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Abstract—To print a grayscale image on a printer with current
technology (laser or inkjet), it is necessary to convert it into a
binary image called halftone, so that when a human being looks
at it from a distance, the binary image visually resembles the
original image. In this work, we present a technique to increase
the spatial resolution of halftone images based on convolutional
neural networks (CNNs). To our knowledge, this is the first
work that seeks to solve this problem using CNNs. We use
our algorithm to increase the resolution of binary halftones
and show that our algorithm is considerably better the previous
decision-tree based method. We also use our algorithm to increase
the resolution of scanned old comics pages, and show that our
algorithm is better than conventional resampling methods.

Index Terms—Halftone, convolutional neural networks, deep
learning, up sampling.

I. INTRODUCTION

As laser and inkjet printers emulate continuous-tone images

using tiny dots, it is necessary to use halftoning techniques

during the pre-printing process to convert continuous-tone

images to their binary versions so that the binary image

visually resembles the original image when viewed by a

human being from a certain distance.

In other words, given a grayscale image G : Z → [0, 1], the
halftoning process generates a binary image B : Z → {0, 1}
such that for any pixel p, B̄(p) ≈ G(p), where B̄(p) is the
mean value of the image B in a neighborhood around the pixel

p.
The spatial resolution of a halftone image to be printed by

devices is related to two concepts:

• Dots per inch (DPI): DPI is the maximum number of

tiny dots a printer can print per inch. Each tiny dot

can only be off (white) or on (black), thus there are no

shades of gray. DPI is a hardware-bound characteristic.

For instance, computer screens, mouse optical devices,

and printers are measured by DPI.

• Lines per inch (LPI): To achieve the appearance of

grayscale on a printed sheet, the printer uses an optical
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illusion by printing rounded halftone dots of varying sizes

and, by printing them at high resolution, gives the appear-

ance of grayscale [3], [8]. Each rounded dot is made up

of many tiny dots. A row of rounded dots is called a

line. Thus, LPI is a measure of the number of rounded

dots per inch. LPI is a feature linked to the software,

as the halftone algorithms are responsible for creating

these rounded dots. Figure 1 features a comparison of a

grayscale image with its halftone representations at 75,

150, and 300 LPI.

(a) Original grayscale image (b) 75 LPI halftone image

(c) 150 LPI halftone image (d) 300 LPI halftone image

Fig. 1: Halftone of a grayscale image in different LPIs.

The literature on increasing the spatial resolution of binary

halftone images is scarce. Kim [2] presents windowed zoom

decision trees (WZDT) to solve the problem of increasing DPI

and LPI together, achieving the optimal results when using a

fixed small window, with up to 2% error when increasing the

resolution of coarse dots, fine dots, and clustered dot ordered

dithering, in pre-print images. A pre-print image is a binary

halftone software-generated image that did not pass through

print-scan process.
Our work extends the previous work [2], studying the

problem for both pre-print (processed only by halftoning

algorithms) and post-print (printed and re-scanned) halftone

images. To achieve this goal, we use convolutional neural

networks (CNNs) [5] to increase spatial resolutions of pre-
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print and post-print halftone images, without the need to have

the original image in gray levels. To our knowledge, this is

the first work that seeks to solve this problem using CNNs.

II. UPSAMPLING OF HALFTONE IMAGES

A. Types of halftone

There are two main categories of halftone:

• Clustered-dot or pattern halftone: The rounded halftone

dots are generated accordingly some geometric structure,

distributed in a homogeneous way, where the variation

of the dot size represents the level of the gray shades.

Pattern halftones are usually created by ordered dither-

ing halftone algorithms, and they are normally used in

magazine and newspaper printings and in laser printers.

• Dispersed-dot or error diffusion halftone: The halftone

dots are usually generated by error diffusion halftone

algorithms. The dots are scattered in a heterogeneous

way, thus creating more possibilities of generating gray

tones. As this technique does not take into account the

rounded dot patterns, there is no way to specify LPI in

this technique. This technique is usually used in inkjet

printers.

We can also speak of a third “intermediate” category,

dispersed-dots ordered-dithering, where tiny dots are not or-

ganized as rounded halftone dots, but spatially dispersed

following some pattern.

This work will only address the following pattern halftones:

Euclidean, square, circle and triangle, represented in the figure

2. The error diffusion halftone algorithms have a chaotic

behavior that makes it a very difficult task to increase the

resolution by machine learning algorithms [2].

(a) Euclidean (b) Squared (c) Circle (d) Triangle

Fig. 2: Examples of pattern halftones.

B. About the problem

Let us consider a grayscale image I with m × n pixels,

and its ideal equivalent D in high resolution, with double

resolution 2m×2n pixels. To recreate the image D from I , it
is necessary a function r, where r(I) ≈ D. Evidently, there is

no function r that can generate perfect D from I , since there
are many different high-resolution images D that correspond

to a low-resolution image I . In other words, this problem is

ill-posed.

C. CNNs for up sampling

Dong et al. [5] present one of the first neural network

architectures for up sampling images, and they argue that, for

problems related to re-sampling, CNNs are a great method for

preserving details.

The major differences between conventional re-sampling

(such as nearest neighbor, bilinear or bicubic interpolations)

in relation to CNN resampling is due to three properties [5,

9]:

• Patch extraction: input features are extracted by window-

ing operations from the convolution layers;

• Non-linear mapping: convolutions with different window

sizes (kernels) allow more efficient patch extraction,

leading to more effective learning;

• Reconstruction: through the non-linear mapping, it is

possible to perform a high fidelity re-sampling in order

to reconstruct the ideal image.

Frank et al. [11] introduces some machine learning tech-

niques for halftoning, however these methods aim to convert

a grayscale image into a high quality halftone image, resulting

in error diffusion dispersed-dot halftone images.

Lim et al. [7] describe a specific CNN architecture to

increase the resolution of color images, the enhanced deep

super-resolution network (EDSR), one of the best current

techniques for preserving image details. This architecture also

reduces GPU memory usage by about 40% compared to other

architectures with the same purpose, as this architecture does

not use the batch normalization layers.

The EDSR architecture is based on the well-known ResNet,

which uses residual blocks: an input I passes through a series
of layers, such as convolution and activation layers, generating

an output O. Finally, the output of this residual block is given
by I +O, making the block learn O more easily.

Furthermore, as can be seen in the figure 3, the architecture

has additional up sampling blocks, responsible for increasing

the resolution of the input image. These blocks use a com-

bination of the 2D convolution sequence with the depth to
space layer (also known as pixel shuffle), needed to increase

the spatial dimensions of the convolution output matrix. The

proposed model alternates three types of output blocks for 2×,

3× and 4× up samplings. For this work, we consider only 2×

up sampling.

Fig. 3: EDSR architecture

III. METHODOLOGY

In order to carry out the experiment, we performed two

steps:
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1) Organization of the dataset: which consisted of the

selection of images from the dataset for halftoning,

based on the information provided by the literature and

on the needs of the proposed problem;

2) Model training: which consisted of training the EDSR

model, to compare the results with the WZDT algorithm

[2]. For each dataset, similar training was performed

using the EDSR and WZDT techniques, to make a fair

comparison.

A. Dataset organization

In this work, we use two types of dataset, indicated as (A)

and (B) (figure 4). The dataset of type (A) have only pre-print

images, i.e., binary halftone images that were generated from

a grayscale image by some algorithm (by the printer driver or

by some function from a library). The type (B) dataset consists

of post-print images, that is, images that have been printed on

paper and re-transformed onto digital media (e.g., by scanning

the printed images).

Fig. 4: Dataset of pre-print images (A) and post-print images (B).

Note that the dataset (A) has binary halftone images, and

the dataset (B) has continuous-tone color halftone images. The

print/scan process cannot reproduce accurately the tiny dots

due to mechanical and optical limitations [1].

1) Dataset type (A) - binary halftone: To create the binary

halftone dataset (shortly, DA), we chose two image datasets:

DIV2K, the reference for image up sampling [6]; and Pascal,

the reference for image segmentation [4]. These datasets are

composed of rectangular colored images, with different dimen-

sions: DIV2K consists of 900 images with more than 2000

pixels of resolution (vertically or horizontally); and Pascal

consists of 1872 images with a fixed dimension of 500×375.

For our tests, we chose all 900 images from the DIV2K

dataset and randomly selected 900 images from the Pascal

dataset, then converted all the color images to grayscale, using

Python’s Pillow library. After that, we crop all DIV2K images

to 2000×1124 size, to regularize the shape of this dataset.

Thus, we generated two types of grayscale images G, the
larger images (DIV2K) and the smaller ones (Pascal). After

that, we reduced the dimensions of all images G by half using

area interpolation, generating G0.5 images. We then converted

all G and G0.5 images to binary halftone B and B0.5 images

using the Python library [10]. B0.5 is the input image for the

halftone resolution increasing algorithms and B is the ideal

output.

We created four different types of halftone, as cited before:

Euclidean-shaped, square-shaped, circle-shaped and triangle-

shaped. To exemplify the halftoning process, we describe the

Euclidean dot generation code below:

B = halftone(G, euclid_dot(spacing=G.shape[0]/lpi,
angle=45))

Where B is the binary halftone image, and G is the original

grayscale image. The euclid dot function indicates the type of
halftone that will be created. The parameters of the halftone

function stay the same for all types of halftone. The spacing

parameter varies according to the number of lines of the image,

divided to the desired LPI (it can be a float number). The angle

of all generated halftones was always 45 degrees.

2) Dataset type (B) - scanned halftones: To create the

scanned halftones dataset (shortly, DB), we used scanned

comics from the Digital Comic Museum [12]. These comics

are mainly from the mid 50’s and they are printed using pattern

halftones, as shown in the figure 5.

(a) Daffy Tunes Comics 012, p.7. (b) Elsie the Cow 001, p.9.

Fig. 5: Examples of DB images, before converting them to grayscale.

We picked 900 images at random from among these comics,

but only took up to two pages from the same comic, as we

want to avoid creating biased dataset.

To create B and B0.5 images in DB dataset, we converted

the scanned color images into grayscale, and for B0.5, we

resized them.

B. Training the model

We trained the machine learning algorithms using B0.5

images as input and B as the expected output, in both datasets

(DA and DB).

For WDZT algorithm, we kept the same parameters listed

in [2].

For EDSR, we kept the same configuration pointed out

in [7]: 16 residual blocks; Mean Absolute Error (MAE) loss

function; and one up sampling layer, since we want up scale

an image only 2×; Adam optimizer, with learning rate varying

from 10−4 down to 5 × 10−5 by piecewise constant decay

function, with the boundaries parameter set to 5000; and 100

epochs of training. The only major parameter we change on

the structure of the network was the depth of input layer

that originally was three to one, since the original EDSR was

create to process RGB images and we are processing binary

or grayscale images.

We executed the tests with 900 DIV2K, 900 Pascal and 900

comics halftone images:

• DA - Pre-print (4 subdatasets): Euclidean-shaped, square-

shaped, circle-shaped and triangle-shaped halftones;
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• DB - Post-print (1 subdataset): Grayscale halftone

scanned comics.

It is a hard to do a fair comparison between EDSR and

WZDT algorithms, since they have few similarities in their

structure. WZDT algorithm can be trained using only a few

sample images while EDSR algorithm can use much more

sample images. Thus, in the first two experiments, we did

only the tests that WZDT can execute, with few sample images

(Table I). We followed the same training methodology of the

original work [2]: in each test, we chose some random training

and test images among the 900 images, in both DIV2K and

Pascal and repeated this process 450 times in experiment 1

and 90 times in experiment 2.

We executed the third experiment (Table I) only for EDSR

algorithm. We split the dataset into 70% images for training,

20% images for validation and 10% images for test. We

repeated this training and test 5 times.

TABLE I: How much images we used in each experiment.

Experiment WZDT
(Train/Test/Repeat)

EDSR
(Train/Val./Test/Repeat)

Experiment 1 9/1/450 9/2/1/450
Experiment 2 32/5/90 32/9/5/90
Experiment 3 - 630/180/90/5

For DB dataset, we did only the experiment 3 using EDSR

algorithm, because WZDT only produces binary outputs.

IV. RESULTS

The results are organized into two categories:

• Pre-print experiments with DA dataset. In experiments

1 and 2, we compare EDSR and WZDT algorithms. In

experiment 3, we test only EDSR algorithm;

• Pos-print experiments with DB dataset. We execute only

the experiment 3 with EDSR algorithm. Furthermore,

we added two more experiment: a) a comparison of our

EDSR model with EDSR models trained using grayscale

continuous-tone images; b) a visual comparison with

other four classic up scaling algorithms.

We also show box plots to compare the algorithms. In

these graphs, the lower the interquartile box is located, the

greater the accuracy; and the narrower the box, the smaller

the dispersion. The dashed line is the population mean value.

Each point is a MAE between an ideal image and an image

generated by the algorithm. Due to space limitations, we only

show the images from experiments 2 and 3 for Euclidean

halftones.

A. Pre-print experiments

The table II shows the average of the n = 450 results for

each experiment in the dataset DA. Due space limitation, we

only show the results on DIV2K in figure 6. The results of

experiments 1 and 2 show that the EDSR has lower MAE and

standard deviation than the WZDT, indicating more stability

to obtain better results in the DA dataset.

Another information that can be seen in figures 6(a) and

(b) is, the larger the number of training samples of the EDSR,

the smaller the variation of the results: for EDSR, the box

plots of (b) are narrower than (a). In contrast, the WZDT

algorithm has the opposite behavior: despite the larger amount

of training samples results in better results, the standard

deviations increase, indicating an overfitting. In other words,

the EDSR algorithm has better accuracy and convergence for

up scaling the halftones than the WZDT. Figure 7 depicts some

images generated in this experiment.

TABLE II: Results of experiments in DA datasets. The listed values
are the MAE between the processed image and the ideal image,
followed by the standard deviation (MAE ± SD) of n = 450
experimental results.

Experiment Dataset Pattern WZDT EDSR
Experiment 1 DIV2K Circle 0.065 ± 0.0193 0.049 ± 0.0148

Euclid 0.060 ± 0.0196 0.046 ± 0.0119
Square 0.069 ± 0.0201 0.041 ± 0.0126
Triangle 0.082 ± 0.0231 0.049 ± 0.0152

Pascal Circle 0.064 ± 0.0212 0.049 ± 0.0170
Euclid 0.061 ± 0.0218 0.047 ± 0.0144
Square 0.069 ± 0.0229 0.041 ± 0.0144
Triangle 0.083 ± 0.0254 0.049 ± 0.0172

Experiment 2 DIV2K Circle 0.052 ± 0.0238 0.042 ± 0.0144
Euclid 0.051 ± 0.0209 0.038 ± 0.0115
Square 0.058 ± 0.0231 0.041 ± 0.0126
Triangle 0.068 ± 0.0274 0.041 ± 0.0131

Pascal Circle 0.052 ± 0.0254 0.042 ± 0.0163
Euclid 0.051 ± 0.0225 0.039 ± 0.0132
Square 0.058 ± 0.0252 0.041 ± 0.0144
Triangle 0.068 ± 0.0298 0.040 ± 0.0157

Experiment 3 DIV2K Circle - 0.034 ± 0.0140
Euclid - 0.029 ± 0.0144
Square - 0.034 ± 0.0136
Triangle - 0.035 ± 0.0139

Pascal Circle - 0.034 ± 0.0155
Euclid - 0.029 ± 0.0158
Square - 0.033 ± 0.0153
Triangle - 0.035 ± 0.0154

B. Post-print experiments

Table III and figure 8 show the results of the experiment 3

using DB dataset. We executed 5 times the training, validation

and test described in Table I generating n = 90× 5 = 450 re-
sults. After that, we up sampled B0.5 images with four classic

resampling algorithms: nearest neighbor, bilinear, bicubic, and

Lanczos. EDSR produced the lowest error with the smallest

standard deviation. Figure 10 shows that EDSR algorithm

generates visually better images than the classic resampling

methods.

TABLE III: Results of n = 450 experiments using DB post-print
dataset.

Algorithm MAE ± SD
Bicubic 0.051 ± 0.0190
Bilinear 0.056 ± 0.0193
EDSR 0.036 ± 0.0141
Lanczos 0.051 ± 0.0194
Nearest Neighbor 0.056 ± 0.0199

Furthermore, we trained the EDSR model with grayscale

images from both Pascal and DIV2K datasets, following the

proportions of experiment 3 (630 images for training, 180 for

validation and repeating 5 times). Then, we tested the resulting
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(a)

(b)

(c)

Fig. 6: Box plots of the experiments on DA dataset with DIV2K: a)
Training with 9 images and testing with 1 image (repeated 450 times);
b) Training with 32 and testing with 5 images (repeated 90 times);
c) Training with 630 images and testing with 90 images (repeated 5
times)

models to upsample 90 comics images from DB 5 times with

n = 90 × 5 = 450 total experiments. The results depicted in

table IV and figure 9 show that the model trained on comics

halftone training images has better performance than the other

models trained on grayscale images, indicating that “generic”

grayscale upsampling models are not suitable for upsampling

halftone images.

We also tested how EDSR would behave if the input of

the algorithm is the ideal image from DB , that is, the raw

scanned image. For this test, we used the weights obtained

(a) Ideal output

(b) WZDT. MAE=0.056 / 0.060 / 0.035 / 0.076

(c) EDSR, exp. 2. MAE=0.043 / 0.051 / 0.030 / 0.062

(d) EDSR, exp. 3. MAE=0.039 / 0.041 / 0.024 / 0.056

Fig. 7: Outputs of DIV2K DA euclidean dataset: a) Ideal output
image; b) WZDT (experiment 2); c) EDSR (experiment 2). d) EDSR
(experiment 3). MAE values are the differences between the ideal
images in (a) and the processed images.

Fig. 8: Box plot comparison of the EDSR model with classic
interpolations, with n = 450, tested on DB dataset.

TABLE IV: Results obtained upsampling comics halftone images
(DB dataset) using models trained on halftone and grayscale images.

Training dataset MAE ± SD
Comics halftone images 0.036 ± 0.0141
DIV2K grayscale images 0.039 ± 0.0150
Pascal grayscale images 0.043 ± 0.0151

in the experiment 3 using DB dataset. Since we do not have

the ideal up scaled image, we compare visually the results of

EDSR model with the two best interpolations shown in table

III: bicubic and Lanczos. The results are shown in figure 10.
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The EDSR model generated images with considerably greater

sharpness than the other interpolations.

Fig. 9: Box plot comparison of the EDSR model trained on Comics
halftone images versus models trained on different grayscale datasets,
with n = 450 tests performed on the DB dataset.

(a)

(b)

(c)

Fig. 10: Comparisons of different types of interpolations: a) bicubic;
b) Lanczos; c) proposed EDSR.

V. CONCLUSIONS

This work introduced a new way to upscale resolution of

halftone images. The EDSR technique yielded better results

than WZDT for four types of pre-print halftones. We showed

how to train properly the EDSR model to achieve the best

results on post-print halftone images, that is, halftone images

that has been printed and scanned. We showed that EDSR

is better than the four classical resampling methods: nearest

neighbor, bilinear, bicubic and Lanczos. Furthermore, the

results obtained in our experiments demonstrate that scanned

grayscale halftone images cannot be properly upscaled us-

ing models designed to increase the resolution of grayscale

images. For halftone resolution upsampling, EDSR trained

with halftone comics dataset is a better option than simple

interpolations or EDSR trained with continuous tone images.
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