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Abstract— In forensics, the authenticity of digital images is
of the utmost importance, considering that modern technol-
ogy makes it incredibly simple and quick to alter and gen-
erate fake but convincing images. As a result, digital image
credibility has decreased, making it difficult to demonstrate
the source of images. Prior studies have shown that magnetic
resonance imaging (MRI) scans can be traced back to their
sources, but radiographs have not. In this paper, we propose
the Deep-RSI algorithm, an algorithm that identifies the
source (manufacturer and model) of the device used to create
radiographs. This is the first time that a medical forensics
investigation of this kind will be accomplished to declare
and confirm radiograph sources. Researchers in information
forensics, security, and medical imaging can use this data to
determine scientific fraud, like fake radiographs made from
unreliable sources or cut-and-paste fakes. This proposed
solution describes how non-content pixels in images enable
us to discover the manufacturer and model of a radiographic
machine. Since radiographs are obtained from different sites
of the body, source recognition has to be sensitive and
free of any content-specific information. This will prevent
the convolutional neural networks (CNN) from detecting
content-specific details and instead identify fingerprints that
are unique to the source. CNNs start with low-level features
and, in the convolutional blocks, generate high-level features
to identify the radiographic machine sources. This proposed
solution reports the source (manufacturer and model) of each
image. We obtain the highest AUC of 0.97 and a prediction
accuracy of 98.54% for radiographic machine manufacturer
detection. Our results show that forensic assessments of
radiographs can be done with a high level of certainty.

Keywords: Deep Learning, Machine Learning, Radio-
graphs Imaging, Medical Imaging, Forensic Imaging

1. Introduction
Due to changes in technology, it is now easier than

ever to change digital images. The forensics community

has increasingly concerned with validating the authenticity

of digital medical images [1], [2]. Inference based on the

contents of images that are not an accurate representation

of the patient may result in inaccurate clinical decisions

[3]. There is little known about the difficulty of identifying

the origin of digital medical images. Previous research on

magnetic resonance imaging (MRI) scan source detection

has shown promising results for detecting MRI sources

[4], but no research has been conducted on identifying the

source of radiographic machine sources. This novel research

will provide a universal forensic method for accurately

predicting the source (manufacturer and model) of radio-

graphs using deep learning techniques. To our knowledge,

this is a pioneering study in medical forensic research to

identify and validate the source of radiographs. Researchers

in information forensics, security, and medical imaging can

utilize this data to uncover instances of scientific fraud, such

as falsified radiographs that do not originate from a reliable

source or that contain obvious cut-and-paste forgeries [5].

In addition, our findings contribute to the growing body of

evidence demonstrating that forensic assessments may be

conducted with high degrees of certainty.

Because fabricated images might deceive people, it is

critical to research methods to verify whether a digital image

is real or not [6]. Tracing the origins of radiographs may have

a variety of significant benefits for both medical forensics

and information forensics [7]. Researchers may be unable

to protect patients’ confidentiality and privacy by tracing the

source of leaked radiographs. Researchers may also be able

to secure medical information from unauthorized tampering

by validating the provenance of certain radiographs.

Deep learning techniques use convolutional neural net-

works (CNNs), which have more than two hidden layers and

extra filters. Their design is based on stacking several hidden

layers, and consists of the characteristics and components

required to establish a network [8]. This has been shown

to be a good way to get hierarchical information from the

foregrounds and backgrounds of images. In other words, they

can learn new things from a group of things they already

know [9]. The first layer of a CNN architecture is made up

of a set of convolutional feature extractors that are applied to

the image in parallel by a set of multiple learnable filters. To

make feature maps, these filters work like a sliding window

that interacts with all parts of the image by a certain amount,

called the stride. In the same way, the hidden convolutional

layers pull out each lower-level feature map. The output of

these hierarchical feature extractors is then fed into a fully

connected neural network that sorts things into classification.
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Fig. 1

A GENERAL SCHEMA OF RADIOGRAPHS SOURCE IDENTIFICATION USING DEEP-RSI

However, CNNs with their current networks and settings

didn’t recognize the altered or computer-made images. In

this research, we present a new approach for addressing this

problem by utilizing new CNN configurations.

In this paper, we propose a novel technique, deep learning

for radiographs source identification (Deep-RSI), in which

we use a customized convolutional neural network (CNN) to

learn the data from non-content pixels and predict radiograph

manufacturers and models. The operation uses CNN layers

and filters to extract low-level (pixel-level) data from noise

and content-free images located in the background, and then

CNN learns high-level features. This should allow CNN to

skip anatomical aspects (image content) inside an image and

concentrate entirely on radiographics’ machine traces. Then,

fully connected layers of convolutional neural networks

(FCNN) learn the data generated by the combination of the

first layer followed by convolutional blocks to get high-

level features. This automated machine learning algorithm

provides a manufacturer and model identification for each

image.

Recent advancements in digital imaging technologies have

given rise to a new set of issues and concerns addressing

image authenticity [10]. It is now possible to create digital

images, edit them, and manipulate them without leaving any

visible evidence of the actions taken. These characteristics

substantially undermine the trustworthiness of images. A

new field of study known as "digital image forensics" aims

to determine the origin and likely authenticity of a digital

image. The main contribution of this proposed research is

to learn how the content-free pixels in images can provide

information about their origins, such as the radiographic

machine’s manufacturer and model. It is crucial to achieve

source recognition through a sensitive, content-free opera-

tion since diverse parts of the body are scanned to create

radiographs. The major contributions of our research are as

follows:

� We use radiographs to identify radiographic machine

source with high accuracy.

� We use radiographs to identify radiographic machine

source with high values for area under curve (AUC) for each

model.

� We leverage content-free pixels to extract low-level fea-

tures and identify radiographic machine sources fingerprints.

� We detect and extract fingerprints automatically out of

radiographs for the source identification.

� We customize sampling data during the training phase

to learn an unbalanced dataset fairly using a new approach

for data weighting per class (radiographic machine model

/ manufacturer) to avoid having a biased model for the

majority of classes.

The rest of this paper is organized as follows: In Section

2, we provide an overview of recent forensic studies to

distinguish altered images. Then, in Section 3, we elaborate

on Deep-RSI architecture and discuss how CNNs are applied

in medical forensics tasks. Finally, we evaluate the Deep-RSI

results and analyze them.

2. Related Work
Radiographic machine with different camera models and

setups make output images with different resolutions, which

shows a relationship between non-content pixels in the

images [12], [13]. Pattern noise (fingerprint) is introduced

into digital images by various digital cameras. The cause

of pattern noise is the imperfection of embedded sensors,

their device equipment, and in-camera preparatory activities,

resulting in a range of fingerprint patterns in the images [14].

As a result, scientists can use these fingerprints to distinguish

images (falsified images from authentic images) based on

their sources.
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Table 1

DEEP-RSI THEME FOR SOURCE IDENTIFICATION BUILD UPON

MISLNET [11]

Layer Info

Conv1 Conv2d(3, 96, kernel size=7, stride=2, pad.=4)
Max pool MaxPool2d(kernel size=3, stride=2, pad.=0)
Conv2 Conv2d(96, 64, kernel size=5, stride=1, pad.=2)
Max pool MaxPool2d(kernel size=3, stride=2, pad.=0)
Conv3 Conv2d(64, 64, kernel size=5, stride=1, pad.=2)
Max pool MaxPool2d(kernel size=3, stride=2, ,pad.=0)
Conv4 Conv2d(64, 128, kernel size=1, stride=1,pad.=0)
Avg pool AvgPool2d(kernel size=3, stride=2, pad.=0)

FCNN1 Linear(in features=6272, out features=200)
FCNN2 Linear(in features=200, out features=200)
FCNN3 Linear(in features=200, out features=classes)

Experts in digital and multimedia forensic science have

developed a variety of ways for detecting the manufac-

turer and model of digital photos [15] and video sources

[16], ranging from more traditional approaches to ones

that depend on deep learning. Because malware assaults on

healthcare systems are becoming more widespread, similar

approaches have been extended to identify the sources of

magnetic resonance imaging (MRI) scans [4].

In image forensics, the difficulty of distinguishing fab-

ricated images from authentic images can be divided into

two categories: hand-crafted feature-based methods and deep

learning-based methods. The former focuses primarily on

the physical differentiation between faked and actual images

throughout the image synthesis process [17], and is further

separated into statistical data-based identification approaches

[18] and physical features [19]. Furthermore, Villalba et al
proposed a method for video source identification based on

fingerprint extraction from video key frames [20]. Manually

created features, on the other hand, generally result in

huge feature dimensions, complicated calculations, and low

detection rates [3]. To address this problem, researchers

proposed potential solutions by employing feature selection

methods [6], [21], which boosted the detection rate and

computation time while considerably decreasing the feature

dimension.

The later category, deep learning algorithms, generates

features automatically using CNNs from images to feed

classifiers that learn and predict the images’ source. In recent

years, deep learning-based algorithms have made substantial

progress [4]. The CNN-based techniques primarily use a

classifier to extract hierarchical representations from the

source image and differentiate between falsified images and

real images [4], [22], [23].

3. Proposed Method
There is a high degree of association between non-content

pixels that are adjacent to one another. A decent steganalysis

will look for a harmony that may be found between the pixels

that are adjacent to one another [21]. Deep-RSI seeks to learn

fingerprints to detect radiographs’ source (manufacturers

and models of the radiographic machine). To that end, we

elaborate on three main sections that enable us to fulfill the

goal of Deep-RSI.

3.1 Data Preparation
We extract all digital radiographs captured in Mayo Clinic

Florida (MCF) from 2010-2021 for five sites: hands, wrists,

forearms, elbows, and shoulders to perform this research

study. In addition, we include every manufacturer and model

list that has been active on the MCF campus since 2010. The

radiographs format is Digital Imaging and Communications

in Medicine (DICOM), which provides information about

patients, device stations, specialists, nurses, and operators,

as well as the configurations of the output images and the

location of the room where the radiographs were captured,

as well as an image of the patient’s site itself. We extract

the manufacturer and model information from DICOMs and

compare it to the list.

Next, we apply the pre-processing technique to remove

ineligible DICOMs, which are small in size and lacking in

information, from the dataset with some conditions. We re-

moving unknown DICOMs which are related to device qual-

ity control (QC). We report 7898 DICOMs with 10 classes of

radiographic machine model and four classes of radiographic

machine manufacturers. We call model0 up to model9 and

manufacturer0 up to manufacturer3 due to Health Insurance

Portability and Accountability Act (HIPAA) policy. Finally,

we convert all DICOMs to Joint Photographic Experts Group

(JPEGs /JPGs) format and resize the JPGs into 256*256

in order to fit the proposed architecture and model. Lastly,

we randomly split the dataset into training and test datasets

(80/20) so that the number of manufacturers and models

were balanced in the training and test datasets. We allocate

6318 sample JPGs for training and 1580 for the test dataset.

3.2 Data Weighting
The information in table 2 demonstrates that we have an

unbalanced dataset to learn from in order to detect radio-

graphic machine models and manufacturers. The standard

sample splitting procedure for training and testing yields an

unbalanced amount of samples for each class (radiographic

machine model / manufacturer). We shuffle the samples in

the dataset, but this does not yield a promising result for

the learning model using the unbalanced dataset. In this

research, we present a novel method for leveraging the

weight of each class in comparison to the entire dataset.

Then, while training, we select dataset samples based on

the weights of the classes (radiographic machine model /

manufacturer). This allows us to select samples fairly for

training and testing, ensuring that the learned model is not

biased toward classes with the majority of examples.
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Fig. 2

A CONFUSION MATRIX FOR THE MODELS IDENTIFICATION

3.3 Training Phase
We present the Deep-RSI Network architecture in figure

1 in which you see the training phase that takes the training

dataset to learn and make a model (F). We were inspired by

the work [4] in this customized network, and built Deep-RSI

on the CNN architecture proposed by Bayar and Stamm in

"Bayar 2018 Constraints." We first generated a "Residual"

or "Prediction Error Feature" layer that provided all content-

free pixel information. To generate this layer, we use a filter

5*5, with the information appearing in the formula below:

W 1
c =

{
w1

c (x, y) = −1 x, y = 0∑
w1

c (x, y) = 1 −3 < x, y < 3, �= 0
(1)

where w1
c (x, y) is the filter weight at the (x, y) position

and w1
c (0, 0) is the filter weight at the center of the filter

window (W). Each filter in Residual layer is initialized by

randomly chosen, then enforcing the limitations in equa-

tion 1. During training, the restrictions in equation 1 are

applied again after the filter weights have been updated

using stochastic gradient descent. This equation enables the

CNN to train a robust collection of alteration detection

feature extractors adaptively, rather than having them pre-

selected. Because these features are low-level and easily

round up/down, causing us to lose information about non-

content pixels, we do not apply any pooling for this layer

after convolution has completed.

Following this layer are three convolutional blocks, each

of which has numerous convolutional filters, batch normal-

ization, tanh activation, and max pooling. These convolu-

tional blocks are intended to extract high-level information

from low-level noisy input produced by the restricted layer.

A learned forensics feature extractor is created by combining

a restricted layer with many convolutional blocks. Following

the convolutional blocks, there are two fully connected

neural network (FCNN) layers with 200 neurons each,

followed by an output layer with softmax activation, where

each neuron corresponds to a single class (radiographic

machine model/manufacturer). We use the FCNN as our

main classifier to predict ten radiographic machine models

(10 classes) and four radiographic machine manufacturers (4

classes).
We choose this architecture [11] as our baseline because

its compressed convolutional laers are designed to suppress

visual content and learn from forensic evidence. This allows

the CNN to disregard anatomical details in a scan and

concentrate entirely on radiographs fingerprints.
We set Deep-RSI’s hyperparameters as follows. The num-

ber of classes is 10 (radiographic machine models) and 4

(radiographic machine manufacturers), the number of epochs

is 100, and the learning rate is 0.0001. Table shows the

remaining configurations.1.
We train CNNs to accomplish two main goals. First, ra-

diographs machine manufacturer identification, and second,

radiograph model identification leveraging Deep-RSI.

Fig. 3

A CONFUSION MATRIX FOR THE MANUFACTURER IDENTIFICATION

3.4 Test Phase
After completing the training phase and generating the

model (F), we evaluate F on the unbiased test dataset. This

is why the test and training datasets are separated to avoid a

biased model. In the following section, we report the Deep-

RSI performance for radiograph manufacturers and model

identification.

4. Experimental Results
In this section, we present our experimental setup as

well as the results of our research on radiographic machine
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Table 2

RADIOGRAPHIC MACHINE MODEL DISTRIBUTION

Models Total Training Test

Model 0 215 164 51
Model 1 1588 1274 314
Model 2 447 345 102
Model 3 1363 1123 240
Model 4 1778 1404 374
Model 5 1180 949 231
Model 6 85 67 18
Model 7 200 155 45
Model 8 758 625 133
Model 9 284 212 72

Total 7898 6318 1580

manufacturer and model identification. We construct training

and test datasets of radiograph scans and then analyze Deep-

RSI’s performance using the test dataset. Our results show

that the radiographic machine does, in fact, leave traces

that can be found and used by the forensic CNN model

to determine the source of the radiographs.

4.1 Dataset
We collect all radiographs source manufacturers, models,

and radiographs collected at Mayo Clinic Florida from 2010

for five sites: hands, wrists, forearms, elbows, and shoulders.

The total number of samples is 7898, 6318 of which are in

training, and 1580 of which are in testing. Table 2 illustrates

that we have ten different radiographic machine models that

create DICOMs for the various sites. We have a minimum

of 85 for the model six and a maximum of 1588 for the

model one.

4.2 Radiographic machine models evaluation
We begin by evaluating Deep-RSI on radiographic ma-

chine models using three key metrics: TPR (or sensitivity),

TNR (or specificity), and AUC (area under the curve). We

must compute the AUC for a multi-class dataset because

the classes in this dataset are not binary. To accomplish

this, we must compare each class to others and calculate

AUC for each class. According to Table 3 our proposed

method produces promising results for each radiographic

machine’s model detection. The maximum AUC is 0.99 for

radiographic machine model zero, and the lowest AUC is

0.88 for radiographic machine models one and four. We

achieve 100% sensitivity for radiographic machine model

seven and 100% specificity for radiographic machine models

zero and six. The total accuracy of radiographic machine

model detection for all radiographic machine models is

calculated to be 84.87 percent.

We generate a confusion matrix for radiographic machine

model detection that is shown in figure 2. This figure shows

that radiographic machine model#4 has the highest number

of test samples for model number four in which we correctly

Table 3

STATISTICAL RESULTS FOR MODELS

Models TPR(%) TNR (%) AUC

Model 0 98.04 100 0.99
Model 1 83.12 93.92 0.88
Model 2 88.23 99.53 0.94
Model 3 80.0 97.24 0.89
Model 4 81.81 95.19 0.88
Model 5 85.71 97.40 0.91
Model 6 94.44 100 0.97
Model 7 100 99.87 0.99
Model 8 90.97 99.24 0.95
Model 9 84.72 99.20 0.92

Table 4

RADIOGRAPHIC MACHINE MODELS IDENTIFICATION RESULTS

Sites Total samples Accuracy(%)

Hands 3949 85.95
Wrists 386 79.48

Forearms 61 84.61
Elbows 268 90.74

Shoulders 3265 86.37

Total 7898 84.87

detect 306 the samples, with AUC value of 0.88. note that

we do not calculate the radiographic machine manufacturer

detection for each site since we only have one radiographic

machine manufacturer for each site for more than 99 percent

of the samples.

We evaluate our proposed method on five separate sites

for radiographic machine model detection. Table 4 shows

the number of samples as well as the prediction accuracy

for each site. The model’s low accuracy is due to a lack

of samples per class (radiographic machine model) during

the training phase. Despite the fact that the hands-on class

contains 3949 samples, fewer radiographs are captured. As a

result of this, the trained model failed to recognize particular

radiographic machine models for the site.

4.3 Radiographic machine manufacturer eval-
uation

Table 5 shows that we have four different radiographic

machine manufacturers (0 to 3) in which the manufacturer #

2 has the majority of samples in comparison with others, and

the manufacturer #3 has minimum number of samples. We

have to make sure that the training process fairly consider

all radiographic machine manufacturers (classes) to avoid

biased information on the manufacturer #2. We leverage

a data weighting approach to obtain a promising result

of 98.54% accuracy in radiographic machine manufacturer

detection.

In addition, we project the Deep-RSI results as a confu-

sion matrix onto a heat-map chart, as shown in figure 3. This
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Table 5

RADIOGRAPHIC MACHINE MANUFACTURER DISTRIBUTION

Models Total Training Test TPR(%) TNR (%) AUC

Manufacturer 0 200 155 45 95.56 99.87 0.98
Manufacturer 1 215 164 51 98.04 99.21 0.99
Manufacturer 2 7398 5932 1466 98.77 96.49 0.98
Manufacturer 3 85 67 18 88.89 99.68 0.94

Total 7898 6318 1580 98.54 96.74 0.98

graph shows that the manufacturer #2 represents the bulk of

radiographic machine manufacturers.

5. Conclusion
In this paper, we demonstrate that it is possible to identify

the origin of sources of radiographs (manufacturer and model

of the radiographic machine) that produced them. There has

been no research done on the topic of identifying the original

sources of radiographic machines using radiographs, the first

research of this type in medical imaging. Researchers in

information forensics, security, and medical imaging may

consider this finding paramount. We also report the capa-

bility of a CNN to determine the manufacturer and model

of the radiographic machine that was used to create the

radiographs. By applying our proposed method to a new

set of radiographs collected at the Mayo Clinic in Florida,

we claim that we can correctly determine the manufacturer

of the radiographic machine used to create the images with

a success rate of 98.54% and the specific model with an

accuracy rate of 84.87%.
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