

Developing Effective Cybersecurity Labs: Initiating
The Conversation

Glen Sagers
Computer Science and Information Security

Southern Utah University
Cedar City, USA

0000-0001-6294-3619

Abstract—Hands-on labs are critical to cybersecurity

education, but are often based on one instructor’s preferences,
knowledge, and skills. The chosen topics may not align with
established curriculum guidelines, and even when they do, labs
may not be maximally effective in teaching the topics, partly
because the professor is not an instructional designer. This paper
represents a first attempt to draw up guidelines for cybersecurity
labs, based on pedagogical principles and best practices in related
fields.

Keywords—cybersecurity labs, cybersecurity assessment, labs,
authentic assessment

I. INTRODUCTION
It is widely agreed that hands-on laboratory exercises are

needed for effective student education in the sciences and other
technical fields such as engineering [25, 13]. This includes all
aspects of computing, from programming, through IT and
system administration, to cybersecurity.

Labs are so important to properly teaching the concepts of
cybersecurity that both the joint IEEE and ACM 2017
curriculum guidelines [11] and the National Centers of
Academic Excellence (NCAE, formerly CAE, administered
jointly by the NSA and DHS), curriculum requirements [18]
mandate the use of laboratory environments that allow students
to practice skills that they learn in classes. Such labs should be
realistic, and contain tools that are at least similar to the tools
students will be called upon to use in their careers.

Some of the main obstacles to creating these labs are the
expense, time, technical knowledge, and effort required to
develop and maintain these lab environments and exercises as
hardware, software, and threat environments change. Much has
been written about ways to automate lab development and
operation [14, 16, 22, 24], but very little literature is dedicated
to the development of labs that are pedagogically effective.

This paper represents an attempt to bring together the
pedagogical pillars that would help cybersecurity labs be as
effective of a learning tool as possible, while preserving
efficiency in maintaining, deploying, and grading the exercises.

II. PROBLEM STATEMENTS
This paper is in no way intended to minimize the difficulties

in maintaining, automating, and deploying lab environments.
The author has spent many hours on all of these tasks, and the

automations that others have provided have relieved many of the
burdens of those tasks.

All the automation in the world, however, cannot change the
content of the lab to make it cover the topics that need to be
covered, in a way that cements the topics in the students’ minds.
The only way to ensure that is to use proper pedagogical
underpinnings to support the learner’s comprehension and
absorption of materials.

Beyond the difficulties of automation, a number of other
issues have been identified with lab exercises. In no particular
order, they are:

 Labs tend to be written by one instructor, based on their
own, limited, experience. This may impact both topic
choices and technical quality of the labs.

 Labs may not be engaging for the student.

 Labs may not be appropriate for the level of the student
or course, even if they are engaging.

 Labs may be either too detailed, or too sparse in terms
of instructions.

 Labs may use tools that are non-standard, or otherwise
proprietary, limiting their applicability in other
educational settings or in jobs.

 Labs, like anything in computing, may contain bugs.

 Exercise scope may be inappropriate for the student
skill or course levels.

 Students may be able to collude or cheat on the lab
assignments, leading to reduced learning of material.

 Grading labs can be difficult compared to other types of
assessments.

When one instructor writes a lab, it must necessarily be
based on that instructor’s experience. Given the wide range of
cybersecurity topics, both defensive and offensive, it is unlikely
that any one instructor could develop assignments for a full
cybersecurity curriculum. This necessitates sharing of
materials, which is a great way of both dividing labor and taking
advantage of the expertise of specialists. However, if the labs
by different instructors are not written with pedagogical
principles in mind, the student outcomes between classes will be
very different. Additionally, when sharing labs between

1978

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00066

instructors that are written with different teaching and writing
styles, it may be hard for the recipient to interpret the intent of
the lab and skills it is supposed to teach.

An exercise which is technically sound and based on
pedagogical principles may not hold the interest of the student.
There is, of course, nothing that dictates that a highly technical
lab cannot be interesting to students. But, if elements designed
to hold the learner’s attention are not consciously introduced, the
overall effect may be a lack of attention on the part of the
student, which will negatively impact learning.

Even an engaging lab may not be enough to impart the
knowledge that was intended. If written at a level which is
conceptually beyond the student, they may be able to complete
the tasks, but not understand the implications. That situation is
probably less common than the converse; it is more likely that a
lab is engaging, but only gives basic understanding of the topic.

It may be very difficult to decide on a proper balance
between enough instructions to prevent common problems faced
by students on one hand, and making the lab too easy or rote on
the other. Asking open-ended questions can help, but often it
takes multiple iterations over many semesters to polish a lab to
the point that students are able to apply their knowledge rather
than simply following instructions.

Tool choice in labs is both difficult and vital. The limiting
factor in tool choice may come down to budget; many
commercial cybersecurity tools are quite expensive. While
various educational discounts exist, the cost may still be too high
to justify. This leaves open-source tools as a very cost-effective
option. In some cases, these represent truly best of breed
software that is used widely in industry. In others, there are no
open equivalents to commercial software, or the freely available
equivalents are substandard. If the tool chosen is extremely
difficult to learn or use, requires too many resources to make it
practical in the common virtual lab environments, or simply
does not have enough useful features, student learning will be
reduced due to frustration.

Bugs and other errors are common in computing. Whether
in the lab infrastructure the software the student is using to
perform the exercise, or mistakes in the lab instructions, these
bugs can be a source of incredible frustration for students. Once
a student becomes frustrated with the lab, or worse, with the
instructor, they tend to simply follow rote instructions, and not
go beyond that to comprehending, limiting learning.

A cybersecurity lab could cover many levels of a specific
topic. For example, when teaching a student how to break into
a vulnerable system in a penetration testing course, a single
exercise could cover the initial compromise, or expand in scope
to cover reconnaissance before the compromise and privilege
escalation, scanning of other systems, and pivoting. There is not
necessarily a correct scope or level for any given exercise, but
just as in systems development, scope creep may easily occur in
writing lab assignments.

Cheating and other forms of collusion continue to be a
problem in academia. Any time students go beyond the bounds
set by an instructor, their learning may be reduced. Conversely,
when students legitimately and properly collaborate on an
exercise, they learn from each other, enhancing comprehension

[15]. The border between collaboration and cheating is blurry,
and care must be taken to show and tell students what is
acceptable and what is not.

Grading of labs is usually more time consuming than
evaluating some other forms of assessment, such as exams or
quizzes. This is not a reason to avoid lab exercises, but rather to
develop labs with not only student outcomes but grading
efficiency in mind.

III. SOLUTIONS
Solutions do exist to the difficulties just presented. Just as

in cybersecurity, some are technical in nature, while others are
human-based or procedural in nature.

As early as 1967, engineering faculty recognized the need
for laboratory instruction in their field [13]. As in other science
fields, especially applied sciences, computing has always been a
discipline of practicing. Computer science students practice
coding to learn a new language, those studying to become IT
personnel spend hands-on time with servers, and budding
cybersecurity practitioners need to actually work with firewalls.

Many studies have investigated the value of labs, including
both physical and virtual setups. Findings have been mixed as
to which is better [8], but suffice it to say, given the prevalence
and ease of provisioning of cloud solutions for labs, coupled
with the widespread use of cloud technologies in industry, cloud
labs of various kinds are here to stay. This paper assumes no
particular infrastructure; of course, labs need to be adapted per-
technology, but the fundamentals of good instructional design
hold across platforms.

In engineering, the question of “How many engineering
colleges or individual disciplinary programs have taken a
comprehensive look at their laboratory experience?” (p. 368)
was asked in 2002 [9]. While this question may not have been
explicitly asked in cybersecurity, it is time to do so. Simply
having lab exercises is not enough, they must be effective in
teaching the desired, and in some cases, mandated, content.

Educational theory tells us there are “Nine Events of
Instruction”. These were adapted by Zvacek and Restivo to read
(p. 1442-1143) [25]:

 Learner Attention: What elements have been included
to gain (and hold) the student’s attention?

 Objectives: How do students know what is expected of
them when they do this lab assignment?

 Recall of Prior Learning: Are students reminded of
what they already know, to facilitate the integration of
new learning?

 Supporting Materials: What has been provided to help
students navigate the learning activity, use equipment
appropriately, and understand how their work will be
assessed and graded?

 Tools and Learning Resources: What is available to
enable students to complete the lab successfully?

 Practice and Feedback: What will students be doing as
they engage in the activity, how have these tasks been

1979

organized, and what types of feedback and support
are available?

 Assessment: How will student performance be
assessed?

 Knowledge Transfer: Will there be opportunities (at
some point) for students to apply their new skills to
unfamiliar problems?

These eight components were then matched to ABET
educational outcomes, as well as EUR-ACE and ABE/EAC
colloquy objectives to create a set of guidelines for engineering
students. The reader is encouraged to see the full guidelines in
their paper. While most, if not all of these guidelines apply in
any computing course, rather than simply applying all of these
engineering-focused guidelines to a cybersecurity context, this
paper develops focused guidelines for our discipline.

Along with the previous eight components, other aspects of
curriculum design and pedagogy must be incorporated into the
design of effective labs. These pedagogical pillars include
aspects of active learning, project-based learning (PBL) [22],
authentic assessment [2], and Piaget’s learning-by-doing [20].
These hands-on learning elements are a natural fit to lab
exercises, and are incorporated in the solutions and guidelines
developed herein. The rest of this section will present solutions
to each of the previously-introduced difficulties.

Topics covered in labs need to match the needs of industry.
There are multiple ways to ensure this occurs. First, one could
ask industry members what skills are needed in a graduate. This
certainly occurs within our discipline, via industry advisory
boards. This approach will result in fairly good information, for
those companies, but will not represent all cybersecurity needs
in such a broad field. Fortunately, there is no need to reinvent
the wheel, there are several developed lists of topics that should
be covered in a cybersecurity curriculum. Two such lists are the
guidelines jointly developed by the IEEE & ACM in 2017 and
the CAE requirements developed by the Centers of Academic
Excellence. There is a great deal of overlap between these lists,
and the choice of which to use may be mostly based on whether
the institution is seeking CAE designation or simply wants a
solid set of topics for their students. Regardless of which set is
chosen, instructors must realize that the speed of change in the
field requires changing topics for labs frequently. Because of
the rapid evolution, the selection process often devolves to being
based on the professor’s personal interests and skills, ignoring
the carefully curated topics that match what industry wants [3].

Beyond topic choice, the technical quality of the labs will be
influenced by the expertise of the instructor. Technical quality
includes both expertise in cybersecurity topics and the
instructor’s capabilities in instructional design. These disparate
skillsets may not be found in the same individual, and even if
they are, no one instructor can reasonably be expected to master
all aspects of both. Luckily, most universities have some sort of
teaching and learning improvement center which employs
instructional designers. This resource can greatly assist in
creating good labs. By coupling this with a student worker in
cybersecurity who can beta-test labs, an instructor can be
reasonably assured of a lab that students will be able to follow
through. For technical cybersecurity content, there is simply no

way for one individual to be able to master all of it. Some
approaches to overcoming a lack of technical knowledge in
select areas include collaborating with other faculty, exchanging
labs with colleagues in other schools, and receiving technical
training in those topics.

In summary, following existing frameworks will help guide
topic choices, and collaborating with instructional designers and
other faculty will alleviate some of the issues of limited
knowledge in any one faculty member.

How can a professor write labs that are engaging to the
student? Instructional theory provides many mechanisms for
gaining and holding student attention. Some of the most
relevant in this context include introducing topics within a
relevant context and including motivational elements [25]. One
way of making things relevant to the learner is to use the
principles of authentic assessment. Authentic assessment is
defined as assessment that incorporates a connection to a real-
life context.

Other methods of keeping the pupil engaged include writing
clear, concise objectives that show what they will know and be
able to do at the conclusion of the exercise. Especially if the
objective can be tied to specific needs of the pupil in a context
of their personal life outside the classroom, they will be more
engaged.

Gamification, defined as bringing game design elements into
non-game contexts, [10] has been tried as a method of keeping
students involved in lab exercises. Common gamification
gambits in cybersecurity include capture the flag (CTF)
exercises, forensic challenges, red-team/blue-team
competitions, and so on. However, many of the exercises
developed so far do not align well with curricular outcomes [10].
Aligning games with outcomes, such as those specified by the
NCAE or IEEE/ACM guidelines shows promise in improving
student learning

Good supporting materials are materials outside the
assignment that provide directions for specialized equipment use
and troubleshooting [25]. These materials are not necessarily
developed by the instructor, but should be curated by them for
relevancy and currency. As websites change, this will require
professors to review the links and content every semester, but
doing so will greatly reduce student frustration.

Milestones in assignments refer to the fact that many labs are
sequential in nature, both in the individual exercise and between
exercises. Because of this, labs can be designed that have natural
stopping points where a deliverable or answer can be inserted.
Subsequent answers may depend on this step being completed
[25]. Nunez et al. show that especially when immediate
feedback can be provided to the student, via automatic grading
of submissions, the student will remain engaged and know their
progress at all times [19]. This approach of automatic grading
also reduces load on the instructor, but of course, it is not
possible for all types of exercises.

In summary, keeping a student engaged has many facets, but
some of the key elements include making the topic relevant to
the student and their personal life; gamification of activities as
long as they align with educational objectives, providing good
supporting materials, and giving milestones of completion or

1980

partial completion, especially when coupled with automatic
assessment.

Even labs which are engaging to the student may not be at
the right level for the course or the student. Initiating recall of
prior learning by giving pre-lab tasks and assessing learner
readiness before starting the assignment tasks aids in being sure
students return to their previous levels [25]. Making explicit
connections to previous assignments and labs also aids in
student recall. Following established frameworks and model
curricula can aid in presenting the material at the right level, as
can utilizing labs others have created for similar courses. There
are many online resources for such labs, which can be adapted
for local use. Clark Center and DETER are two such resources
[5, 7]

In summary, being sure the task assigned is aligned to course
and overall curriculum objectives and adapting tested lab tasks
to local needs will ensure that the assignment matches class
level. Initiating recall of prior learning and assessing learner
readiness for new topics can also ensure that materials are at the
right level for students.

Lab instructions must be at an appropriate level of detail.
Too much detail, specifying every single step a student must
take, results in rote repetition, which only helps at lower levels
of Bloom’s Taxonomy [1]. On the other hand, skeletal
instructions, especially if the lab content is at a level that already
makes the student stretch past their comfort level, will likely
result in frustration. Instructional design theory provides a few
clues as to how to avoid these pitfalls. First, objectives need to
be understandable to even novice learners. Second, give
examples of what output should look like, and explicitly call out
what should be contained in a good answer, whether that is a
description of what should be in a good screenshot, or a formal
rubric. Third, as is almost always the case in education, yes or
no, true or false answers should be avoided. Questions should
tap into higher levels of Bloom’s taxonomy, and ask for
justification of why a result occurred, or ask the student to draw
conclusions based on output from a tool [25]. Further, the level
of lab detail in terms of description and background information
influences the student learning process, specifically between
phases of storing information and integrating what was learned
[23].

In summary, an effective assignment needs to have sufficient
instructions without giving every step, and needs to go beyond
simplistic comprehension and recall answers. Explicitly call out
what should be contained in a good answer, and give examples.
By drawing on established instructional design and educational
theories, such as Bloom’s taxonomy, as well as adapting
previously-tested labs to local needs, a teacher may ensure that
lab detail level is appropriate.

Many thousands of cybersecurity tools exist. Which is right
for a particular job? There is no generalizable answer, other than
one hated by students; “it depends…”. Often, in an educational
context, the right tool is the tool that budgets can afford. This
may mean using tools for which an educational discount is
available or open-source tools. What should be avoided,
whether the tool is free via a donation or openly available, or
simply reduced price, is the use of non-standard tools. In this
context, non-standard means simply that the tool is not used in

industry, or does not follow established standards in areas like
file formats, operating systems, or conventions of command use.

Learning non-standard tools will be of less use to students in
their careers. Although it means extra work, instructors should
be constantly looking for newer, better tools to educate about a
topic. One way of doing this is to have students research tools
as part of class, and give presentations on these tools. In this
author’s experience, students will often go above and beyond the
level required simply for the enjoyment of learning a novel
program. Another source of information on standardization is
industry advisory boards.

In summary, the right tool for the job can be hard to pin
down, but by using tools that are used in industry, and keeping
labs updated with newer tools as they emerge, an instructor’s
labs can be both current and relevant.

Bugs come in two principal categories as far as they relate to
laboratory exercises. First, there are bugs in software. Software
bugs may exist in infrastructure or the tools used to teach the
concepts. Either may be frustrating for students. Unfortunately,
such bugs are beyond the control of the instructor. For software
bugs, good supporting materials help alleviate student issues
[25]. To help alleviate bugs in infrastructure, support from IT
personnel at the university or a cloud provider will likely be
necessary.

The second type of bug of concern to this paper are those in
lab instructions. These are probably the fault of the teacher, and
as such, their own direct responsibility. Stamping out such bugs
is as easy, and as hard, as revising any paper or written material.
Three approaches to clearing up bugs are:

 Creating labs with the aid of an instructional designer.
The practicality of this is limited by both the availability
of designers at the university, and their technical
knowledge levels. A lack of technical knowledge can
be somewhat compensated for by having technically
skilled students as teaching assistants, and letting them
beta-test the instructions, noting difficult spots and
possibly even suggesting workarounds.

 Revisions each semester. In the short run, this may be
frustrating to students, but it will eventually lead to labs
that run smoothly. To help avoid student frustration,
open and immediate communication is key. As students
see that the instructor is involved and available to
answer their concerns, they’ll implement any necessary
changes and move on with subsequent steps.

 Bug bounties, with rewards such as a few extra points
for students who properly report reproducible bugs.
This approach requires dedication on the part of the
instructor to check and verify the system daily, but has
worked well in this author’s experience.

 Proofreading is essential. While this seems easy, it is a
skill that must be mastered. Two common approaches
in education are having an outside entity read the
instructions and printing out the document to proofread
on paper [17]. A technically competent student can also
be a great help here.

1981

In summary, bugs and mistakes are part of life. To alleviate
them, good supporting materials and IT support are critical to
reduce load on the instructor. The mistakes introduced by our
own errors are up to us to repair, but outside help is valuable
here, too.

The scope of an exercise can be as difficult to determine as
the tools used or the topic chosen. Much like with tools, the right
level is “it depends…”. It depends on the technical content and
depth of the course; scope depends on the length of the
assignment, a semester-long project vs. one of several lab
assignments for example; whether labs are individual or group
assignments; individual instruction style and class period length.
Scope also depends on the infrastructure and support levels
available to help students and instructors.

One interesting approach to scoping a lab is to use
knowledge graphs. Knowledge graphs are diagrams of the
relationships between an overarching topic and subtopics, and
bear at least superficial resemblance to mind maps of topics [6].
Either of these tools can be useful to show relationships between
topics and draw boundaries around topics that must be
reinforced within a particular exercise.

Like bugs or tool choice, finding the right scope may be
largely a matter of trial and error coupled with experience. Here
again, a good student assistant can be invaluable. Adding mind
maps and knowledge graphs to delineate the required vs.
desirable topics can also be useful. Once appropriate scope is
found, fortunately, it is one of the easier parts of a lab to transfer
to subsequent exercises.

Student collusion and other forms of cheating are something
all academics must deal with. Punishments may be dealt out
after the fact, but this does not prevent the problem. There have
been many studies on anti-cheating strategies [4], but not all
apply to computing courses. Some strategies identified by other
studies for cybersecurity labs include:

1. Creating customized, parameterized labs per-student.
Thanks to various frameworks, this is not as difficult as
it once was. Security Scenario Generator, FIND, and
Tele-Lab represent some attempts to create
individualized labs [21]. Two more recent, very
promising approaches to generating individualized labs
are Labtainers [12], which uses Docker containers
within a virtual machine and Automatic Problem
Generator (APG) [21]. When using Labtainers, the
machines are customized via configuration file
parameters. These parameters create machines which
contain various levels of per-student watermarks,
artifacts, and solutions, as well as introducing some
randomness between student machines to avoid many
forms of collusion, while still enabling the benefits that
can come from student collaboration around a topic.
The students’ work products and output are bundled
together and submitted to the instructor for evaluation.
APG is conceptually similar, and utilizes Ansible,
Python, Vagrant and Cyber Sandbox Creator [21]. For
both of these, a student enters unique identifiers such as
an email address that then is used as a random seed for
other unique attributes. APG goes beyond Labtainers in
that it automatically checks for similarities in student

submissions that would indicate cheating by pupils. The
only real problem with these two solutions is that they
only generate Linux-based virtual machines. This is
obviously enough for many or even the majority of lab
exercises in cybersecurity, but there are both specialized
distributions of Linux or BSD not covered by these
tools, as well as Windows VMs that must be created for
some scenarios.

2. Utilizing principles of authentic assessment can prevent
many cheating issues. In order to be considered
authentic assessment, a task must have some connection
to real-life context [2]. In some cases, this can be
accomplished by assigning tasks that the learner
completes on their own IT systems, such as creating an
encrypted volume, configuring backup solutions, or
experimenting with wireless security protocols. The
individual nature of each student’s computing setup will
lead to results that are unique for each learner. Besides
preventing cheating, authentic assessment has been
shown to lead to higher levels of student investment in
the task [2]. When assigning tasks to be completed on
the student’s own machine is not possible, making tie-
ins explicit between the lab environment and the outside
world can be a substitute, but probably is better called
Problem Based Learning, and doesn’t necessarily fix
any cheating issues, but still increases student
investment in the task [23].

3. Perhaps the simplest technique for many types of labs is
to require students to either create their own virtual
machines or make their own accounts on pre-configured
VMs. This strategy requires students to submit their
own work. In some cases, such as with screenshots of
output, a cheater could potentially modify the images to
show their username rather than that of the student who
actually did the work, but this may represent more effort
than simply running the commands themselves. If
students are instead required to submit the VM they’ve
created or customized, this concern essentially vanishes.
While not as robust as some of the other solutions, it is
almost universally applicable without much additional
effort.

In summary, preventing cheating is definitely a challenge,
but by automating individualized machines, using authentic
assessment principles, or simply requiring students to
personalize accounts and other aspects of the assignment, the
instructor can minimize the effort required to catch cheating.

The final issue with labs is that they tend to be more difficult
to grade than other forms of assessment. Does grading effort,
which is an instructor function, really affect the effectiveness of
labs? Yes, because the effort and time expended by a teacher on
grading cannot be put to developing further labs. There is no
silver bullet, nor even a generalizable solution for all grading
difficulties. At some level, as faculty, we must simply accept
that the improved student outcomes enabled by labs are worth
the tradeoff in our time. But there are solutions that can make
that tradeoff more palatable. Automation of grading can greatly
help, and solutions such as Labtainers and APG promise to
reduce time required to grade assignments by minimizing and

1982

automating materials that are submitted as well as detecting
signs of collusion in the case of the latter.

Authentic assessment principles, as well as the concept of
backward design (starting from the desired outcome and
working back to learning activities) both indicate that labs are
not the only way to enable student learning. In fact, for many
topics at introductory levels, memorization, definition, and other
items lower on Bloom’s taxonomy are called for. This indicates
assessment activities such as quizzes, exams, and group
discussions, all of which may be more easily graded may be
preferable in some cases. In other words, educators should not
use a lab exercise to teach or assess every subject.

Some additional strategies to reduce the time needed to grade
labs are to require very specific information, such as a
screenshot that shows only the required inputs and the output
that results, and phrasing questions in a way that leads the
student to give specific answers, such as “Name ONE real-world
threat which impacts YOUR chosen vulnerability”, vs a more
general question such as “name a vulnerability often found in
software”. Matching answers to these specific questions is
much easier than reading an essay that results from students
misunderstanding a question and trying to answer all
possibilities.

In summary, while there is no single solution to the
additional burdens of grading hands-on labs, strategies to reduce
the time include using other forms of learning for some topics,
using automated grading where possible, and asking questions
that require specific answers tend to help.

IV. RESULTING GUIDELINES
In this section, the guidelines above are summarized in list

form for reference. These guidelines do not, and cannot,
represent the last word in instructional design for cybersecurity
labs, but they are theoretically sound, and practically useful in
the author’s experience.

1. Topic Choice and Technical Quality

a. Follow existing frameworks such as the NCAE
requirements and IEEE/ACM guidelines

b. Work with instructional designers for theory-
grounded writing

c. Collaborate with other faculty to develop labs
according to each faculty member’s specialties

2. Student Engagement

a. Make the topic as relevant to students as
possible, applying authentic assessment
principles can help with this

b. Gamify aspects of exercises, being sure the
finished lab aligns with curricular objectives

c. Provide good supporting materials to give
background and help students troubleshoot

d. Identify milestones that must be completed
before moving on, and when possible, give
immediate feedback on those milestones

3. Task Alignment with Student and Course Level

a. Be sure the lab fits in the right course within
the curriculum

b. Adapt labs develop by others for a certain level
to local needs

c. Initiate recall of prior learning and assess
readiness with quizzes or pre-lab work

4. Instruction Detail Level

a. Draw on established instructional design, and
taxonomies such as Bloom’s, to create
questions that are more than simple yes or no
answers

b. Call out what should be in a good answer, and
provide example output as needed

c. Adapt validated labs from other instructors to
local needs and platforms

5. Using The Right Tools

a. Use tools that are used by industry, consult
industry advisory boards for their choices

b. Keep tools updated and actively seek new tools

6. Bugs and Errors

a. Use good supporting materials and outside
help and support resources to ameliorate bugs
in platforms and software tools

b. Make use of instructional designers and
student workers to proofread and test exercises
before issuing them to students

7. Scope

a. Use knowledge graphs or mind maps to
delineate required and desirable topics

b. Utilize instructional designers and teaching
assistants to beta test labs

c. Once proper scope is established it can often
be transferred between labs and even courses

8. Cheating and Collusion

a. Require unique usernames, accounts and other
customization that is difficult to fake

b. Utilize principles of authentic assessment to
individualize labs by having students perform
them on their own machines

c. Automate creation of customized machines
with scripts and tool such as Labtainer or APG

9. Grading

a. Use forms of learning and assessment other
than labs when pedagogically appropriate

b. Use automated grading where possible

1983

c. Ask questions that require very specific, but
not necessarily very detailed, answers

V. LIMITATIONS AND FUTURE RESEARCH
Any list of guidelines to make labs better will be incomplete.

There is no perfect list, but that should not stop faculty from
trying to adopt best practices. Beyond simply adopting them,
this paper represents a step much like [23] made to the
engineering field, it is a contribution to the ongoing discussion
about the role of labs in cybersecurity, and the best ways to
develop them.

Further theoretical work needs to be done in applying
instructional design principles to lab exercises. While many
existing pedagogical designs have been developed for the
humanities, some exist for technical fields. These can be used
as-is or adapted for the specific needs of cybersecurity labs.

Practical advances in lab effectiveness will require testing
labs to see which approaches work the best in given situations.
This could be as simple as A/B testing, or more complex
analyses.

VI. CONCLUSION
Labs are vital to good cybersecurity education. There is no

level of lecture or theory alone that is enough to teach a student
the skills needed in industry. Whether the topics for the labs
come from the IEEE/ACM guidelines, the CAE requirements,
or are gleaned from discussions with industry advisory board
members, they must be chosen carefully.

Once topics chosen, labs must be developed, updated, and
tested. When this is done, and results applied to new iterations
of the labs, continuous improvement is possible. Improving labs
can lead to nothing more or less than better student outcomes.

It is time for cybersecurity programs to “take a
comprehensive look at the laboratory experience”. Experts in
the field have agreed that labs are vital, let us as faculty make
them maximally effective.

REFERENCES

[1] L. W. Anderson & D. R. Krathwohl, A Taxonomy for Learning,
Teaching, and Assessing: A Revision of Bloom's Taxonomy of
Educational Objectives. New York, USA, Longman, 2001.

[2] J. Biggs, & C. Tang, Teaching for Quality Learning at University (4th
ed.). Berkshire, England: Open University Press, 2011.
DOI: https://doi.org/10.7275/ffb1-mm19

[3] Y. Cai & T. Arney. 2017. “Cybersecurity Should be Taught Top-Down
and Case-Driven”. In Proceedings of the 18th Annual Conference on
Information Technology Education (SIGITE '17). Association for
Computing Machinery, New York, NY, USA, 103–108. DOI:
https://doi.org/10.1145/3125659.3125687

[4] G.J. Cizek & G.J. Cizek. “Detecting and Preventing Classroom Cheating:
Promoting Integrity in Assessment”. Corwin Press. 2003

[5] Clark Center Cybersecurity Labs. https://clark.center/home. 2022.
[6] Y. Deng, Z. Zeng, K. Jha, & D. Huang, “Problem-Based Cybersecurity

Lab with Knowledge Graph as Guidance”, JAIT, vol. 2, no. 2, pp. 55–61,
Feb. 2022.

[7] DETER Project. https://deter-project.org/deterlab_education. 2022
[8] R. Dopplick. 2015. “Experiential cybersecurity learning”. ACM Inroads

6, 2 (June 2015), 84. https://doi.org/10.1145/2743024
[9] L. Feisel and G. Peterson, “The challenge of the laboratory in engineering

education,” J. Eng. Educ, vol. 91 (4), pp. 367-368, 2002.
[10] G. Hugo, L. Rafael, & O. Francisco, “Cybersecurity teaching through

gamification: Aligning training resources to our syllabus”, Res. Comput.
Sci., 146 (2017), pp. 35-43

[11] IEEE Computer Society and ACM, “Cybersecurity curricula 2017:
Curriculum Guidelines for Post-Secondary Degree Programs in
Cybersecurty,” 2017.

[12] C. Irvine, M. Thompson, & J. Khosalim, "Labtainers: A Framework for
Parameterized Cybersecurity Labs Using Containers". National Cyber
Summit. https://louis.uah.edu/cyber-summit/ncs2017/ncs2017papers/5
2017

[13] “New directions in laboratory instruction for engineering students,” J.
Eng. Educ., vol. 58, pp. 191–195, Nov. 1967.

[14] Y. Kose, M. Ozer, M. Bastug, S. Varlioglu, O. Basibuyuk & H. P.
Ponnakanti, "Developing Cybersecurity Workforce: Introducing
CyberSec Labs for Industry Standard Cybersecurity Training," 2021
International Conference on Computational Science and Computational
Intelligence (CSCI), 2021, pp. 716-721, doi:
10.1109/CSCI54926.2021.00184.

[15] E. Lai, “Motivation: A literature review”, 2011. London, England.
Pearson. http://images.pearsonassessments.com/images/tmrs/
Motivation_Review _final.pdf

[16] Y. Li, D. Nguyen, & M. Xie. 2017. EZSetup: A Novel Tool for
Cybersecurity Practices Utilizing Cloud Resources. In Proceedings of the
18th Annual Conference on Information Technology Education (SIGITE
'17). Association for Computing Machinery, New York, NY, USA, 53–
58. https://doi.org/10.1145/3125659.3125699

[17] J. Madraso. “Proofreading, the Skill We’ve Neglected to Teach”, The
Engilsh Journal. vol. 2 no. 2, pp. 32-41. Feb, 1993

[18] National Security Agency and Department of Homeland Security,
“National Centers of Academic Excellence in Cyber Defense Education
Program (CAE-CDE): Criteria for Measurement - Bachelor, Master, and
Doctoral Level,” 2020.

[19] D. Nunez, F. Moyano, A. Nieto, J. J. Ortega, I. Agudo-Ruiz,
and J. López, “A Milestone-Driven Approach for Lab Assignments
Evaluation in Information Security,” in International Conference on
e-Learning 2014, 2014

[20] J. Piaget, H. Gruber, and J. Vone`che, The Essential Piaget, ser. Harper
colophon books. Basic Books, Incorporated, 1982. [Online]. Available:
http://books.google.com/books?id=yRjeKgAACAAJ

[21] J. Vykopal, V. Švábenský, P. Seda, and P.
Cheating in Hands-on Lab Assignments. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE
2022). Association for Computing Machinery, New York, NY, USA, 78–
84. https://doi.org/10.1145/3478431.3499420

[22] T. Yardley, S. Uludag, K. Nahrstedt & P. Sauer, "Developing a Smart
Grid cybersecurity education platform and a preliminary assessment of its
first application," 2014 IEEE Frontiers in Education Conference (FIE)
Proceedings, 2014, pp. 1-9, DOI: 10.1109/FIE.2014.7044273.

[23] Z. Zeng, Y. Deng, I. Hsiao, D. Huang & C. J. Chung, "Improving student
learning performance in a virtual hands-on lab system in cybersecurity
education," 2018 IEEE Frontiers in Education Conference (FIE), 2018,
pp. 1-5, doi: 10.1109/FIE.2018.8658855.

[24] R. Zhang, C. Xu & M. Xie, "Powering Hands-on Cybersecurity Practices
with Cloud Computing," 2019 IEEE 27th International Conference on
Network Protocols (ICNP), 2019, pp. 1-2, doi:
10.1109/ICNP.2019.8888060.

[25] S. M. Zvacek and M. T. Restivo, "Guidelines for effective online lab
assignments: Contributions to the discussion," 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp. 1442-1446,
DOI: 10.1109/EDUCON.2018.8363401.

1984

