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Abstract—Safety evaluation of medicines and vaccines is criti-
cal to ensure patient safety and maintain confidence in treatment
and disease prevention strategies. Leveraging data pathways for
next generation pharmacovigilance (PV) requires the creation
of new platforms that seamlessly integrate both structured and
unstructured data. Here, we describe the design of a novel data
environment that provides enhanced data mining, information
retrieval, and data governance to improve PV processes and
activities. The goal of which is to further inform the knowledge
of potential safety issues during the life cycle of medicines, from
routine healthcare delivery to informing future drug and vaccine
development.

Index Terms—pharmacovigilance, drug safety, vaccine safety,
heterogeneous data, machine learning

I. INTRODUCTION

Pharmacovigilance (PV) is the systematic and continuous

evaluation of the safety of medicines and vaccines adminis-

tered to humans during routine healthcare delivery. And, PV

is paramount to ensure patient safety and to maximize our

understanding from emerging issues during drug development

and routine use in healthcare.

Diverse and increasingly vast amounts of healthcare-related

data are transforming our approach to PV. Sophisticated data

mining technologies, artificial intelligence (AI) and machine

learning (ML) are increasingly capable of rendering large

quantities of heterogeneous data into information that can be

used to guide clinical decision making and drug development,

and to help identify potential safety signals. PV has primarily

focused on traditional data, such as spontaneously reported

safety events of suspected adverse events (AEs). Including het-

erogeneous data requires a multi-modal approach to improve

causality understanding and reveal potential safety issues rel-

evant at the population level and for specific subgroups.

II. SYSTEM DESIGN

Fig. 1 illustrates a design that supports multi-modal data

and includes data that are typically not well structured, but

still contribute to the overall data ecosphere. Combining com-

plementary data sources requires the development of novel

processing methods and optimization for their use in PV.

Our design is a multi-modal safety data system and cre-

ates an infrastructure that will transform PV systems into a

fully connected, modern platform. The figure illustrates that

the foundations of patient data pathways are composed of

Fig. 1. Data pathways for next generation pharmacovigilance

multiple data sources (both traditional and non-traditional).

Ontologies and knowledge graphs enable linking disparate data

sets together allowing them to be utilized by more advanced

modeling tools.

This design also considers data access levels (summary

versus patient level), privacy regulations, and the ability to link

data together in meaningful ways. By enabling diverse data

pathways, we have designed a modular system that is capable

of efficiently dealing with issues as required (e.g. de-linking

of data). Further, it supports data visualization to enable the

rapid assessment and the ability to flag data issues (e.g. likely

inferential safety concerns).
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III. A MODERN DATA INFRASTRUCTURE FOR

PHARMACOVIGILANCE

One of the strongest motivators for designing a new PV data

infrastructure is the simple fact that traditional PV has relied

primarily on association rules analysis for signal detection

[1]. Most signal detection has therefore sought to improve

upon these basic proportionality tests [2] [3] that do not fully

take into account the diversity of disease, demographics and

patient backgrounds. The low quality of data in safety reports

may limit their usefulness, therefore making clinical review of

quantitative outputs critical.
Furthermore, the language in which we express AEs in

safety reports has its own constraints. Safety databases rely ex-

tensively on regulatory reporting requirements which mandate

that medical events be expressed using the Medical Dictionary
for Regulatory Affairs (MedDRA) [4]. The use of MedDRA

has proven useful historically, particularly as a structured

way for recording data as compared to free text. However,

it is not without limitations. For example, MedDRA terms

referencing genetic AEs are lacking, potential outcomes from

immunotherapies have only been slowly adopted [5], and as an

ontology, MedDRA is often misunderstood by the complexity

of its underlying hierarchical structure [6]. Similarly, there are

challenges with how drug or vaccines exposures are recorded

and grouped together most effectively for analysis [7].
As we enable extended data pathways, attention has been

given to the wider incorporation of systems biology, environ-

mental conditions and disease pathways. These data linkages

enable better approximations for identifying whether the data

supports a causal link between medicines/vaccines and an AE,

and represents a true paradigm shift from the historical, routine

analysis of safety signals in medicines.

IV. FOUNDATIONS FOR ENABLING DATA PATHWAYS

A. Revealing the Layers of Data Accessibility
The first step in building our data environment is to focus on

the various types of data that contribute to data pathways. To

achieve this, our design must be agile in its ability to integrate

each layer. The data sources can be viewed through the lens

of data access and availability which include (1) centralized,

in-house data, (2) remote access databases, (3) “ad hoc” use

databases and (4) medical literature. Applying appropriate

inference methods requires excellent understanding of each

data source. Patient level data is anonymized to ensure data

privacy is met, and each data source may also contain pertinent

meta-data (e.g. data refresh dates, governance restrictions).
Historically, PV primarily focused on centralized, in-house

data (e.g. safety reports, preclinical and clinical trials, pharma-

cology and in vitro models), and centralized data still covers a

majority of PV needs. In recent years, PV has utilized remote

access databases which mainly include real world data (RWD)

with additional benefits. Occasionally, “ad hoc” use databases

may be required which originate from various sources. These

may or may not be used in day-to-day PV-related activities, but

may be called upon as needed for more specific and detailed

analysis, particularly of a suspected AE.

B. Centralized and In-house Data

1) Safety Adverse Event Reports: Postmarketing PV tra-

ditionally relies on the analysis of safety reports. Safety

reporting is highly contextual and subject to bias, e.g. being

more frequent when (1) a drug first enters the market, (2) the

AE is perceived as serious, (3) the reporting environment is

favorable, (4) attention is drawn to specific AEs by govern-

ments, media reports, or by litigation [8].

The absence of denominator data means that databases of

safety reports cannot be used to estimate population-based

incidence rates. Although linkage to drug utilization sources

is sometimes done and can enable reporting rate estimation,

this adds complexity to the analysis and is not an exact

science (e.g. prescriptions are often left unfilled [9]). Duplicate

reports and missing data are inherent problems that impact

case counts. Missing data can render some voluntary reports

uninterpretable in terms of diagnosis or causality assessment,

and follow-up attempts for individual cases are often time-

consuming and fruitless. Despite these limitations, postmar-

keting PV has been instrumental in identifying important or

unexpected adverse reactions to vaccines and medicines that

have led to label changes or, rarely, withdrawal of the product

itself from the market [10].

2) External Safety Data Sources: Pharmaceutical compa-

nies collect, analyze, and share safety reports on their own

products, but this approach to PV alone would certainly lead

to a myopic view of the world. To support data pathways of

relevance to PV activities, it is also necessary to incorporate

all safety data that could potentially help link and connect

suspected AEs within a broader context. To support this ca-

pability, our data pathways also make use of data sources that

are well known in the PV community and readily accessible

such as WHO1 which is the global database of reported AEs

for medicinal products.

C. Remote Access Databases

1) Real-world data: “Real-world evidence (RWE) is the

clinical evidence regarding the usage and potential benefits

or risks of a medical product derived from analysis of Real-

World Data (RWD). RWE can be generated by different study

designs or analyses, including but not limited to, randomized

trials, including large simple trials, pragmatic trials, and ob-

servational studies (prospective and/or retrospective)” [11].

The term RWD is often used to denote specifically large,

electronic healthcare records (EHR) or claims databases orig-

inating from multiple countries. These are rich sources of

data containing millions of patient-level records suitable for

longitudinal studies [12]. This type of data has long been

used for epidemiological studies (which traditionally took

years to execute – particularly when multiple databases were

employed).

Now, RWD is increasingly used to investigate the natural

history of disease, treatment patterns and outcomes, and spe-

cific AEs in relation to a drug or vaccine exposure. However,

1https://who-umc.org/vigibase/
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use of these databases for signal detection in PV is still

evolving and its value remains unclear (e.g. hypothesis-free

signal detection). They also provide data not readily accessible

through safety reports alone (i.e. determining incident rates of

exposure, comparator drugs, demographics).

Limitations of RWD include data lag (typically 3–6 months)

and biases based on database demographics. Additionally,

RWD requires multiple analytical methods for different drug-

event groupings. For example, capturing acute outcomes that

occur shortly after exposure has different requirements than

capturing deaths or diseases such as cancer that can take many

years to develop [13].

2) Common Data Models: The use of common data models

(CDMs) has made significant contributions to PV over the

last 15 years. Development of data agnostic CDMs enabled

one to perform comparable analyses across data sources by

transforming the underlying data into a standardized format.

RWD are typically not built for PV and CDMs are instrumental

in transforming these data sources into a common format,

enabling rapid data analysis and signal identification [14].

Our data environment can use RWD originating from coun-

tries such as the USA, UK, and Japan. These data sources are

in routine use (Fig. 2), and our environment supports rapid

inclusion of additional sources (i.e. those that are grayed out)

which may be activated, near instantaneously, as needed in

support of PV activities.

Currently lacking in the PV landscape is a harmonized, data

format (native or CDM) agnostic, multi-stakeholder strategy

that takes advantage of data systems as they emerge and

evolve. For example, safety surveillance in resource-limited

countries is frequently undeveloped or absent, representing a

significant gap in terms of population representation in safety

databases. To date, targeted strategies have been implemented

to mitigate and encourage safety surveillance processes. How-

ever, these strategies are often specific to certain localities or

outcomes [15].

D. Ad hoc Databases

1) Social Media Pipeline: Social media (SM) offers a

non-traditional, worldwide data source that may be leveraged

for PV activities. These data are readily accessible through

aggregators or directly from the source (e.g. Twitter, reddit).

In addition, SM data often contains geographic specificity, and

provides direct access to the voice of the patient. There are

also disadvantages including, not all data is accessible (e.g.

Facebook restricts access at the aggregate level). The same

AE may be duplicated on different forums. Further, SM users

do not use standard drug names nor medical terminology

of diseases and symptoms. It also contains high levels of

noise (e.g. spam). Currently, SM data is not systematically

used in PV and has been shown to perform poorly [16] [17].

However, it has been shown that analysis of SM data can have

meaningful impacts on safety monitoring for some specific

safety issues, such as enabling insights for patient engagement

[18].

Fig. 2. Accessible and available real world data sources

We created an SM data processing pipeline as a module of

our data pathway integration (Fig. 3). This pipeline is agnostic

of channel source, automates the processing of unstructured

posts using natural language processing (NLP), and defines a

formal data structure that can be used for routine monitoring

of suspected AEs.

SM data can be transformed into a format suitable for PV

activities by following the data processing steps. (1) Standard-

ization of drug names and mapping AEs to MedDRA; (2) data

cleaning to remove duplicates, noise and spam using Bayesian

probabilistic models (3) de-identification by removing person-

ally identifying information. Once processed, the data is made

available as part of our data pathways environment.

2) Systems biology and biobanks: Biomedical databases

(biobanks) contain detailed genomic and/or health-related in-

formation, including medical imaging results, health outcomes

and biological samples. Large population-based biobanks exist

in several countries (e.g. Estonia, Finland, UK), but they tend

to be concentrated in affluent countries [19].

Genetic polymorphisms among individuals exists within

populations. Responses to medicines or vaccines, or even

the risk of developing an adverse reaction to that product,

are potentially variable among individuals receiving the same

product due to genetic differences. Biobanks offer an oppor-

tunity to better understand why individuals may vary in their

responses to a medicine or vaccine, and they offer the ability

to define specific safety monitoring protocols for patients

with higher risk. In-depth safety profiles may be generated

by harnessing multifaceted datasets to help predict biological

processes which may impact safety.

The SARS-CoV-2 pandemic has underscored the intimate

connection between genetics, environmental data and disease,

and their influences on holistic systems biology. For instance,

the emergence of the COVID-19 virus uncovered the value
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Fig. 3. Social media data processing pipeline

of “dark data”, a term used to describe published data that

is not connected to digital knowledge resources and is there-

fore unavailable for high-throughput analysis [20]. Liberation

of dark data into digitally connected formats could expand

research capacity and promote the development of non-linear

outputs and re-use of data in relevant settings. Along the same

lines, the use of biobank data and genome-wide association

studies can provide potentially critical safety information that

could contribute to a better understanding of the effects of

drugs and vaccines on specific sub-populations; as concluded

by Nogawa, et al. [21] in evaluating AEs associated with the

COVID-19 mRNA vaccine.

3) Environment, weather and climate: Pollution levels,

water quality, environmental exposures, natural disasters, pan-

demics, weather events and climate change all impact human

health [22]. For example, during the COVID-19 lock-down,

data collected from claims and EHRs (and other data sources)

were potentially confounded, had missing data, or experienced

additional bias due to an over-extended global healthcare

system. Real-time monitoring of pollution and weather data

can provide detailed information on these risks down to the

level of a zip code. Such data can be used to complement

safety signal detection and causality modeling.

Signal detection in PV does not tend to make any adjust-

ments for where the patient is located and how various envi-

ronmental conditions may affect their personal health journey.

An individual’s mortality is largely affected by where they

grew up, the level of education achieved, and access to healthy

food and proper healthcare [23]. Phelos et al. investigated

nearly half a million trauma patients’ lives and found that

when vulnerability indices (i.e. Distressed Community Index2

and National Risk Index3) were taken into account, these

factors alone could account for determining outlier status due

to geographic variation [24]. This can also help to account

for variations in physical biomarkers, and when combined

2https://eig.org/distressed-communities/
3https://hazards.fema.gov/nri/

with emerging digital health technologies, could be leveraged

to enhance the identification of AEs and potential causal

associations [25].

E. Medical Literature

In PV, the published medical literature serves multiple

purposes, including (1) a direct source of safety data (e.g.

safety reports, meta-analyses), (2) a reference when seeking to

understand the mechanism underlying potential safety signals,

and (3) provide background for benefit-risk review. Ad hoc

searches on specific topics may also be requested by internal

or external parties during signal investigation.

Generally, literature searches are carried out using platforms

such as PubMED or EMBASE and titles are manually screened

to identify potential articles of interest. As the number of

relevant articles increases, particularly for legacy products,

literature searches can become arduous and time-consuming.

Manual reviews are also prone to error and individual reviewer

bias. Narrowing search terms may decrease search results but

comes with the potential loss of information. Other texts, such

as media reports and gray literature, should also be searched,

but they may be overlooked or missed altogether. ML and

NLP techniques provide the ability to deal with large volumes

of text and can improve the speed and accuracy of literature

searches [26].

V. INNOVATIVE APPROACHES TO DATA PROCESSING

Leveraging data pathways requires thinking more criti-

cally about systems management. Data linkage and retrieval

must follow regulatory guidance and respect patients’ rights,

most notably, under the General Data Protection Regulation

(GDPR). In addition, our data infrastructure platform aims to

commit to FAIR (Findability, Accessibility, Interoperability,

and Reusability) practices [27].

A. Data Processing and Accountability

On April 27, 2016, the European Parliament codified into

law “the right to be forgotten”, or what is now referred to as
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the GDPR [28]. These types of edicts have now become law

in other jurisdictions, although with potentially more limited

applicability. Still, these types of data removal requests have

real impacts in the global data ecosphere [29] [30] and must be

taken into account in the context of a drug monitoring system.

Our PV platform must include the ability to trace and audit

changes in data. It must track and manage how the loss of data

impacts both prior and ongoing PV studies, and it should alert

users to when and where they can move data in accordance

with regulatory requirements.

B. Data Enrichment

Data enrichment is the process of utilizing ontologies and

knowledge graphs to add more value to data than exists in

isolation. We have seen great success in the use of these

methods in the annotation of human genetic data and the drug

discovery process [31].

Eventually, we would also like to link PV data sources

to biological pathways via the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [32]. Andersen, et al. suggested that

gene expression can affect a patient’s potential AE outcomes

in their study on lymphatic filariasis, a neglected tropical

disease [33]. The authors found a significant transcriptional

signature associated with post-treatment AEs; 744 genes were

up-regulated.

Our modern PV system infrastructure will connect data

traditionally not used in routine safety analysis to help further

these types of studies through data enrichment of biobank and

genetic data.

C. Process Simplification

Data used in PV has always gone through careful review

and analysis. Traditionally, there have been near-equal efforts

to test and enrich the data. The promise of ML and related

technologies is to reduce the manual efforts required and

allow for even more focused effort on specific data activities

that will most effectively increase knowledge of the safety

characteristics of drugs and vaccines [34].

VI. ENABLING TECHNOLOGIES AND EMERGING MODELS

A. Process automation of rules-based systems

There are many tasks that are mundane and routine in

the process of evaluating safety data. By leveraging our data

pathways strategy, one can readily adapt automation of these

steps and implement them more quickly than with traditional

PV systems infrastructure. While rules-based systems may be

considered one of the simpler forms of machine intelligence,

there is still much value to be gained from these processes

[35].

In March 2020, two new, automated, rules-based processes

were released [36]. The first process checks for duplicate re-

ports using predefined sequences, while the second reviews the

quality of the data of an incoming safety report by extracting

relevant field content and looking for field discrepancies using

predefined rules. These methods were shown to significantly

reduce the time spent to manually review cases. Over 30,000

safety reports were processed in a single week and it is

estimated that the same volume of cases would have required

approximately 5,000 person hours to review by hand.

B. Molecular clinical safety intelligence

Safety concerns are common reasons why medicines fail

during clinical development. Safety experience with like drugs

can inform new drug development and help predict the human

safety profile of new drug candidates.

A software tool was developed that warehouses the chemical

structures and biological properties of approximately 80,000

compounds to enable molecular clinical safety intelligence.

The system enables the analysis of in vitro, preclinical, drug

metabolism, toxicology, and clinical data to assess the risk of

potential toxicity of new candidate drugs [37]. Safety-driven

drug design can promote selection of the safest drug candidates

for further development.

Tools like these can be accessed to enhance our overall

data pathway capabilities. Increasingly, such capability is now

obtainable, the outputs of which can then be linked to enhance

safety data pathways [38].

C. Data Mining and Machine Learning

In 2011, the FDA Adverse Event Reporting System

(FAERS) received more than half a million safety reports

[39]. The number of reports filed each year has been growing

steadily. In 2021, FAERS recorded over 2.3 million safety

reports.

Monitoring of medicines and vaccines is a complex process

that cannot be fully automated through rules-based approaches.

Much of the activity around processing safety reports is of

questionable value in terms of furthering knowledge about

patient safety. This motivates the use of more advanced

techniques to automate and improve the efficacy of human

intervention and manual review of cases. However, in the

context of safety report processing, we must be capable of

seamlessly supporting both rules-based and ML methods.

The main challenge associated with using ML in safety

within this context is developing the safety-specific training

data sets needed to “teach” the ML algorithms, that must

be dynamic and able to capture changes to the safety envi-

ronment. The development of training sets is labor-intensive,

requiring review of complex safety reports and large amounts

of free text to identify and extract relevant variables. The

burden of creating better training sets may be alleviated

through methods like crowdsourcing.

Additionally, any step in the ML process should clarify how

the methods are performing, provide confidence scores, and

allow for human intervention when things go wrong [40]. In

particular, ML may assist PV-related activities by identifying

potential black swan events [41], duplicate case reporting [42],

data anomalies or errors, and finding duplicate information

in different data sources. Modern PV systems should enable

continuous learning from agile data sources, deal with data

drift, and allow for course correction when things go wrong.
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D. Natural Language processing for automated prioritization
of safety literature review

The goal of NLP is for computers to understand the contents

of documents. NLP is increasingly being used in PV to glean

knowledge from unstructured data (e.g. showing how early

identification of acute liver disease from EHRs is possible

based on supplementing structure data with NLP extracted

concepts from clinical notes [43]).

One hundred percent of the manual review of literature for

potential AE cases can be supplanted by NLP to prioritize

candidate articles and identify safety reports as shown by

Glaser et al. [44]. NLP methods were used to automate and

rank literature documents, resulting in a 77% reduction in

time in queue for review. All documents identified as relevant

were identified in the test dataset, creating tangible gains

in efficiency while demonstrating that NLP is can automate

the identification of potential AE cases in large volumes of

literature.

E. Rapid Query Analysis of Real-Word Data

Rapid query analysis (RQA) methods allow population-

based contextualization of outcomes of interest. One example

of its use is examining rates of outcomes in an exposed

population during specified risk intervals and comparing those

rates to those that occur during comparable intervals or in

unexposed populations. The results of RQA, however, require

further analysis and investigation due to their exploratory

nature. RQA can be performed in near real-time, and it may be

triggered by emerging internal or external PV-related requests.

Various software tools exist to enable RQA of RWD to

contextualize observed events [45]. This provides a rapid query

capability similar to the FDA’s Sentinel network (keeping in

mind the limitations of RWD).

This is now a routine capability providing more descriptive

and complex analytical analyses across multiple healthcare

databases quickly from analysis initiation to results [46].

VII. MULTI-MODAL SAFETY MONITORING

PV is moving toward a multi-modal model system to lever-

age the plethora of available data sources and the increasingly

sophisticated capabilities of data mining and ML. Multi-modal

PV will drive improved data-driven insights into drug and

vaccine safety. The data generated by an individual over their

lifetime is stored in many platforms and in many forms;

and biological & genomic information, medical encounters,

diagnoses, procedures, prescriptions and health outcomes may

be stored as structured data. While free text associated with

these episodes, results of tests and real-time monitoring, and

SM posts are stored as unstructured data.

All the building blocks of multi-modal modern PV systems

are currently available as individual modules. Linkage across

the components is primarily ad hoc and the next phase is to

make this more integrated from a user perspective, recognizing

that original underlying data will necessarily need to remain

fragmented and decentralized.

In summary, the multi-modal systems model provides for

increased transparency and efficiency in governance by creat-

ing audit trails. It maximizes our ability to interact, analyze

and enable data-driven decision making. Finally, the multi-

modal system allows for iterative learning from data outputs

to inputs.

VIII. CONCLUSION

By leveraging data pathways, we have described that a next

generation, modern PV system benefits from the enhanced

linkage of disparate data. The data environment encompasses

both traditional and non-traditional data, linking millions of

patient lives and data points together to better understand the

complexities of patient safety.

This system provides a more holistic approach in both

population and personalized patient safety, and enables a

higher level of confidence in causality modeling of suspect

drug and vaccine event outcomes.

Allowing for more flexibility in the data processing, clean-

ing and automation of routine safety monitoring processes

should foster faster development of advanced safety surveil-

lance methods and encourage more experimentation in the use

of advanced data mining and AI/ML methodologies.
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