
Nisha Kottekat
School of Computing and Augmented Intelligence

Arizona State University
Tempe, AZ USA

Nisha.Kottekat@asu.edu

Kevin Gary
School of Computing and Augmented Intelligence

Arizona State University
Tempe, AZ USA
kgary@asu.edu*

Abstract—The semantic web is a mesh of information linked
in a way that can be easily shared and reused to make inferences
for the end user. The semantic web attempts to find and access web
sites and web resources not by keywords but by descriptions of
their contents and capabilities. This has been made possible by
adding structure to the content of web pages and developing an
environment where software agents can perform sophisticated
functions for users. Semantic web customization of JMaPSS uses
the Java Marker Passing Search System (JMaPSS) which applies
a spreading activation search algorithm known as marker passing
to significantly improve search results. This research project
focuses on visualizing the semantic network and displaying
marker propagation to distinctively illustrate various elements of
the semantic web ontology in the form of a graph structure. The
tool displays the results of marker propagation by highlighting the
active nodes and the propagation path.

Keywords—search, visualization, semantic web

INTRODUCTION
The exponential growth of information in the World Wide

Web has resulted in an infoglut. Traditional search which is
based on keyword matching burdens the user with the
responsibility of creating intelligent search queries. There is an
increasing need to make search intelligent, efficient, and
fastidious with least human intervention. The limitation of
keyword search brought forth a new paradigm, the Semantic
Web [1], which can be searched through concept matching and
relationship traversal. This model links various resources such
as documents, images, people, or concepts semantically,
moving the current web of simple relationships to a
semantically rich web where meanings and new relationships
can be incrementally added [2]. Figure 1 shows an example
representation of a semantic web.

Knowledge in the semantic web may be encoded using the
Resource Description Framework (RDF). RDF uses concepts,
predicates, and relationship to provide a powerful means of
expressing and inferencing relationships between resources.
The Web Ontology Language (OWL) refines the Semantic Web
to specify of a shared conceptualization and a vocabulary used
to model a domain of interest.

JMaPSS is a platform [3] for employing semantically
meaningful search through marker-passing [4], a parallel
inference and search algorithm based on spreading activation
theories of human memory organization and retrieval. In this
research, we present a visualization tool for marker-passing
search over the semantic web and compare the tool to prior
legacy tools to demonstrate the improvements.

Fig 1. Representation of Semantic Web

RELATED WORK
Visualizing semantic web structures effectively remains an

active area of research. A group of researchers [5][6] recently
presented a comprehensive overview of the evolution of such
tools, ranging from metadata explorers to graph-oriented visual
tools. Several of these platforms addresses similar concerns as
ours, namely displaying large semantic networks. VOWL [7]
(specifically WebVOWL) visualizes semantic networks uses a
forced-directed layout that has a “collapse” factor that
parameterizes how many nodes to filter out when the network
overwhelms the display. RDF2Graph [8] is a custom tool for
biological ontologies, providing facilities to reconstruct,
visualize, and query RDF structures. H-BOLD [9] (High-level
visualization Over Big Linked Data) handles scale by
visualizing the semantic network at a “high level” and then
allowing the user to drill-down to examine areas of interest,
focusing more on usability and facilitating human exploration.
S2SMaT [10] is a recent effort extending the usability focus by
understanding the accessibility of the semantic web for ordinary
users. Recent research [11] is starting to emerge to support
theory-building under these efforts.

These tools show a rediscovered interest in scaling the
semantic web and making it usable for a broader audience.
These tools support advanced features not available in our tool,
but our tool focuses on a slightly different problem – rather than
explore the network from ontological and semantic query
perspectives, our focus remains on keyword search that triggers
spreading activation guided by the semantic information (smart
marker-passing [12]), seeking intersections of markers to
enhance search results. Therefore, a custom extension of the
original GATE tool [3] was developed.

GATE II: Visualizing Semantic Web Search

1874

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00356

SEMANTIC WEB EXTENSION OF JMAPSS
This project uses JMaPSS to represent semantic knowledge

and perform parallel search. Here the semantic knowledge is
exemplified in the form of ontology which is a formal
representation of the shared vocabulary of a particular domain.
The ontology information is described using the OWL-Lite
format which is a subset of XML file format. It uses tags such
as class, subclass, property, and instance to classify the different
nodes. Apache Common digester [13] is used to parse the XML
data and Apache Lucene [14] is used for searching and
indexing. These syntax elements from Lucene are mapped to a
modified JUNG [15] graph through which markers are
propagated. Marker passing algorithms allows us to determine
the relations between various elements that represent the
semantic network.

The main interface to JMaPSS is a web application that
displays the semantic network in a textual list format, listing
nodes and edges. A first visual interface, GATE [3], improved
the web-based interface tools used by JMaPSS by providing a
graphical representation of the network thus making it easier to
comprehend and traverse. However, GATE was never updated
to visualize a semantic web structure and marker-passing
algorithm, and had limitations in its layout capabilities that
prevented view larger scale network effectively. The GATE II
project, reported here, addresses these deficiencies to come up
with a new, effective visualization tool.

The limitations in the current systems are twofold. The
semantic web customization of JMaPSS [3] features a web-
based interface that is textual rather than a graphical
representation of the internal network. This depiction is hard to
comprehend in terms of the nodes, its neighbors and
relationship between them. This presentation limits the view of
the graph at any given point of time. Graph traversal involves
successive use of hyperlinks. The search result does not give an
indication of the path taken by the marker or the nodes. Figure
1 shows a result of a search.

Fig 2. Search Results in the textual web interface

GATE gave a graphical visualization of network structure
created by indexing of HTML text files. It represents only two
types of nodes – term node and document node. In case of the
GATE II, there are five types of nodes: Class, Subclass,
Property, Instance and Owl Document. GATE currently does
not depict marker-passing, does not highlight active nodes after
propagation, and does not scale well for a large network. GATE
II addresses all of these deficiencies.

GATE II is an extension of GATE that gives a visual display
of the semantic network. The current interface is verbose and
difficult to traverse. It is also difficult for the user to analyze the
results of marker propagation. A graphical view of the network
provides the user with a complete view of the network without
the need to navigate through hyperlinks. Viewing the marker
propagation results on the graph makes it easier to visualize
how a marker propagates from node to node. This view can
serve to differentiate the paths traversed by different heuristics.

SOFTWARE DESIGN AND ARCHITECTURE
In JMaPSS, graph elements are extracted using Lucene and

used to create a JUNG data structure. The marker-passing
algorithm is administered on this graph. When a user provides
a search query, the query is tokenized and converted into
markers. A marker is a representation of the keyword to be
searched and has a unique ID, date, and a zorch value. A zorch
value is a positive real number that denotes the activation level
of the marker. The unique ID and date are useful for preventing
a marker from revisiting the same node repeatedly. Once a node
in the network receives the marker, it is processed and passed
to the neighboring nodes. The propagation terminates once the
zorch value falls below a threshold or looping occurs. The terms
returned in the result are those relevant to the term the user is
searching for rather than just a keyword match.

A. Architecture Overview
JMaPSS is written in Java. The relationship between node

and edges are presented using JUNG. The indexed elements are
extracted from the OWL files by using the Apache Common
Digester. Digester provides a simple and high-level interface
for mapping XML documents to Java objects. The parsed data
is stored in Apache Lucene format. These indexed elements are
then mapped to the JUNG graph.

GATE II uses Java Swing and Jung to visualize network
structures. The three main components responsible for
visualization are the graph, the layout, and the renderer. A
graph has knowledge of the nodes in the network and the
relationship between them. The layout determines the positions
of the nodes in the given window. A renderer has the methods
to paint nodes and edges and several parameters that control the
rendering action. GATE II uses BipartiteGaph,
FRLayout and the Pluggable Renderer classes.
VisualizationModel is responsible for handling the
graph and the layout. VisualizationViewer handles
tracking the visualization model and the renderer, and also
handles tool tip functions, pick support, and mouse listener. The
zooming and panning controls are handled by Crossover
ScalingControl. GATE provides the user the ability to
filter the nodes in the graph by the strength and threshold factor.

GATE II gives the user the ability to pick and transform
nodes. The pick mode allows user to select and move a single
node or multiple nodes. The transform mode can be used to
drag, shift-drag, control-drag to pan, rotate, and shear the graph
view. The Graph Listener monitors any changes to the
underlying graph and updates the view when a vertex or edge is
added or removed. Node and Edge editor module handles
displaying and editing the properties of the nodes or edges
selected by the user.

1875

B. Visualization
GATE II handles a graph with multiple types of nodes. The

bipartite graph implementation is modified to use an undirected
sparse graph. GATE II defines the colors for each of these
different types of nodes in a property file. These colors are read
by the program using Java reflection. This implementation
gives the user the flexibility to change the colors without
modifying the code. To display the weights on the edges, the
weight is added as a datum or property to each edge.
EdgeWeightLabeller is used to display the weight in the
view. To change the standard size of the node elements in the
graph, a new CustomShape function is defined. This is used
to set the property of the PluggableRenderer.

1) Visualization of Marker-Passing
To visually annotate the graph with the active nodes and

path taken by the marker, the activate function is altered and the
node’s datum property color is changed to the activated color.
The edges are highlighted based on the state of the nodes that
are connected by it. The deactivate functionality is implemented
by changing the property datum to the original color.

2) Visualization of Multiple Layouts
GATE II gives the user an option to view the graph using

one of four layouts: FR, Circle, ISOM or Static Layout. The
layout class names are specified in the property file and read by
the application using Java reflection. The layouts help in
improving the organization of the nodes in a large network. We
found that the FR Layout and ISOM Layout work best for most
of our semantic web documents.

a) FR Layout
This layout [16] implements the Fruchterman-Reingold

algorithm for node layout. The Fruchterman-Reingold
Algorithm is a force-directed layout algorithm. This algorithm
considers a force between any two nodes to decide the layout.
It considers nodes to be steel rings and edges to be springs
between them. The attractive force is analogous to the spring
force and repulsive force is analogous to the electrical force.
The basic idea is to minimize the energy of the system by
moving the nodes and changing the forces between them.
Figure 3 shows a visualization of the FR Layout.

Fig 3. Visualization of graph with FR Layout

b) Circle Layout
Circle layout is a lattice-based layout algorithm where the

nodes in the network are arranged in a circle. The connections
between the nodes depend on the structure of the network being
visualized. Figure 4 shows a visualization of a Circle Layout.

Fig 4. Visualization of graph with Circle Layout

c) ISOM Layout
ISOM layout [17] implements a self-organizing map layout

algorithm based on Meyer's self-organizing graph methods. It
bases its algorithm on a competitive learning strategy which is
an extension of Kohonen's self-organizing maps. Figure 5
shows a visualization of ISOM Layout.

Fig 5. Visualization of graph with ISOM Layout

d) Static Layout
The algorithm used in Static Layout is specified in the

JUNG API. Figure 6 shows a visualization of a Static Layout.

1876

Fig 6. Visualization of graph with Static Layout

3) Magnifying Lens Feature
This feature was implemented by adding the magnifying

lens as a Glass Pane to the viewer (Figure 7). The mouse listener
keeps track of the position of the mouse pointer. It captures the
area that matches the circumference of the smaller crosshair of
the lens. The captured image is magnified and painted on the
larger crosshair of the lens. This feature is useful for browsing
larger networks by allowing for zooming in on user-desired
areas as opposed to zooming the entire screen and having to
scroll to a specific area of interest horizontally and/or vertically.

Fig 7. Visualization of magnifying lens

EXAMPLES AND ANALYSIS
The GATE II design was exercised with test cases and its

functionalities were validated thoroughly. The implementation
of the visualization was validated by comparing with the current
system’s web graph viewer. To demonstrate the tool’s
effectiveness the following examples are presented. The first

two examples are in direct comparison to the prior text-based
version of the tool shown in Figure 2.

A. Example 1

The goal of the example is to visualize the results of a search
and emphasize the marker propagation feature of GATE II that
helps analysis. Two owl files were deployed in GATE II –
camera.owl that describes an analog still picture camera and
digital video camera.owl that describes digital video camera.
Following search queries were executed with terms that
describe the digital video camera without using actual
keywords like digital or video.

1) “Camera with MPEG”
2) “Camera with CCD”

This example demonstrates a search for a concept having
different meanings. The result expected is digital video camera
as it will be an intersection of meanings described by the query
terms. Figure 9 shows the results of marker propagation after a
filter is applied. The highlighted path and the nodes show the
user the propagation path taken by the marker.

Fig 8. Graph with highlighted active nodes and propagation path

B. Example 2

The goal of this example is to understand the pattern of
activation and propagation through visualization. Two owl files
describing facial emotions were deployed in GATE II. These
files have various facial emotions such as happy, sad, smile,
anger, fear etc. Each file has a different description for the
emotion using different terms. The following search queries
were executed.

1) “furious, fuming”
2) “fright, horror”

The result for the first query is shown in Figure 10. The node
anger has the highest strength of 700 because the node was
strengthened by markers from both the terms.

The result for the second query is shown in Figure 11. The
terms fright and horror result in the activation of term fear.

1877

Fig 9. Result of Example 2, Query 1

Fig 10. Result (2) of Experiment 2

C. Example 3

The goal of this example was to compare how well GATE
II handles larger networks compared to the original text-based
viewer and GATE. A somewhat larger graph (101 nodes – still
not very large!) was loaded into each tool.

Figure 11 shows the output of the original text-based tool
with results that spread across 6 different pages. The graph
viewer does not show the connection between nodes. One has
to navigate through pages and hyperlinks to explore a network.

Fig 11. JMaPSS Graph Viewer

Figure 12 shows the output of the non-semantic web
visualization tool. As there was only one layout option available
the user does not have the flexibility to get a better view of the
same network. As the node sizes are bigger, it is difficult to
scale a larger network.

Fig 12. Larger Graph Visualization in GATE (version 1)

Figure 13 shows the output of the new semantic web
visualization tool. Terms have been assigned different colors
according to their types. In this example yellow nodes stand for
property and grey stands for class. The layout gives a better,
more scalable view of the network.

1878

Fig 13. GATE II graph visualization

These examples demonstrate that GATE II is a robust tool to

realize the Semantic Web network visually. It provides many
features to help analyze the network. Some of the additional
features that may be explored in the future include 3D
visualization, enhanced graph coloring for search results, and
adding to the available layouts.

Additional debug and visualization features can be added to
help in more detailed analysis. An interesting feature that could
be introduced is displaying the marker propagation results of
priming of different terms in different colors. This would help
differentiate the paths and intersection points. Another feature
will be to have a decay by which the color of the activated nodes
will fade as the strength reduces.

Currently we have explored only four layouts for
visualization of graph. We could design new layouts for
improving the display.

REFERENCES
[1] Berners-Lee, Tim, James Hendler, and Ora Lassila. "The semantic web."

Scientific american 284, no. 5 (2001): 34-43.
[2] E. Miller, R. Swick (April/May 2003), An overview of W3C Semantic

Web activity, Bulletin of the American Society for Information Science
& Technology.

[3] Gary, K., Szabo, B., Vijayan, L., Chapman, B., Radhakrishnan, J., &
Sivaraman, A. (2007, August). JMaPSS: Spreading activation search for
the semantic web. In 2007 IEEE International Conference on Information
Reuse and Integration (pp. 104-109). IEEE.

[4] Gary, K., & Elgot-Drapkin, J. J. (1994, April). A flexible marker-passer
for semantically weak search. In Proceedings of the 1994 ACM
symposium on Applied computing (pp. 313-317).

[5] Po, L., Bikakis, N., Desimoni, F., & Papastefanatos, G. (2020). Linked
data visualization: techniques, tools, and big data. Synthesis Lectures on
Semantic Web: Theory and Technology, 10(1), 1-157.

[6] Desimoni, Federico, Nikos Bikakis, Laura Po, and George
Papastefanatos. "A comparative study of state-of-the-art linked data
visualization tools." In 5th International Workshop on Visualization and
Interaction for Ontologies and Linked Data, VOILA 2020, vol. 2778, pp.
1-13. CEUR-WS, 2020.

[7] Lohmann, S., Negru, S., Haag, F., & Ertl, T. (2016). Visualizing
ontologies with VOWL. Semantic Web, 7(4), 399-419.

[8] van Dam, J. C., Koehorst, J. J., Schaap, P. J., Martins dos Santos, V. A.,
& Suarez-Diez, M. (2015). RDF2Graph a tool to recover, understand and
validate the ontology of an RDF resource. Journal of biomedical
semantics, 6(1), 1-12.

[9] Po, L., & Malvezzi, D. (2018). High-level Visualization Over Big Linked
Data. In ISWC (P&D/Industry/BlueSky).

[10] Vago, P., Sacaj, M., Sadeghi, M., Kalwar, S., Vogelsang, A., & Rossi, M.
G. (2021). On the visualization of semantic-based mappings. CEUR
Workshop Proceedings.

[11] Wiens, V. (2022). Visual exploration of semantic-web-based knowledge
structures (Doctoral dissertation, Hannover: Institutionelles Repositorium
der Leibniz Universität Hannover).

[12] Hendler, J. (1989). The design and implementation of marker-passing
systems. Connection Science, 1(1), 17-40.

[13] Apache Commons Digester.
https://commons.apache.org/proper/commons-digester/ Last accessed
September 30, 2022.

[14] O’Madadhain, J. The Java Universal Network Graph Framework (JUNG).
https://jrtom.github.io/jung/. Last accessed September 30, 2022.

[15] Apache Lucene. Last accessed September 30, 2022.
[16] Fruchterman, T.M. & Rheingold, E.M. (1991) Force directed place-

ment. Software Experience and Practice., 21.
[17] Meyer, B. (1998, August). Self-organizing graphs—a neural network

perspective of graph layout. In International Symposium on Graph
Drawing (pp. 246-262). Springer, Berlin, Heidelberg.

1879

