
Towards Specification Completion for Systems with
Emergent Behavior based on DevOps

Mohamed Toufik Ailane, Adina Aniculaesei, Christoph Knieke, Andreas Rausch, Fauzi Sholichin
Clausthal University of Technology

Institute for Software and Systems Engineering
Clausthal-Zellerfeld, Germany

Email: mohamed.toufik.ailane@tu-clausthal.de, adina.aniculaesei@tu-clausthal.de, christoph.knieke@tu-clausthal.de,

andreas.rausch@tu-clausthal.de, fauzi.sholichin@tu-clausthal.de

Abstract—Software systems may experience multiple emergent be-
haviors during their operation time. These emergent system behaviors
occur when system engineers develop their system under the closed-
world assumption, but this assumption is not met during its operation.
This means that system engineers work on the basis that they have
complete knowledge of the system and its environment during its
design, when the system specification that has been created is actually
incomplete. In this paper, an observation of an emergent behavior
is considered to be a solid proof that the system model specification
is still incomplete. A conceptual framework is proposed to harness
the emergent behavior and complete the system specification that is
provided during the its design. The framework consists of two parts,
system development and system operations. It is built on a model-
driven approach in order to provide a clear definition of the emergent
behavior and a concrete development scheme. The framework exploits
the DevOps paradigm as a successful paradigm to achieve the ultimate
goal of developing complete system models through the continuous
specification completion based on the observed emergent behavior. The
goal of this framework is to help develop high-quality and reliable
emergent systems based on the specification derived from the emergent
behavior that occurred at run time.

Index Terms—DevOps, Software evolution, Complex systems, For-
mal methods, Software development process.

I. INTRODUCTION

In the last decade, Model-Driven Engineering (MDE) has been

a mature and successful approach for the development of software

systems [1]. Similar to other scientific fields, in which the use of

models facilitates greatly the understanding of the phenomena under

analysis, the usage of models in software engineering contributes

to a better understanding of the system under development. The

core of the model-driven engineering is based on using models as

abstract representations of different aspects of the system under

development, e.g., system structure or system behavior.

The essential benefit of system models is that they represent

abstractions of certain aspects of the system under analysis, that

leave out certain system features that are irrelevant for the analysis

from a the given perspective (cf. [1]). Since system models are

built with goals in mind, they can be considered good/bad or

correct/not correct only with respect to these goals (cf. [2]). These

goals are often refined into concrete system requirements during

the process of requirements elicitation and analysis. Thus, checking

whether the system model is correct with respect to a certain goal

means checking whether the model is correct with regard to the

respective system requirements. Formal verification methods can be

used to verify system models with respect to the specified system

requirements. In order to apply formal verification methods, the

system model and the system requirements must be made verifiable.

This means that both the system model and the system requirements

need to be formalized using specific modeling and specification

formalism, e.g., finite-state machines for the formal description of

the system model and linear temporal logic (LTL) for the formal

specification of the system requirements. Having verifiable models

enables the development of what is referred to as correct-by-
construction systems. Correct-by-construction system development

is important and necessary particularly when designing and devel-

oping safety-critical systems. However, building a verifiable system

model that represents the right level of abstraction for the system

under analysis is not a trivial task. In fact, such a task is costly in

terms of time and resources. Since it advocates for quick delivery

of a functional, albeit incomplete system, agile development is an

approach that can help curve the costs of system development (cf.

[3]).

Agile development is a paradigm that has been widely adopted

since it has been introduced two decades ago through the Agile
Manifesto (cf. [3]). This document introduces a new way of

thinking when it comes to software development. In contrast to

traditional development processes, e.g., the V-model, in which the

software system is delivered only after it passes all acceptance

tests, the school of thought of agile development encourages system

engineers to incorporate the customer’s feedback in incremental

development sprints in order to periodically deliver new and

functional versions of the software system. On one side, the

incremental development reduces time to market, and on the other

side, it contributes to an increased customer satisfaction due to the

involvement of the customer in the development process. Different

processes are proposed under the umbrella of the Agile Manifesto,

among them also DevOps. As its name indicates, DevOps is an agile

approach that attempts to fill the gap between development (Dev)

and operations (Ops) (cf. [4]). This gap is filled by automating

different processes that support continuous deployment and con-

tinuous delivery of the system under development. Nevertheless,

the DevOps paradigm faces multiple challenges, starting from a

unifying definition of DevOps and adequate evaluation metrics,

and continuing with the choice of tool set necessary to enable a

real collaboration between the development team and the operations

team (cf. [5]). In this paper, we address one important challenge of

DevOps. This challenge is often referred to in literature as closing
the DevOps loop. Its focus lies on the feedback phase within the

DevOps loops and how to use this feedback to further improve the

quality of the software system under development.

In the DevOps paradigm, the requirements catalogue as well as

the architecture models and the implementation are considered to

be incomplete. Incomplete development models are the main source

of emergent behavior during the system operation (cf. [6]). In this

paper we propose a conceptual framework which combines MDE

and DevOps in a hybrid approach in order to harness the system

emergent behavior that results from the incomplete specification of

1838

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00353

the system development models. Our framework relies on a model-

driven engineering approach throughout the development phases

of the DevOps process. In order to formalize the system behavior

observed at run-time, our framework enhances the DevOps tool

set with specification mining tools. Since the development models

and the mined models are formalized (or semi-formalized), our

framework provides a systematic approach for closing the DevOps

loop. If the observed system behavior is an emergent behavior, the

automation tools in our framework are used for the completion

of the development models specification using the specification

extracted from the observed emergent behavior.
The remainder of this paper is organized as follows. Section II

discusses some related work to the proposed approach. Section III

provides the necessary fundamentals and foundations to understand

and establish the contributed framework. Section IV contains the

details of the main contribution of this work. We offer a simple

scenario in Section V in order to demonstrate how can such a

conceptual framework be adopted. We conclude out work and

reflect on possible future research directions in Section VI.

II. RELATED WORK

In this section, we review several related works that discuss MDE

and the adoption of the DevOps principle to support the continuous

development of system models. To the best of our knowledge, there

exists no other approach that considers exploiting the emergent be-

havior in a DevOps process in order to complete the specification of

the system under development. Therefore, we relate to the research

work carried out on the integration of model-driven development

approaches in the DevOps development process. Benoit et al.

propose their vision for supporting model-driven DevOps practice

and explain the challenge of moving from Dev to Ops and vice versa

(cf. [7]). In order to move from development to operation process,

dedicated support to test and deploy automatically is required for

further activities in this direction (cf. [7]). Furthermore, moving

from operation to development needs descriptive run-time models.

These models can be learned during the monitoring process and

then linked back to the design models.
Hugues et al. propose ModDevOps as a combination of model-

based software engineering (MBSE) and DevSecOps (cf. [8]).

DevSecOps is an iteration of DevOps with wrapped security as an

additional layer to the continual development and operation process

(cf. [9]). The ModDevOps is a systems/software co-engineering

practice that has as a goal the unification of systems engineering

(Mod), software development (Dev), and software operation (Ops)

(cf. [8]. The first step, Mod, consists of planning the system

requirements, modeling the system architecture, and defining the

interaction points between the different models through virtual

integration. The second step, Dev, is the software implementation

and assembling the multiple components in the whole software

system. The third step, Ops, contains deployment and executes of

the built software either in the target operational environment or

in a simulation, monitoring and data analysis. Following a typical

DevOps cycle, the authors addressed two main challenges that apply

to the first half of the process, Dev-to-Ops. These challenges are the

integration of model-driven techniques to DevOps and integration

of heterogeneous artifacts (cf. [7]). Based on these two challenges,

Hugues et al. propose TwinOps which extends of ModDevOps by

combining it with the concept of digital twins (cf. [9]). TwinOps

is based on a single central concept: leveraging engineering mod-

els from other domains (mechanics, electronics, etc.) to evaluate

software-intensive systems against accurate representations of the

environment (cf. [9]).

Fig. 1. Extended Abstraction Refinement Model (EARM) [6]

Flexible methods are needed to evaluate systems based on the

ever-changing requirements of the two Dev-Ops dimensions (cf.

[7], [10]). Thus, the seamless blending of the Dev-to-Ops and Ops-

to-Dev continuum will provide cutting-edge features to enhance the

modeling process.

III. THEORETICAL BACKGROUND

A. Extended Abstraction Refinement Model

In our previous work [6], we proposed the extended abstraction

refinement model (extended ARM) to include the concept of

the emergent behavior, which does not appear in the standard

abstraction refinement model (ARM). The abstraction refinement

model has been first introduced by Keller [11] and is a model of the

software evolution process [6]. Emergent behavior is behavior that

is not specified during system development, instead it is observed

during system operation [6]. The extended ARM shown in Figure

1 matches the development phases of the system life-cycle process

- requirements analysis, system design, system implementation,

and system operation - with the respective representation model

of the software system in each of these different phases. Thus,

the system development phases of requirements analysis, system

design, and system implementation are matched with a requirement

model (RM), a design model (DM), an respectively and imple-

mentation model (IM). For the system operation phase, there is

a set of observations that are made during system operation [6].

Semantically, each of models RM, DM and IM is interpreted as a

set of behavior traces. The extended ARM differentiates between

specified and unspecified behavior traces. The specified behavior

traces represent the interpretation of specified behavior in the

requirements model, that is later refined in the behavior traces

corresponding to the design model and the implementation model.

The unspecified behavior traces are considered to be traces that can

exist in the design and in the implementation of the software system,

without being specified in the requirements analysis phase [6].

Emergent system behavior consists of unspecified system behavior

observed during the system operation.

B. Specification Mining

Specification mining is a technique by which system properties

can be inferred from a software system in an automated way

or a semi-automated way. There are roughly two categories of

system specification that can be mined for, namely specification

1839

formulated in temporal logic formula (cf. [7], [12]–[14]) and system

specification described with the help of a finite-state models, e.g.,

finite state automata (FSA) (cf. [12], [15]–[17]). Both categories

are capable of describing the dynamic actions of complete systems

based on a collection of execution traces.

One of the tools used by researchers and practitioners for spec-

ification mining is Texada [13] [18]. The tool implements mining

techniques for LTL specifications and allows the extraction of LTL

specifications of arbitrary length. In addition, Texada takes the user-

defined LTL property template and the execution traces as input and

outputs a group of property instances for the given LTL property

template [17]. Moreover, Texada also supports properties with

two control thresholds, namely confidence threshold and support

threshold. The confidence threshold permits the degree to which a

mining property can be violated to be controlled by the user. The

support threshold enables the user to decide how many times a

property must be verified.

IV. CONCEPTUAL FRAMEWORK FOR SPECIFICATION

COMPLETION BASED ON THE OBSERVED EMERGENT BEHAVIOR

The conceptual framework proposed in this section enables the

use of the emergent behavior observed at run-time and leverages

exiting as well as specifically developed tools in order to complete

the specification of the different models created during the system

development phases, and thus close the DevOps loop. As shown

in Figure 2, the observed behavior traces (OBTs) are compared

against the development models in order to distinguish between

the specified behavior refined from the previous development phases

and the emergent behavior observed during system operation. Once

the emergent behavior traces (EBTs) are recognized, the challenge

is how to exploit these traces in order to close the DevOps loop.

A. From Development to Operations (Dev2Ops)

The system development follows a sequential development pro-

cess, e.g., the waterfall model, from which four phases are taken

into consideration: requirements analysis, system design, system
implementation, and system operation. In the first three phases,

the result of each development phase is a development model,

that is built in a specific representation based on the tool used

to create the model during the respective development phase, e.g.,

textual document for the requirements model, or UML diagram

for the design model. Each model can be interpreted into a set of

behavior traces. These traces can be used to check the refinement

relation between the models created in the different phases of the

development process or check if an emergent behavior is observed

during the system operation.

Refinement is an activity which occurs in the different phases

of the system development phases. In each phase, it consists of

deriving a model from another model built in a previous phase

of the development process, e.g., a design model may be derived

in the system design phase from a requirements model that has

been created in the requirements analysis phase. The derived model

can describe behavior that was not specified in the model of the

previous development phase. This is the case for example due to

design constraints, design principles, coding platform conditions, or

insufficient knowledge of the system designers during the previous

development phase. The unspecified system behavior becomes the

source of emergent system behavior, if this behavior is observed

during system operation.

For systems built with the ”correct-by-construction” paradigm

in mind, the issue of the emergent behavior is considered to

be detrimental and therefore it is handled by allocating more

resources in order to guarantee that the refinement activity is

applied to complete models and produces complete models. Hence,

the manifestation of an emergent behavior at run-time is almost

guaranteed not to take place. However, the cost for this guarantee

comes sometimes at a great expense in terms of resources that are

limited, e.g., time and work effort.

In contrast, the DevOps paradigm works on the principle of quick

delivery of a functional system even if this may be built based on an

incomplete requirements catalogue or an incomplete design model.

The idea is to gather customer feedback as soon as possible, which

is then used in the following development iteration to improve

the system design and its implementation. The DevOps paradigm

brings teams from system development and system operation at

the same table, in order to understand the software system under

development from all angles. It also gives the operators the chance

to contribute to the system development through their feedback.

The end goal is to produce a software system that complies with

the changing requirements of all stakeholders and gives a better

operation experience for customers that operate the system. Never-

theless, cyber-physical systems used in safety-critical applications

may not tolerate such a paradigm, since any emergent behavior can

potentially lead to disastrous consequences.

The conceptual framework in Figure 2 proposed a hybrid ap-

proach for the engineering of software systems. Such a system

is considered an emergent system, because the observed emergent

behavior is used in order to improve the specification of the system

design models and further develop the system. Although the system

is partly developed straightforwardly, the other part consists of

emergent specifications and properties that can be extracted from

the observed run-time system behavior. A fundamental aspect in

the engineering of emergent systems is a definition of good and

concrete techniques for the exploitation of the emergent system

behavior that is observed during system operation.

B. From Operations to Development (Ops2Dev) - Closing the
DevOps Loop

The emergent system behavior observed during system operation

is used to complete the development models created during the

development phases of the system, thus closing the DevOps loop.

To demonstrate this, the waterfall model is adopted as system

development process. Three major steps are carried out for the com-

pletion of the system specification: (1) requirements specification

completion, (2) design specification completion, and (3) test case

generation from the emergent system behavior.

1) Requirement Specification Completion: The requirement

analysis phase usually results in a document that contains the

intentions and goals of the different stakeholders for the system. A

requirements engineering team is then responsible for the collection

and processing of stakeholders’ requirements in order to produce

a consistent requirements model for further development phases.

This model can be in the form of a textual document (informal),

or it can be formalized into a formal representation. In order

to enable a systematic and automatic specification completion, a

formal representation is considered more useful than a textual doc-

ument. At this level, the assumption is that the requirement model

might be incomplete. This assumption comes from the fact that

the developed system is emergent by definition, and thus, during

system operation, it exhibits emergent behavior that corresponds

to some system properties unspecified in the requirements model.

The core principle of DevOps is the quick delivery of a functional

system, albeit incomplete, in order to make use of the collected

1840

DEVELOPMENT OPERATIONS

FSM Design Model
(DM)

Refinement

Implementation Model as Python Code
(IM)

Testing

Operate and
Monitor

Execution Traces (OBTs)

LTL Specification
Mining

Mined LTL Specification

Automata
Specification

Mining
Complete

Complete
Specificaton

Transform

Trap Properties

Test Cases

Traces

UBTsR

UBTsD

Model Checking
(NuSMV)

LTL Goal Property

LTL Requirement Model

Requirement Model (RM)

Refinement

Testing Framework

Transform

Refinened Traces

Emergent Behavior Traces
(EBTs)

Difference Automata

Activity Artifact

Notation:
ManualAutomatic Unspecified

Behavior(s)Tools to be Developed Existent Tools

Fig. 2. Conceptual Framework for Software Specification Completion Based on the Extended ARM and DevOps.

customer feedback. This paradigm of development is realized

through minimal specification of the models, with the expectation

to complete the models in the next iteration of the DevOps loop.

In case system specification is lacking at this level, the emergent

behavior can be formalized on the operations side in the same

formalism as the requirement model in order to reason about the

lacking specifications that led to observing the emergent behavior

in the first place. The emergent behavior should be harnessed to

complete the specification of the requirement model either by: (1)

defining and adding the missing specification so that the emergent

behavior is admitted as part of the system and no longer regarded

as emergent, or (2) adjusting the requirements model to block the

emergent behavior in future iterations of the DevOps loop.

2) Design Specification Completion: System design activities

produce a variety of models that cover different system aspects

and views, e.g., structural view or behavioral view of the system.

The design model(s) are the result of the refinement applied to

the requirements model(s). Given RBT and DBT as two set of

behavior traces resulting from the interpretation of the requirement

model(s) and respectively of the design model(s), the refinement

activity means guaranteeing that DBT ⊆ RBT . Since the require-

ments model(s) might be incomplete, it follows that design model(s)

derived from the requirements model(s) through refinement may

also be incomplete (cf. [6]). Moreover, the design model(s) might

include further specification that has not been specified in the

requirements model(s), e.g., due to design constraints or incomplete

knowledge of the system designers. Model inference techniques can

1841

be exploited in this direction in order to achieve completion of the

design model specification. An approach that is based on finite state

machine mining is being prepared as part of future work.

3) Test Cases Generation based on Emergent Behavior Traces:
Emergent behavior traces can be used as a basis to construct

relevant test cases to check the developed system. Test cases can

be constructed by test engineers either manually or using tool

support which helps generate the test cases. In this paper, we extend

the testing framework proposed in [19] to include the emergent

behavior in the testing approach and integrate the extended testing

framework into our conceptual framework.

The testing framework proposed in [19] consists of the automatic

generation of the test cases based on the requirements model (cf.

Figure 1 in [19]). First, the requirement model is formalized in

the form of LTL properties, also called LTL obligations. The LTL

obligations are developed manually and are refined in order to

produce the design model. Automatic generation of requirements-

based test cases relies on the core principle of model checking, i.e.,

whenever an error is found in the design model, the model checker

provides a counterexample which shows the trace of the violated

LTL property from the initial state to the error state in the design

model (cf. [19]). Thus, for the purpose of the testing approach, trap
properties are generated through the negation of the requirements

model using a developed tool and specific requirements coverage

criteria. The counterexamples obtained by verifying the system

design model against the trap properties show how the original

LTL specification is satisfied. The traces of these counterexamples

are transformed into test cases via a developed software tool. The

resulting test suite is executed on a set of system mutants and the

results are evaluated with respect to a set of predefined test coverage

criteria (cf. [19]).

To integrate the testing framework from [19] in this paper’s

conceptual framework, some differences with respect to the orig-

inal work in [19] need to be considered. Firstly, the testing

framework cannot be used as described in the original paper,

because its starting premise is different from that of the DevOps

paradigm. Aniculaesei et al. consider that the system operation

begins only after the requirements models, the design models and

the implementation models of the system under development are

complete (cf. [19]). By comparison, in the DevOps paradigm a

functional system is deployed and put into operation even though

its requirements models and design models might be incomplete.

Secondly, the trap properties are not negations of already specified

system requirements. Instead, these properties represent unspecified

behavior traces of the requirements model and of the design model.

The counterexample trace obtained via model checking is then an

emergent behavior trace that is observed during system operation.

V. CASE STUDY: AGENT-BASED SYSTEMS

A. Scenario Description

The usage of the conceptual framework proposed in this paper is

demonstrated in a scenario built around agent-based systems. The

scenario is built to be as simple as possible, yet complex enough to

include examples of emergent behavior. In this scenario, we work

with a cellular environment that is represented as a large matrix of

adjacent cells. The cells can be occupied by three different entities:

(1) agent, (2) load, and (3) destination. An agent is commissioned

to pick up the nearest load and deliver it to the nearest destination.

The agent has always all the necessary information regarding the

positions of the loads and the positions of the destinations. There

are four agents deployed in the environment, as shown in Figure 3.

Load
1

Destination
 1

Agent
1

Agent
2

Agent
 3

Agent
 4

Cell (0,0) Cell (9,0)

Cell (0,9) Cell (9,9)

Fig. 3. Agent-Based scenario (Initial state)

Fig. 4. Simulation of the studied Agent-Based scenario

Even though all the agents are working properly, emergent behavior

manifests itself eventually in the form of a deadlock. This can be

seen in the scenario simulation results depicted in Figure 4. The

deadlock is considered to be an emergent behavior because the

agent is stuck in the Idle state, a behavior that is not specified

in the requirements model or in the design model. This emergent

behavior indicates the incompleteness of the development models.

The conceptual framework of this paper uses the emergent behavior

to extract the missing specifications and use these to complete the

specification of the development models. The following section

discusses each step in the conceptual framework and depicts small

excerpts to show the main result of each step.

B. Development Artifacts

As show in Figure 2, the following artifacts are considered in

the conceptual framework: (1) the requirements model, (2) the

design model, (3) the implementation model, and (4) the mined

LTL specification.

1) Requirements Model: The requirements model consists of

requirements for all three entities that exist in the environment,

as well as overall requirements with respect to the environment.

Here are some examples of each type of requirements:

• ENV R1: A cell does not contain two loads or more or two

agents or more at the same time.

• ENV R2: The four agents are positioned in the following cells:

(9,0)(9,1)(8,2)(8,1).

• AG R1: An agent can occupy one cell at a given time.

• AG R2: An agent can move in the four directions: Top, Bottom,

Right, Left.

1842

x< 10 && Target == "Right"

x >= 0 && Target == "Left"

y < 10 && Target == "Top"

y >= 0 && Target == "Bottom"

x = Load_x
& y = Load_y

& Loaded == False

x = Destination_x
& y = Destination_y
& Loaded == True

Idle
int x = 0
int y = 9x = x +1

Move Right

x = x - 1

Move Left

y = y + 1

Move Top

y = y -1

Move Bottom

Pick up
Load

Deliver
Load

Fig. 5. Design Model as a Finite State Machine for Agent 1

• LD R1: A load can be picked up only by one agent at a given

time.

These requirements are manually transformed into LTL speci-

fication. This formalization of the requirements is supposed to

help reason about the emergent behavior later and enable the

specification completion in a systematic way. Examples of the LTL

specification are atomic propositions:

• ai1: Agent i moves left.

• ai5: Agent i Picks-up a load.

• li2: Load i is delivered.

and formulas:

• Φ1: F(ai5) = Eventually agent i picks up a load.

• Φ5: (ai7) → X(li1 & ai5) = if Agent i is in loading position,

then the load is picked up by the agent in the next step.

• Φ6: (ai5) → F(ai5) = if Agent i picks up a load, it will

eventually deliver it.

2) Design Model: For the design model, finite-state machines

are considered to be the best candidate formalism for modeling the

agents of the system. In Figure 5, a refinement of the requirements

model is achieved through the definition of the set of states and

the transitions between these states. Notice that the Idle state is

defined even though it is not part of our requirements model. This

is necessary to model the movements actions in the different four

directions at each given time. At first, each agent is assumed to have

full knowledge of the environment, including the positions of the

loads and destinations in the environment. At the beginning, each

agent calculates at each step the shortest distance to the nearest load,

until an agent picks up a load. Based on the calculation results, the

variable target takes a value of {Left, Right, Top, Bottom}, and the

agent moves accordingly and updates the local (x,y) coordinates.

If an agent finds itself in a loading position - which is calculated

straightforward - a Boolean flag Loaded is set to true, and the

agent picks up the load. Similarly, once the flag Loaded is set to

true, the agent calculates the shortest path to the nearest destination

and moves toward it, updating the local coordinates along the path.

Eventually, the agent is placed in the destination position with the

load right beneath it and the load is considered to be delivered. Each

of the four agents is verified separately using the model-checking

tool NuSMV [20]. Each agent fulfills all the requirements specified

in the requirement model. This is also verified via the simulation

where it can be see that each of the agents tested separately would

successfully pick up the load and deliver it.

Fig. 6. Observed behavior Traces including the emergent behavior traces

3) Implementation Model: The next refinement step consists

of transforming the design model, that is represented as a finite

state machine, into an implementation model. The implementation

is in the form of Python code. The implementation model is

developed with the help of the MESA framework [21], which is a

Python-based framework for the simulation of multi-agent systems.

Figure 4 depicts the deadlock that eventually happens after eight

computation steps. Agent 1 arrives first to the load and picks it

up. However, it cannot move in any other direction, because the

rest of the agents are occupying the neighbor cells. On the other

hand, the other agents are seeking to pickup the load even though

it has already been picked up by agent 1. This happens because the

specification of the requirements model and of the design model

does not require an agent to clear the way once a load is picked up.

Figure 6 shows an excerpt of the behavior traces that are observed

during system operation.

4) Mined LTL Specification: As explained in Section III-B,

specification mining can be applied to help us reason better about

the observed behavior. In the scenario of this paper, we formalize

the observed emergent behavior that is highlighted in Figure 6. By

applying TEXADA [13] on the observed behavior traces we can

obtain multiple LTL specifications including the following mined
LTL specification:

• GF”Agent 1 is Idle”.

• F”Agent 1 picks up Load 1”.

• F”Agent 2 moves Load 1”.

5) Difference Automaton: Using the mined LTL specification

for specification completion at system design level consists of

building a difference automaton between the FSM of the design

model and the FSM corresponding to the mined LTL specification.

The difference automaton is provided as input to the specification

completion tool in order to complete the specification that causes

the emergent behavior of the system. In this scenario, the emergent

behavior is modeled as a simple FSM that consists only of the

1843

state Idle and a transition to the same state with a silent event. The

emergent behavior consists of permanently executing this loop and

remaining in the Idle state. Notice that this loop is not specified in

the design model shown in Figure 5.

6) Specification Completion: The tool responsible for the spec-

ification completion checks first if the observed behavior is an

emergent or not. This takes place by comparing the LTL spec-

ification of the developed requirements model against the LTL

specification mined from the observed behavior traces. By defi-

nition, the emergent behavior is the behavior that is observed but

not specified during development. Hence, the tool recognizes the

non-specified specifications and uses them either to: (1) explicitly

include the new (mined) specification in the LTL requirement

model, which means that we accept the emergent behavior to be

part of the system, or (2) develop new specification and add it to

the requirement model in order to explicitly exclude the emergent

behavior from emerging in the subsequent DevOps loops. In this

way, an emergent system is a system that can automatically develop

new specifications and include them into its developed models,

using as input the emergent behavior observed at run-time. In the

presented multi-agent example, there are different ways in which

the deadlock (emergent behavior) can be avoided. For example, the

specification of the development models can be adjusted to require

an agent to move in a random direction in case the shortest path to

the load is not available. From the point of view of the requirements

model, there are multiple specifications that can be included in it in

order to avoid the appearance of emergent behavior in the following

DevOps iterations. The remaining challenge is how to automatically

find such a specification for the purpose of specification completion

using as inputs the developed and the mined specifications of the

system.

VI. CONCLUSION

The DevOps paradigm has been proven to be practical in dif-

ferent multidisciplinary software development projects. This paper

provides a conceptual framework that benefits from this paradigm

as a way to harness the emergent behavior in a given system. The

continuous development and operation process provides an oppor-

tunity to both developers and operators to make the most out of an

emergent system behavior. In this regard, the novel contribution of

this paper is a conceptual framework for specification completion

that can be used continuously during the feedback phase to close

the DevOps loop more efficiently. Furthermore, the adoption of a

model-driven approach throughout the whole system development

process and the formalization of the operations phases following

this approach should provide a possibility for the systematic and

automated completion of the missing system specifications that

were not defined during development. Eventually, the emergent

system is developed in different parts based on the emergent

behavior and the emergent specification is always verifiable at any

phase of the development process loop.

In the future, we plan to extend our approach so that the emergent

behavior is used to automatically generate emergent specification,

that is then used to complete the already existent specification of

the system development models. This approach is based on the

specified overall goal, the specification of the parts of the system

and the mined specification based on system observations during its

operation. At the design level, we plan on using automata mining

based on model inference techniques in order to complete the

specification at a design level. Furthermore, we plan of integrating

suitable testing frameworks like the one proposed in Section IV-B3

to harness the emergent behavior in the different testing activities

and various test phases such as the unit testing and integration

testing.

VII. ACKNOWLEDGEMENT

The results of this contribution are based on the work of the

project “DevOpt: DevOps for Self-Optimizing Emergent Systems”.

DevOpt is funded by the Federal Ministry of Education and

Research (BMBF) of Germany in the funding programme of “IKT

2020 – Forschung für Innovationen”.

REFERENCES

[1] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering
in practice,” Synthesis lectures on software engineering, vol. 3, no. 1, pp. 1–
207, 2017.

[2] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,”
in Handbook of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith, and
R. Bloem, Eds. Cham: Springer International Publishing, 2018, pp. 1–26.

[3] M. Fowler, J. Highsmith et al., “The agile manifesto,” Software development,
vol. 9, no. 8, pp. 28–35, 2001.

[4] J. Allspaw and P. Hammond, “10+ deploys per day: Dev and ops cooperation
at flickr,” in Velocity: web performance and operations conference, 2009.

[5] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of devops
concepts and challenges,” ACM Computing Surveys (CSUR), vol. 52, no. 6,
pp. 1–35, 2019.

[6] M. T. Ailane, C. Knieke, and A. Rausch, “How to extend the abstraction
refinement model for systems with emergent behavior ?” in Annual Conf.
on Computational Science and Computational Intelligence (CSCI22), 2022.
[Accepted].

[7] B. Combemale and M. Wimmer, “Towards a model-based devops for cyber-
physical systems,” in International Workshop on Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and
Deployment. Springer, 2019, pp. 84–94.

[8] J. Hugues and J. Yankel, “From model-based systems and
software engineering to moddevops,” Carnegie Mellon University’s
Software Engineering Institute Blog, Nov. 22, 2021. [Online]. [On-
line]. Available: http://insights.sei.cmu.edu/blog/from-model-based-systems-
and-software-engineering-to-moddevops/

[9] J. Hugues, J. Yankel, J. Hudak, and A. Hristozov, “Twinops: Digital twins
meets devops,” CARNEGIE-MELLON UNIV PITTSBURGH PA, Tech. Rep.,
2022.

[10] S. A. Seshia, “Explorations in cyber-physical systems education,” Commun.
ACM, vol. 65, no. 5, p. 60–69, apr 2022. [Online]. Available:
https://doi.org/10.1145/3490442

[11] B. J. Keller and R. E. Nance, “Abstraction refinement: A model
of software evolution,” Journal of Software Maintenance: Research
and Practice, vol. 5, no. 3, pp. 123–145, 1993. [Online]. Available:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/smr.4360050302

[12] M. A. Kabir, J. Han, M. A. Hossain, and S. Versteeg, “Specminer: Heuristic-
based mining of service behavioral models from interaction traces,” Future
Generation Computer Systems, vol. 117, pp. 59–71, 2021.

[13] C. Lemieux, D. Park, and I. Beschastnikh, “General ltl specification mining
(t),” 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 81–92, 2015.

[14] J.-G. L. Q. F. Shengqi and Y. J. LI, “Mining program workflow from
interleaved logs,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’10), 2010.

[15] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-state machines
from samples of their behavior,” IEEE transactions on Computers, vol. 100,
no. 6, pp. 592–597, 1972.

[16] T.-D. B. Le and D. Lo, “Deep specification mining,” in Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 106–117.

[17] Y. Gao, M. Wang, and B. Yu, “Dynamic specification mining based on
transformer,” in International Symposium on Theoretical Aspects of Software
Engineering. Springer, 2022, pp. 220–237.

[18] J. Shi, J. Xiong, and Y. Huang, “General past-time linear temporal logic
specification mining,” CCF Transactions on High Performance Computing,
vol. 3, no. 4, pp. 393–406, 2021.

[19] A. Aniculaesei, F. Howar, P. Denecke, and A. Rausch, “Automated generation
of requirements-based test cases for an adaptive cruise control system,” in
2018 IEEE Workshop on Validation, Analysis and Evolution of Software Tests
(VST). IEEE, 2018, pp. 11–15.

[20] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new symbolic
model checker,” International journal on software tools for technology transfer,
vol. 2, no. 4, pp. 410–425, 2000.

[21] D. Masad and J. Kazil, “Mesa: an agent-based modeling framework,” in 14th
PYTHON in Science Conference, vol. 2015. Citeseer, 2015, pp. 53–60.

1844

