information to normalize

timexes into standard type and value formats. Experimen-

tal results on three diverse benchmark datasets demonstrate

that MetaTime outperforms four representative state-of-the-

art models in timex normalization. Moreover, MetaTime is

independent of specific domains and textual types and runs in

real-time and can be easily used as a basic yet high-quality

timex tagger for other time-related linguistic tasks.
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