
Transform Decomposition Switching for Efficient
Attribute Compression of 3D Point Clouds Using

Neural Networks

Reetu Hooda ID ∗†, W. David Pan ID ∗§ and Bernard Benson ID ‡
∗Department of Electrical & Computer Engineering, University of Alabama in Huntsville, AL 35899, USA

‡McLeod Software Corporation, Birmingham, AL 35242, USA
†rh0059@uah.edu,§pand@uah.edu,‡bernard.benson@mcleodsoftware.com

Abstract—An adaptive technique to switch between RAHT and
Dyadic RAHT using 3D Sobel filter has been found to improve the
compression in 3D point clouds by offering substantial cumulative
compression gains. However, the drawback of this switching
scheme is its need for tuned thresholds. To this end, we propose to
use neural networks to resolve the threshold dependency issue so
that the switching becomes truly adaptive. Two publicly available
point cloud datasets were used to test the effectiveness of the
proposed method. We achieved significant gains on MVUB and
minor gains on 8iVFB dataset over all Dyadic approach.

Index Terms—Attribute compression, Neural networks, Point
clouds, RAHT, Dyadic RAHT.

I. INTRODUCTION

A Fter 3D meshes, point cloud (PCs) are the most advanced

media format used in data representation. They comprise

of scattered points in space where each point is represented

using a spatial coordinate (x, y, z) called Geometry with color

and/or reflectance information related to it called Attributes

[1]. Although a mesh provides far more complex geometry

and sub-metric inspection of an object, point clouds are more

widely used due to some limiting factors of meshes, mainly

linked to complexity. Moreover, dense PCs are used in the

development of 3D meshes to generate their finely detailed

faces, edges and vertices. Therefore, PCs can also be perceived

as building blocks of a mesh. Due to the popularity of PCs in

recent years, they are employed in various applications such as

immersive media, medical tomography, autonomous driving,

augmented reality (AR), robotics, etc.

With increasing usage of inexpensive 3D scanners and

modern multibeam echosounders, there has been a rise in gen-

eration of very high volume of dense point cloud datasets [2].

Because of the unstructured nature of these PCs, unlike tra-

ditional 2D images/videos, PC compression can be extremely

challenging [3]. Therefore, in many practical applications such

as smooth streaming with limited bandwidth, efficient PC

coding solutions become essential [4].

Paramount efforts have been made by researchers to im-

prove the compression efficiency of point clouds. Moving

Picture Expert Group (MPEG) has been conducting meetings

towards standardization of compression technologies for point

cloud compression (PCC), which is now widely used as a

benchmark in academic and non-academic research [5]. The

two distinct technologies are Geometry-based PCC (G-PCC)

and Video-based PCC (V-PCC). From the details of the codec

architecture mentioned in [1], it can be concluded that these

technologies mainly comprises of 3D to 2D projection and

rule-based traditional approaches [6].

In addition to the conventional coding solutions imple-

mented on PCs, deep learning (DL) has also made its way

in advance media compression with impressive preliminary

results [7]. Most of the DL coding solutions are 3D CNN-

based autoencoders (AE) [8], [9] with few fully-connected

neural network (FCNN) approaches [10], [11] and even

fewer recurrent neural network (RNN) [12] based techniques.

Among the limited neural network based solutions, only a

handful of them are end-to-end.

In [13], one of the first few end-to-end framework for

lossy attribute coding using AE is introduced. There are also

few partitioning-based methods such as [14] which segments

the PC into fine-grained patches, whereas [15] uses kd-tree

based decomposition to efficiently divide the color distribution.

The coding gains of the above mentioned approaches are

reported to be comparable and in some cases outperforms the

MPEG-anchor. However, these approaches need to train large

models to generate rate-distortion curves and they are also data

dependent [16].

In G-PCC, attributes are encoded using Region Adaptive

Hierarchical Transform (RAHT), separately from geometry

[17]. Due to the effectiveness of Dyadic decomposition [18],

Blackberry proposed to replace RAHT with Dyadic RAHT

which was later adopted in the codec [19]. Then, it was

observed in [20] that switching between the two types of

decomposition was found to be more effective instead of

using only one type of transform throughout the PC. But

the approach was threshold dependent, thereby hindering its

practical usability.

In this paper, we address the threshold tuning problem of

the technique in [20] by training neural networks to learn the

switch between RAHT and Dyadic RAHT. Experimental re-

sults show considerable compression gains while successfully

eliminating the threshold dependency.

The remainder of the paper is organized as follows: Section

II provides the problem statement with details related to

data preprocessing. Section III describes the shallow neural
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Fig. 1. Two types of decomposition (RAHT Vs Dyadic RAHT).

network (SNN) coding solution. Section IV discusses the

BD-rate performance of the proposed technique. Section V

concludes the paper.

II. PROBLEM STATEMENT

One of the options to encode the attribute values of a PC is

RAHT, which is an adaptive variation of a Haar wavelet trans-

form introduced in [5]. It is based on the hierarchical structure

of the occupancy map called Octree. In G-PCC codec, the

transform is applied in three steps as shown in Fig. 1. Let us

consider the 8 blocks at the top. They represent the attribute

values that are first decomposed in the z−direction to generate

the low-pass (L) and high-pass (H) components performing

four transformations in step 1 (High-pass components are

shown in dashed lines). In the second step, only low-pass co-

efficients from the first step are decomposed to output LL and

LH performing two transformations in y− direction. Finally,

LL is transformed to generate LLL and LLH performing only

one transformation in x−direction. In Dyadic decomposition

shown on the right, high-pass components at each stage are

also decomposed performing four transformations in each step.

Fig. 2. 3D edge detection scheme (The original switching which depends on
the k value).

RAHT was later replaced by Dyadic decomposition. Chang-

ing the fundamental structure from RAHT to Dyadic decom-

position showed ∼ 2.3% average gain on the entire MPEG

dataset and hence was adopted in the G-PCC codec.

Fig. 3. 18−neighbourhood.

It was recently found that switching between these two

transforms based on the characteristics of the neighboring

blocks offered improvements in rate-distortion sense. From the

experimental analysis in [20], it was concluded that RAHT is

beneficial for flat regions and Dyadic RAHT provides better

gains when applied on discontinuous regions. The idea was to

study the nature of 18 neighboring blocks (shown in Fig. 3)

using a 3D Sobel filter kernels (Sx, Sy and Sz) to output the

strength of the edge (�f) defined as follows:

�f(x, y, z) = G(x, y, z) = [GxGyGz]
T (1)

Where Gx, Gy and Gz are gradients in x, y and z direc-

tion respectively. The magnitude was approximated using the

absolute values for faster computation as defined below:

|(�f)| ≈ |Gx|+ |Gy|+ |Gz| (2)

The magnitude of the edge (|�f |) was normalized using

the average (avg) of its neighbouring blocks to compute

normalized magnitude of the edge called k as shown in Fig. 2.

Thresholding on k was performed to interpret the continuity

in the central block. A uniform block is indicated if k exceeds
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a certain tuned threshold and hence RAHT decomposition is

used, otherwise Dyadic is used.

This process can be perceived as the luma values (repre-

sented as Li where 1 ≤ i ≤ 19) of 18 neighbors and central

block multiplied with constant weights (α′s) as shown in Fig.

2, where α′s represents the fixed weights of the Sobel filter.

Normalized value k was used to make a binary decision based

on a threshold. The disadvantage of the proposed method is its

threshold dependency on k, which was selected by trial and

error for each point cloud. Therefore, threshold dependency

hinders the general applicability of this switching scheme.

Fig. 5. T-SNE visualization for Pleno data.

Neural network (NN) based compression methods for PC

have emerged recently with comparable compression gains,

albeit with the necessity to store multiple trained models to

generate different rate-distortion trade-offs [21]. In this paper,

we address the threshold tuning problem by replacing the

original 3D edge filter scheme with a shallow neural network.

The problem now becomes a pattern classification task with

two output classes (RAHT and Dyadic RAHT).

Data Preprocessing: Only Luma values of 18 neighboring

blocks with the central block was used in the original scheme

and tested for threshold values of T = 0.2, 0.4, 0.6 and 0.8. The

threshold with maximum cumulative gain was selected. The

19 features with the transform chosen (0 for RAHT and 1 for

Dyadic) based on the manual tuning was written in a data file

to prepare the training dataset. Data cleaning is performed by

first separating the 0 (RAHT) samples with 1 (Dyadic RAHT)

samples to study their distribution. Duplicate data samples

were dropped from both the classes and concatenated together

followed by random shuffling.

Data Visualization: We use t-SNE to visualize data in two

dimensions. A random sample of 15000 data points is used

to create the embedding which are then projected onto a two

dimensional plane to make it easier for visualization [22]. Here

we observe more of Dyadic points compared to RAHT making

the data biased as shown in Fig 5. Since performing Dyadic

transform a majority of the time and using RAHT only for

very weak edges was found to be beneficial in [20], it was

expected for the data samples to be more biased towards the

Dyadic class.

III. NEURAL NETWORK STRUCTURE

The PC geometry is encoded using the octree approach,

where the PC is enclosed in a 3D volume of D×D×D voxels.

The 3D volume is divided into 8 sub-cubes of size D/2 ×
D/2 × D/2. Only occupied voxels are divided further and

represented by ’1’, and ’0’ otherwise. This process is repeated

until the dimension reduces to 1× 1× 1. Since the occupancy

information is required for the attribute compression method

chosen by the user, the geometry is encoded first.

For attribute compression using either RAHT or Dyadic

RAHT, the octree representation is also considered. Let us

consider a certain region in a 3D PC. The block to be trans-

formed is highlighted in orange as shown in Fig. 4 referred as

central block. Now, similar to the prediction scheme [23], the

original scheme of 3D edge detection also uses 18 neighbors

around the central block. 19 Luma values (18 neighbors plus

the central block) were used in detecting the edges in the

central block to decide the type of decomposition to be used.

These 19 values form features for the target class based on

the original scheme used in [20].

Although most deep learning based coding solutions for

PC compression uses CNN-based architecture to retain 3D

correlations and maintain lower complexity via weight sharing.

Fig. 4. Fully connected neural network (FCNN) architecture.
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They need to store multiple models to obtain different RD

curves with extensive running time required in training large

networks [11]. In our problem, we encounter a very localized

region in the PC where at a time, a maximum of 19 Luma

values are processed. Therefore, we have opted for a fully

connected structure as shown in Fig. 4. Instead of using a set

of 3D blocks, directly fed to the neural network, we flatten the

18 neighbors and the central block and use 19-tuple feature

vectors. The architecture has an input layer of 19 neurons with

an output layer of 1 neuron for the target label (’0’ is used for

RAHT and ’1’ is used for Dyadic RAHT), which is essentially

a binary classification problem. We have used 2 small hidden

layers of 12 and 5 neurons respectively, making it a total of

4-layer architecture including the input and output layers. All

the layers are fully connected. A sigmoid function was used

for the final layer, whereas the ReLU activation function was

used for the remaining three layers. The FCNN architecture as

shown in Fig. 4 is used for training with the data split of 70%,

15%, 15% to divide it into training, validation, and testing

set respectively. The model was trained for 1000 iterations

with the binary cross entropy (BCE) loss function. Adam

optimizer with a learning rate of 0.01 and weight decay of

1× 10−6 was used for fast convergence. Regularization with

β1 = 0.9 and β2 = 0.999 and dropout with probability of

0.1 in the third layer was used to avoid over-fitting and to

improve generalization on the biased data. Finally, the trained

model was imported into the MPEG-GPCC codec replacing

the original 3D edge detection scheme which was threshold

dependent.

IV. RESULTS

This section presents the performance assessment of the pro-

posed method to eliminate the threshold dependency. Learning

based coding solutions are generally most effective for dataset

that share some similarity that uses the adaptation from the

training data onto the testing data. In this context, we used

Microsoft Voxelized Upper Bodies (MVUB) dataset [24] from

the open source JPEG Pleno database, which is a dyanmic

point cloud dataset publicly available. Each sequence consists

of multiple frames that share correlations between the frames

within a sequence. We trained the neural network shown in

Fig. 4 with specifications provided at the end of the previous

section.

Fig. 6. MVUB dataset (from left to right): Andrew, Phil, Ricardo, Sarah and
David.

The model was trained using only the first frame of each

of the five sequences and tested on ten random frames. Fig.

6 shows the first frames of Phil, Ricardo, Sarah and Andrew

sequence. Accuracy of 92.78%, 92.54%, 92.38% was achieved

on the training, validation and testing data respectively. The

TABLE I
BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON

MICROSOFT VOXELIZED UPPER BODY (MVUB) DATASET.

Test No. of BD-rate Cumulative

Sequences Points Luma Cb Cr Gain

Andrew 277038 -0.9% -8.4% -3.6% -12.9%

Phil 336323 0.2% -5.4% -2.1% -7.3%

Ricardo 952178 -1.2% -3.8% -3.8% -8.8%

Sarah 304528 -0.9% -4.9% -4.4% -10.2%

David 302584 -2.9% -3.7% -2.9% -9.5%

loss curve is shown in Fig. 8 and accuracy curve is shown in

Fig. 7 for training and validation set.

Fig. 7. Training vs validation accuracy.

Fig. 8. Training vs validation loss.

The Dyadic RAHT approach was used as the benchmark

to assess the performance of the proposed technique and

RD curves were used as the performance metrics to observe

the gain across the three channels (Luma, Cb, Cr). Table

I shows the gains over each channels for a random frame

that achieved the highest gain. The confusion matrix of the
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TABLE II
CUMULATIVE BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON 10 RANDOM FRAMES ON MVUB DATASET.

Test Cumulative Gain Average

Sequences 1 2 3 4 5 6 7 8 9 10 Gain

Andrew -12.9% -12.7% -10.0% -9.5% -8.3% -8.0% -6.6% -6.3% -5.7% -5.3% -8.53%

Phil -7.3% -5.9% -5.6% -3.6% -3.4% -3.0% -2.7% -2.3% -2.0% -1.7% -3.75%

Ricardo -8.8% -8.4% -6.8% -5.2% -4.2% -4.1% -3.9% -3.5% -3.0% -2.7% -5.06%

Sarah -10.2% -8.5% -8.2% -6.6% -5.6% -4.9% -4.4% -4.2% -2.4% -2.2% -5.72%

David -9.5% -8.2% -7.6% -7.3% -5.7% -5.4% -5.2% -4.6% -2.7% -2.5% -5.87%

classification results are shown in Fig. 10. The instances

or counts in the confusion matrix can also be expressed in

terms of percentages. The proposed scheme achieved 92.37%

of accuracy with high sensitivity, specificity and precision

of 95.88%, 88.88% and 89.69% respectively, showing the

accuracies obtained are not skewed by uneven test data.

Fig. 9. 8iVFB dataset (from left to right): Soldier, Loot, Long Dress and Red
& Black.

TABLE III
BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON 8I

VOXELIZED FULL BODIES (8IVFB) DATASET .

Test Cumulative Gain Average

Sequences 1 2 3 4 Gain

Soldier -4.8% -4.0% -3.8% -3.4% -4.0%

Loot -8.5% -6.9% -5.5% -3.9% -6.2%

Long dress -1.3% -1.0% -0.6% -0.4% -0.825%

Red and Black -3.0% -1.9% -1.6% -1.5% -2.0%

To summarize the RD performance of the proposed scheme,

we use the cumulative gain, which is calculated by simply

adding the gain or loss across the three channels. The cu-

mulative gain on 10 random frames from the five dynamic

sequences is tabulated in Table II arranged in decreasing

order. The proposed scheme provided an average cumulative

gain of 8.53%, 3.75%, 5.06%, 5.72% and 5.87% for Andrew,

Phil, Ricardo, Sarah and David sequence respectively over

the Dyadic RAHT approach. In order to verify the robustness

of the proposed scheme, we also tested it on the 8iVFB (8i

Voxelized Full Bodies) JPEG Pleno dataset shown in Fig. 9.

Our method not only provided an average cumulative gain of

4.0%, 6.2%, 0.825% and 2.0% for Soldier, Loot, Long Dress

and Red & Black sequence, respectively (as summarized in

Table III), but also eliminates the need to tune the threshold

as in the original switching scheme.

Fig. 10. Confusion matrix of classification results.

V. CONCLUSION

In this paper, we present a new neural network based

coding approach that focuses on compression of static point

cloud attributes. More precisely, we address the threshold

dependency problem to enable the generalized applicability of

the transform switching technique based on the characteristics

of different regions in a point cloud. The proposed neural

network technique comprises of three main steps: collecting

data from the 3D edge detection scheme, using the data

to train a fairly simple shallow neural network and finally

deploying the trained network to replace the original switching

scheme. We have demonstrated the efficiency of proposed

method for point cloud attribute compression in terms of RD-

performance, by comparing it to MPEG-GPCC standardized

method that uses only Dyadic transform throughout the point

cloud. Average cumulative gains of over 3% was achieved

on MVUB dataset, with only minor gains attained on 8iVFB

dataset. In this research work, we have only used the Luma

values for classification. In the future work, feature size could

be increased to obtain higher training, validation and testing

accuracy. We will study the effect of these changes on the

attribute compression of point clouds.
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