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Abstract—Computational solutions to assist the automatic
analysis of radiographic images are already a reality. Commercial
solutions for the diagnosis of tuberculosis have shown exceptional
results similar to those of radiologists. However, these solutions
are still far from regions of greater vulnerability, given their high
costs. Researchers have shown a growing interest in developing
increasingly efficient and effective solutions that require the
least resources. Thus, in this work, we explore the use of
chest X-ray and Phase Congruence Binary Pattern features to
build a minimalist, low computational cost, and high-efficiency
Feed-Forward Neural Network model to aid the diagnosis of
tuberculosis. Our results showed high performance compared to
related research, placing our solution as a viable alternative.

Index Terms—artificial neural network, tuberculosis detection,
chest X-ray, binary pattern of phase congruency.

I. INTRODUCTION

Although Tuberculosis (TB) is preventable, treatable, and

curable, it still represents a serious public health problem

worldwide, mainly affecting the most vulnerable populations.

The high costs of the entire health chain do with these

populations not even seeking a diagnosis, implying directly

not only the lack of treatment but also the underreporting of

the disease [1]. The World Health Organization (WHO) shows

that, only in 2020, 10 million people were infected world-

wide and 1.5 million died by TB [2]. Therefore, affordable

and scalable solutions, low-cost, of rapid response, and easy

implementation are essential in fighting tuberculosis to aid in

correctly screening, triaging, and diagnosing patients.
A recent WHO report pointed to a risk in global progress in

fighting TB, which after decades of progress, showed, for the

first time since 2005, an increase in cases and deaths in 2020.

The reduction in diagnosis and treatment was possibly caused

by reflections of the SARS-CoV-19 pandemic [3]. Although

the WHO has presented the eradication of TB by 2030 as one

of its goals [4], this action must be supported by public health

services, for which access remains a challenge, especially in

developing countries.
In recent decades, Artificial Intelligence (AI) has proven to

be a useful tool to assist medical professionals in interpreting,

screening, or even diagnosing diseases. In particular, the diag-

nosis of TB on chest radiographs (CXR) using AI techniques
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has emerged as an area of great research interest [5]. Thus, the

availability of new computational tools that help diagnose TB

and, in particular, smart, speedy, low-cost, and highly effective

solutions, consists of an area of interest for study. Furthermore,

new solutions may prove to be an alternative for developing

countries, which not only tend to have a higher rate of co-

infection, but also suffer from a shortage of radiologists [6],

making early and accurate diagnosis of TB more difficult.

Several computational techniques and artificial intelligence

methods have been presented, from classical machine learning

to deep learning (DL) [7]–[11]. In addition to the machine

learning method, such approaches vary in the way they extract

features from CXR images and select the final set, which

can occur manually or automatically [12]–[14]. For example,

among the feature extraction methods previously used, are

those extracted through intensity histograms, gradient magni-

tude, oriented gradient and oriented gradient pyramid, shape,

texture, color and edge descriptors, Local Binary Pattern

(LBP), and Speeded-up Robust Features (SURF).

Among the machine learning methods, the most used

are Support Vector Machines (SVM), Multilayer Perceptron

(MLP), and Linear Logistic Regression (LLR). In addition,

Feed-Forward Neural Networks (FFNN), the first and simplest

categories of artificial neural networks (ANN) developed [15],

were also used in research related to TB [16]–[18]. One

of the advantages of FFNNs is the balance between the

necessary resources (less than DL models) and its performance

or predictive capacity, which is independent of data probability

distribution information.

In this sense, we aim to contribute with this area presenting

a low-cost and high-efficiency computational solution spe-

cially developed for regions, environments and equipment with

few resources, that assist in diagnosing tuberculosis cases. Our

proposal is based on constructing an FFNN and the innovative

extraction of features of the Binary Phase Congruence Pattern

(BPPC) from CXR images to build a model for diagnosing TB

cases among non-TB cases (healthy patients and sick non-TB).

There are few literature reports of phase congruence (PC)

[19] methods for analyzing TB cases on CXR. Rijal et al.
[20] extracted first-order statistical features calculated from

six distinct zones of CXR-derived PC images to measure the
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transition between healthy and TB-infected lung tissue pixels.

Ebrahimian et al. [21] combined PC and linear discriminant
classifiers in an algorithm to differentiate the manifestations

of TB and pneumonia on chest radiography. BPPC, an LBP

adaptation using PC, was first used for facial recognition [22]

and later in other applications [23], [24], being only one of

those applied to CXR images [25].

Thus, our proposal is the first work, as far as we know, to use

the extraction of BPPC features from CXR images and apply

it to the analysis of Tuberculosis cases. The results point to a

quick, inexpensive solution with high specificity that requires

low consumption of computational resources, proving to be an

alternative to aid in diagnosing TB.

II. MATERIALS AND METHODS

In this section, the main steps of the proposed method are

described, in which the BPPC features are extracted from the

CXR images, and the FFNN model is built and trained for TB

and Non-TB classification. In addition, brief descriptions of

the materials, algorithms, and techniques used in the proposal

are also provided, followed by references that provide more

information about them.

A. Database Description

TBX11K dataset established by Liu et al. [8] in cooperation

with several hospitals originally consists of 11200 unique
CXRs, with a resolution size of 512× 512 pixels, distributed
across 5000 healthy cases, 5000 sick cases without TB, and
1200 cases with TB manifestations. Among the 1200 TB
manifestations cases are active TB infections, latent TB, and

both (active and latent TB). There are also among these 10
cases with uncertain TB whose types of TB infection cannot

be recognized in current medical conditions. The TBX11K

also comprises CXR images from the DA [26] , DB [26],

Montgomery (MC) [27] and Shenzhen (SHZ) [27] sets.

All CXR images in TBX11K dataset were labeled following

the gold standard and then divided into training, validation,

and testing subsets. The labels associated with each case were

provided for the training and validation subsets, while for the

testing subset, they are not available. Thus, considering the

unavailability of labels for the test subset’s CXR images, we

only use the 8976 CXR images with available labels, which
are distributed according to Table I.

TABLE I: Brief description of the TBX11K used in this study.

Class Samples Subtotal

Non-TB
Healthy 3800 (42.33%)

7600 (84.67%)
Sick & Non-TB 3800 (42.33%)

TB

Active TB 630 (7.02%)

1376 (15.33%)

Latent TB 140 (1.56%)

Both (Active & Latent) 30 (0.33%)

DA & DB [26] 176 (1.96%)

MC & SHZ [27] 400 (4.45%)

TOTAL 8976 (100%)

B. Binary Pattern of Phase Congruency (BPPC)
Binary Pattern of Phase Congruency (BPPC) is an adap-

tation to Local Binary Patterns (LBP), where the intensity

value needed to calculate the traditional LBP is replaced by

the Phase Congruence (PC) [19] value in the corresponding

pixel. PC models are, in turn, essential pattern descriptors,

as they provide a measure independent of the overall signal

magnitude, making it invariant to image illumination and

contrast variations. Thus, as the PC image describes different

feature categories, the LBP code is also designed to describe

different categories.
The first step in BPPC is finding the image’s PC in different

orientations. Then, taking four directions and dividing the

frequency plane uniformly, the resulting input image features

are obtained by concatenating each BPPC image’s histogram

in one direction. For each, the same number adopted in [28]

of 177 bins was used so that the final vector has 708 features.

The BPPC feature extraction process is shown in Figure 1

with an input CXR image, its PC images, followed by the

corresponding BPPC images, and finally, the BPPC histogram

representing the extracted features.

Fig. 1: The BPPC feature extraction process to an input CXR.

C. Feed-Forward Networks
Feed-Forward neural networks (FFN) were the first and sim-

plest categories of artificial neural networks developed [15].

In these networks, connections between nodes do not form a

loop, so information only moves in one direction – forwards

– from input layer nodes, through hidden layer nodes, to data

layer nodes output [29].
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In this study, we have chosen these networks for their great

predictive capacity, independent of data probability distribu-

tion information. This is important in clinical research, as

its events may have a non-specific distribution. Furthermore,

these networks have been successfully applied in a wide

range of medical applications, including Alzheimer’s disease

[30], chronic kidney disease [31], lung cancer detection [32]

and prediction of outbreaks of COVID-19 [33]. The parallel

structure and the ability to improve performance through

experience explain the efficiency of these networks.

Thus, in this study, we built a specific Feed-Forward Neural

Network Model configured with a single hidden layer of three

neurons fed with features obtained in the first step by BPPC.

Figure 2 shows the structure of our model, which is designed

to classify CXR images between TB and non-TB cases. This

reduced structure guarantees fast training, low consumption

of computational resources, and high performance for the

network. Furthermore, we use the Levenberg-Marquardt [34]

backpropagation training function, which updates the weights

(w) and bias (b); Softmax transfer function; Learning rate

0.001; Active function Tansig; A maximum number of epochs
equal to 20 and a maximum number of validation failures

equal to 5 to avoid overfitting.

Fig. 2: FFN with n input nodes, 1 hidden layer with 3 neurons,
and the output layer to the binary classification scheme, TB

versus Non-TB cases.

D. Evaluation

This study used cross-validation (CV) with ten folds (strat-

ified by incidence class), to measure the model’s generaliz-

ability. This technique divides samples from a dataset into

mutually exclusive subsets used in the training and testing

rounds. The CV thus measures how the results of a statistical

analysis of the model generalize to an independent dataset. In

problems where the modeling objective is classification, CV

is widely used [35].

E. Evaluation Measures

We used the following evaluation measures: Accuracy
(ACC) which represents the hit rate among the total number
of cases examined; Sensitivity or True Positive Rate (TPR)
which represents the rate of individuals belonging to the

positive class (TB cases) who were correctly identified as TB,

and Specificity or True Negative Rate (TNR) which measures
the percentage of people belonging to the negative class

(Healthy or Sick Non-TB cases) that were correctly identified.

Therefore, finalized 10−CV process in test cases, the results

of their measurements are reported for each fold, followed

by the absolute mean and standard deviation. In addition,

the Receiver Operating Characteristic (ROC) curves of the

model, a Sankey diagram [36] resulting, and the value of the

Diagnostic Odds Ratio (DOR) [37] are calculated.

F. Environment Setting

The experiments were conducted on a desktop Core(TM)

CPU5-62Ghz, 2.3Ghz, 2GB of RAM, installed with Windows

10 64-bit and MATLAB© R2014a with the packages Deep
Learning Toolbox and Signal Processing Toolbox. The equip-
ment did not have GPU-accelerated graphics processing.

III. RESULTS AND DISCUSSION

This section presents our model’s results and a brief dis-

cussion. In addition, comparisons with the literature are also

drawn to position the results achieved in this work.

A. Performance of Model: Binary Classification

In this model, TBX11K samples are divided into two

classes: TB and Non-TB, to detect TB cases among healthy

individuals or those with a disease other than TB. We then

evaluated the model’s performance using only the features

extracted from each CXR image.

All features were extracted directly from the 1376 images
of the TB class and the 7600 images of the Non-TB class,
according to the division seen in Table I. Thus, in Table II

the matrix of confusion, ACC, TPR, and TNR are shown for

each cross-validation process fold; at the end, the consolidated

result is accompanied by the standard deviation. We can see

from the results that the model has a high and consistent

TNR with low variance between folds. Regarding the TPR,

the lower value and the higher variance between skinfolds can

be explained by the imbalance between classes, with a lower

number of TB samples.

TABLE II: Model - Binary Classification

Fold ACC TPR TNR
Confusion Matrix

TP FP TN FN
1 95.09% 85.4% 96.8% 117 24 736 20

2 97.55% 94.9% 98.0% 131 15 745 7

3 99.78% 99.3% 99.9% 137 1 759 1

4 99.67% 99.3% 99.7% 137 2 758 1

5 99.67% 98.6% 99.9% 136 1 759 2

6 100.00% 100.0% 100.0% 138 0 760 0

7 99.00% 99.3% 98.9% 137 8 752 1

8 99.78% 100.0% 99.7% 137 2 758 0

9 99.33% 100.0% 99.2% 137 6 754 0

10 99.11% 98.5% 99.2% 135 6 754 2

Total 98.90±1.51% 97.52±4.51% 99.14±1% 1342 65 7535 34
TP: True positive (TB cases), TN: True negative (Non-TB cases), FP: False positive, FN: False negative.

Figure 3(a) shows the receiver operating characteristic

(ROC) of the model, which explains its high performance by

showing an ideal operating point pointing to an area under the

ROC curve (AUC ) of 0.99 , stable across different rank thresh-
olds. At the same time, the Sankey diagram in Figure 3(b)
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presents a new way of looking at model performance through

the flows of its instances from input to output. Thus, in this

diagram, the flows between input and output instances with

crossed classes represent the misclassifications of the model

(such as FN and FP of the confusion matrix), while the direct

flows between classes are the hits. The more insignificant or

non-existent the fractions of cross-flows (incorrect) and the

greater the fractions of direct flows (correct), the better the

model. Thus, the thin crossed lines shown in the diagram

represent a model with low errors and high accuracy. Finally,

this model scores with a remarkable DOR value equal to

4, 575.55
Regarding class imbalance, more samples from the non-TB

class reflect the actual clinical practice scenario. So while we

have not addressed the issue of class balancing in the scope

of this work, it is not neglected, and our future works have

addressed this. For now, we bring the result of the Balanced

Accuracy (bACC) [38] calculation with a value of 98.33%,
showing that our method achieves high performance even

considering this measure.

B. Auspicious Settings

As mentioned before, our model was thought and designed

for use in regions, environments, and equipment with few re-

sources (physical, financial, computational). Therefore, model

characteristics such as time (building, training, and testing)

and size (storage space, processing memory, etc.) are essential

for its adoption as a solution. So while models based on

deep neural networks are unquestionable in many tasks and

the first choice of many solutions, they fail in some respects

because they are built with thousands of parameters, require

high processing power and time, and sometimes are difficult

to interpret. Also, DL models often require parallel processing

using expensive equipment. Thus, our proposal based on shal-

low artificial neural networks has higher parameter efficiency,

only 872 input features, and a single hidden layer with only
three neurons; therefore, fewer degrees of freedom and less

prone to overfitting. Also, using standard desktop equipment

with no acceleration or graphics memory, extracting BPPC

features takes an average of 0.57s per CXR image. For model
building and training, the memory required is less than 200Kb
with an average of 0.15s to process each image. Once the
model is trained, it takes just 7ms to infer a new input.

C. Comparison of Results with Related Literature

In Table III we bring a brief comparison of the results

obtained with other recent works in the literature that make the

detection of tuberculosis. Given the limited number of studies

using the TBX11K database, we included in this comparison

studies that used other databases known in the literature.

Although the works use different methodologies, datasets,

and data-splitting schemes, the comparison still provides a

state-of-the-art view of tuberculosis detection and supports the

evaluation of our proposal.

Our proposal is not yet a commercial solution; however, it

still stands out compared to those already available. According

(a) ROC curves

(b) Sankey diagram

Fig. 3: ROC curves in zoom and Sankey Diagram resulting of

our overall binary classification model.

to an independent evaluation by Codlin et al. [39] of 12
commercial artificial intelligence solutions for tuberculosis

screening, the best AUC values achieved were between 0.70-

0.86 for a 95% confidence interval (CI) when combining

the sensitivity of an Expert Reader, the TPR and TNR were

between 90.4-98.3% and 42-52%, respectively. Although not

submitted to the same evaluative rigor as Codlin, the results

of our model showed more expressive values, reaching a DOR

value of 4,575.55.

IV. CONCLUSIONS

This work presented a smart, speedy, low-cost, high-

efficiency computational solution to assist to diagnose tu-

berculosis cases. Based on an experimental evaluation in an

extensive public TB database called TBX11K, the proposed

method is assertive in diagnosing TB cases, considering whole

CXR images as input. As a novelty, our method is the first to

use CXR BPPC feature extraction to diagnose TB and requires
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TABLE III: Comparison of tuberculosis detection with some related works

Year Study Methodology Dataset Partition (%) Test results (%)
train/val/test ACC±σ TPR TNR AUC

2018 Vajda et al. [12] 1© FE(SetA,B,C), FS weary, MLP
MC

10-CV
84.7±11.16 - - 91.0

SH 97.0±1.71 - - 99.0

2019 Singh & Hamde [40] 1© FE(SetA,B), SVM
MC ≈64/36 96.0 91.0 100 98.0
SH ≈17/7 97.8 95.0 100 96.0

2019 Pasa et al. [41] 2© Custom CNN model
MC

5-CV
79.0 - - 81.1

SH 84.4 - - 90.0

2019 Gozes & Greenspan [42]
2© ChexNet MC ≈77/11SH /MC - - - 95.2
2© MetaChexNet (DFE+Metadata) SH ≈77/11/11 - - - 96.5
2© ChexNet MCSH ≈77/11/11+MC - - - 94.4

2020 Sahlol et al. [43] 2© DFE(MobileNet), Metaheuristic SH 80/20 90.20 91.94 90.14 -

2021 Oltu et al. [44] 2© DFE(MobileNet), SVM SH 5-CV 96.6 - - 99.0

2021 Karaca et al. [14] 2© DFE from 5 DCNNs, SVM MC 5-CV 98.9 - - 100

2021 Rajaraman et al. [10] 3© VGG-16 Fine-tuned SH,BE,IND 80/20 92.3 96.9 85.6 95.3

2022 Fonseca et al. [13] 1© FE(LBP), FS(MBO), KNN
MC

10-CV
83.3±7.16 65.50 96.25 82.9

SH 90.3±3.06 85.42 95.4 92.4
MCSH 87.0±3.29 80.0 93.8 88.9

2022 Nafisah & Muhammad [11]
1© EfficientNetB3, DA MC

5-CV
89.9 89.3 90.7 -

1© InceptionRenNetV2, DA SH 93.7 93.6 93.8 -
1© EfficientNetB3, DA MCSH 98.7 98.3 99.0 -

2020 Liu et al. [8] 2© Faster R-CNN (ResNet w/FPN) TBX11K ≈59/16/25 89.70 91.20 89.90 93.60

2022 Ngoc et al. [9] 3© EfficientNet-B5-FPA(KD) TBX11K ≈94/2/4 96.8 88.5 97.9 96.7

2022 Our proposed 2© FE(BPPC), FFNN TBX11K 10-CV 98.90±1.51 97.52 99.14 99.0

FE: Feature extraction process, DFE: Deep feature extraction process, FS: Feature selection process, LLR: Linear Logistic Regression, DA Data augmentation. SetA:{IH,
GM, SD, LD, HOG, LBP}, SetB:{Tamura Texture Descriptor, CEDD and FCTH, Hu Moments, CLD and EHD, Primitive Path, Edge Frequency, Autocorrelation and Shape
Features}, SetC:{ Shape measurements as size, orientation, eccentricity, extent and centroid}, MC: Montgomery and SH: Shenzhen dataset [27], MCSH: MC and SH, IND:
India dataset [26], NIADID [45] and RSNA [46] datasets. In partition: train/val/test or train/test percents, LOOCV: Leave-One-Out cross validation, n-CV n-folds cross validation.
1©: Lung mask segmentation, 2©: None segmentation and 3©: Box crop segmentation.

no image pre-processing steps. The low standard deviation of

the evaluation measures in the folds of the cross-validation

process shown in the model proves the ability and stability of

the proposal. In addition, our method built on FFNN models

and BPPC resources, requires few computational requirements,

memory, time, and energy, presenting results equivalent to

those in the literature.

The results of our proposal for different assessment mea-

sures behave stably and show significant values of ACC,

TPR, TNR, AUC, DOR, and bACC. For the same TBX11K

dataset, our proposal outperforms the previous work with a

significant margin and gets an AUC value of 0.99, while
a sensitivity of 97.52% and a remarkable DOR value of

4, 575.55. Furthermore, using a Sankey diagram, a new visual
way of evaluating through input and output flows, our model

showed low cross-flows with fine lines of misclassification

and high accuracy. Finally, the built model demonstrated that

BPPC resources are valuable and effective in discriminating

TB cases in CXR images, representing a valid alternative in

constructing computational solutions by artificial intelligence

for TB diagnosis.
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