
An approach to parallelization of respiratory disease
spread simulations in emergency rooms

Martín Paradiso
Informatics Research Institute LIDI.
Universidad Nacional de La Plata

La Plata, 1900, Argentina

martinparadiso@outlook.com

Lucas Maccallini
Informatics Research Institute LIDI.
Universidad Nacional de La Plata

La Plata, 1900, Argentina

lucas.maccallini@gmail.com

Agustina Vericat
SISDIC Hospital San Roque de Gonnet

La Plata, 1900, Argentina

SimHPC-TICAPPS
Universidad Nacional Arturo Jauretche.

Florencio Varela, 1888, Argentina

agustina.vericat@hospitalelcruce.org

Fernando Romero
Informatics Research Institute LIDI.
Universidad Nacional de La Plata

La Plata, 1900, Argentina

fromero@lidi.info.unlp.edu.ar

Diego Encinas
Informatics Research Institute LIDI.
Universidad Nacional de La Plata

La Plata, 1900, Argentina

SimHPC-TICAPPS
Universidad Nacional Arturo Jauretche.

Florencio Varela, 1888, Argentina

dencinas@lidi.info.unlp.edu.ar

Abstract—The agent-based modeling (ABM) is a flexible sim-
ulation model that can be easily adapted to the simulation of
different problems. A disadvantage of some tools for ABM imple-
mentation is the low performance obtained. This paper presents a
re-implementation of an in-hospital disease simulator, developed
in Repast Simphony, in its high-performance alternative Repast
for High Performance Computing. This tool allows multinode
execution, allowing execution on multi-core machines as well as
on physical and virtual clusters.

The objective of this work is to analyze the performance of
the new implementation in physical and virtual clusters, and
to determine in which scenarios it is justifiable to implement a
system in a lower-level framework.

Index Terms—Agent-based modeling and simulation, Disease
transmission, HPC, Simulation

I. INTRODUCTION

In the research conducted by Maccallini [1], an emergency

room simulator was developed with the aim of investigating

the transmission of in-hospital diseases. In particular, the

transmission of pneumonia is investigated. For the study,

a hospital was designed and statistics were collected from

various sources [2], [3], [4] in order to obtain a model with

which to calibrate the system parameters. This implementation

is designed following the agent-based modeling [5].

The original simulation designed by Maccallini [1] is im-

plemented in the Repast Simphony toolkit [6], which focuses

on the simplicity of the development. While the framework is

sequential, it supports parallelism [6] by delegating to the user

the responsibility of proper synchronization. Due to this, the

original simulator is completely sequential. This is why the

performance of the simulations is not conducive to a large

number of executions or systems with a large number of

agents. Repast HPC [7] is a “high performance” tool that uses

the same concepts as Repast Simphony, providing a reduced

set of functionalities, in exchange for allowing distributed

execution through MPI and a parallel design.

This investigation aims to re-implement the simulation —

developed in Repast Simphony— in Repast for High Perfor-

mance Computing, allowing us to compare both frameworks.

In particular, Repast HPC is aimed at large-scale simulations,

the implementation of this model will give us insights about

the viability of said framework for small models. Furthermore,

a faster version of the model will result beneficial while

conducting large amount of experiments.

A summary of Maccallini’s original model [1] is presented

in section II. Section III presents Repast for High Performance

Computing, and section IV the new implementation. In section

V the infection results of both implementations are shown,

while section VI offers a deep analysis in the performance

response of the new implementation, in single-node and multi-

node environments, both in virtual clusters and cloud. Conclu-

sions are presented in section VII.

II. SIMULATOR DEVELOPMENT

The simulation model used is the agent-based modeling [5].

Its main feature is the existence of a set of entities, agents,
which interact with each other and allow predictions of the

modeled system behavior. The system is executed by ticks,
where each agent executes its own logic.

The final model obtained by Maccallini contains the patient

circulation logic, the transmission logic, a hospital, and various

distributions: rate of patient entry per year and day, severity

of diagnosis, assigned area and hospitalization times.

1367

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00295

A. Hospital

The hospital (Fig. 1) used in the research is “unreal”, based

on the design of several hospitals. In particular, the emergency

area is implemented, which contains a waiting room, reception,

triage, medical offices and intensive care unit. In order to

provide a more realistic scenario, the hospital contains the

most common external services.

1) Consulting

rooms

2) Surgery

3) Pediatrics

4) Gynecology

5) Geriatrics

6) Psychiatry

Fig. 1: Hospital map

As a special case, the ICU (Intensive Care Unit) has no

physical representation, the patients assigned to it are removed

from the map. To model contagion within this area —which

was of no particular interest— a special type of transmission

described below is used.

B. Disease transmission

The model designed by Maccallini describes 4 situations of

transmission:

• between two people,

• between an object and a person,

• between a person and an object, and

• between a person and the ICU environment.

In this model, persons and objects have different infection

cycles. People have three states: healthy, incubating and sick;

in the last two states the person is able to infect those within

2 meters distance. Objects, on the other hand, have two states:

clean and contaminated; an object becomes contaminated

when it “interacts” with an unhealthy person, the contaminated

state allows it to infect people.

1) The route of transmission: The main route of human

respiratory infections is that produced through droplets of

Pflügge (smaller than 5 microns) caused by speaking, coughing

or sneezing by the infected person, subsequently reaching

the oral, nasal or conjunctival mucosa of a new host. These

droplets do not remain suspended in the air, but settle quickly,

so they only allow transmission at a distance of just under

1-2 meters [8].). Transmission also occurs by direct contact of

the mucous membranes with the respiratory secretions of an

infected person or, indirectly, through recently contaminated

hands or objects [9].

Objects are cleaned periodically, unconditionally passing to

the clean state. Adequate cleaning was considered to be that

carried out with disinfectants such as sodium hypochlorite,

chlorine, quaternary ammonium, hydrogen peroxide —among

the most important— on contaminated surfaces [10].

The special case of infection through the ICU environment

(which has no physical representation, and therefore there is

no person-to-person transmission) is performed by means of

equation 1. It is evaluated at each simulation tick and applied

to each patient.

pICU = Npatients ∗ CICU (1)

Where:

• pICU is the probability of infection,

• Npatients is the number of patients currently in the ICU,

and

• CICU is the coefficient of proportionality.

C. Patient behavior

Patients implement a behavior that tries to resemble the

general path that a person takes when entering an emergency

room.

The system generates a configurable number of agents in a

period of one year, taking as a reference a distribution that is

scaled according to the number of agents to be created. For

each day there is a probability pi that a patient is infected.

The path that a patient takes inside the hospital once he is

admitted is as follows:

1) He looks for a place in the waiting room.

2) He queues at the reception desk and waits his turn.

3) He goes to the reception desk, where he remains for a

pre-determined time.

4) He looks for a place in the waiting room.

5) He queues at triage and waits for his turn.

6) He goes to triage, where he remains for a pre-determined

time.

7) a) If his diagnosis is for a physician.

i) He goes to the waiting room.

ii) He queues at the assigned medical specialty.

iii) Once it is his turn, he goes to the assigned

physician.

iv) Is seen for a period of time.

b) If his diagnosis is for ICU admission.

i) He requests a bed in the ICU.

ii) He goes to the ICU, where he stays for the time

dictated by the triage.

8) Goes to discharge.

There are several situations in which the patient heads for

discharge early: if there is no room in the waiting room (step

1368

1, 4 or 7(a)i); if he/she is not seen by the physician before the

time limit established in the triage (step 7(a)iii), or if there are

no beds available in the ICU (step 7(b)i).

D. Other characteristics

Medical personnel have a probability of being protected

(through personal protective equipment for respiratory infec-

tions, such as a mask and gloves) and not participating in the

contagion process. If they are not protected, when they are

infected and show symptoms —after the incubation period—,

they are replaced by healthy personnel.

Patients have a triage priority classification, which indicates

the time limit for their medical attention. If patients are

not seen before this time (because the less seriousness of

their pathology allows it) they are given an appointment

scheduled for the following days and they leave the hospital.

Since the simulator models only the emergency room, these

scheduled patients are not implemented. This difference in

severity implies that each patient must “queue” in each medical

specialty according to their severity, and not in a FIFO order

as in reception and triage.

III. REPAST FOR HIGH PERFORMANCE COMPUTING

Repast HPC [7] is a high-performance alternative to Repast

Simphony, it is implemented in C++, provides less function-

ality and lacks an IDE, but has an interface similar to that

offered by Repast Simphony. The main focus of this alternative

is cluster execution using the MPI standard.

A. Parallelism

Repast HPC parallelizes the simulation spatially. The user

defines a plane and assigns each agent a dynamic location. The

framework takes care of assigning to each process an area of

the plane, and consequently the agents that are in that area.

To avoid discontinuities, agents that are close to the boundary

of a process are copied to the adjacent process so that they

are visible to nearby agents.

As an example, Fig. 2 is included, showing the division

logic used by Repast HPC. The replicated agent, and the tiles

external to each process, are shown in orange (Fig. 2c and

2d). While this implies that the same agent exists in two

processes simultaneously, the non-local copies are read-only,

cannot execute logic, and any changes in their internal state are

not reflected in the original process. To maintain consistency,

Repast HPC copies the agents in every simulation tick.

The space partitioning is determined by the user at the

start of the simulation, and cannot be changed. For a given

number of processes N , the user can request any combination

of partitions along each axis, as long as the resulting number

of partitions matches the number of processes N . For instance,

while using 4 processes (as in Fig. 2), there are three possible

configurations: 1x4, 4x1, and 2x2 (the one used in Fig. 2).

IV. DESIGN AND IMPLEMENTATION

The system is designed to replicate the original model [1]

while minimizing changes.

(a) The agents are presented in
a continuous grid.

(b) The space is divided in 4,
assigning each area to a differ-
ent RHPC process.

(c) The original agent is repli-
cated in the adjacent process as
a read-only copy.

(d) Final state, showing the
software stack. Each RHPC
process can be in different ma-
chines.

Fig. 2: Space partitioning and agent distribution in Repast

HPC. Since the framework uses distributed memory, the agents

close to the border must be copied as “read-only” to the

adjacent process.

A. Input file

Part of the objectives is to decouple the data from the code,

allowing the reuse of the system for other hospitals without

the need to modify the code. To achieve this, all relevant

information is stored in a .json file:

• walls, chairs, doctors, entrance, exit;

• infection probabilities;

• triage levels, and maximum duration of each level;

• admission times;

• probabilities of infection, contamination, incubation times

and cleaning of objects; and

• speed of patients, rate of entry, probability of pneumonia.

B. Multi-process

One of the difficulties in development is parallelism in

distributed memory. Repast HPC provides agents as the only

synchronization method, and lacks the functionality to syn-

chronize global logic such as queues and shifts. This is why

various aspects of the hospital —in particular those modeling

shifts and queues— were modeled directly using MPI and not

the framework.

Algorithm 1 contains the pseudo-code used by the patient

when requesting a bed in the ICU. The patient_logic
function is called once per tick, and depending on the instance

the patient is in, its behavior changes. The patient first requests

a place in the ICU, and then queries periodically until he gets

an answer. Once he gets an answer, he checks if the answer

was positive (there is a bed available) or not.

This polling architecture is used to model the queues for

reception, triage and doctors, and chair and bed assignment.

C. Transmission logic

The transmission logic is modeled around the types of

contagions: between two persons, between an object and a

person, between a person and an object, and between a person

1369

Algorithm 1 Sub-system usage example, the code represents

a section of patient_logic function

if self.stage is REQUEST_BED_IN_ICU then
icu.requestBed(self.id)

self.stage← WAIT_RESPONSE

else if self.stage is WAIT_RESPONSE then
response← icu.getResponse(self.id)
if response then

if response.bedAssigned then
self.stage← GOTO_ICU

end if
end if
else

self.stage← GOTO_EXIT

else if self.stage is ... then
... � Rest of the states

end if

and the ICU environment. Two types of infection cycles are

then defined: human and object, which model the previously

mentioned cycles. Contagion in the ICU is modeled through

an “environment” rather than an agent.

To model contagion, 2 probability parameters are defined

(different for each cycle): probability of contagion and proba-

bility of contamination. The first parameter is used when the

“victim” is a human, while the second is used when the victim

is an object. Furthermore, each agent type can have different

values for each parameter, allowing for more customization

points in the model. The values for this parameters is shown

in section V.

This scheme allows to generate any combination of interac-

tion between any pair of agents. For example, in the case of a

healthy person, both probabilities are 0. A contaminated object

has a probability po of infecting a person, and a probability 0

of contaminating another object.

1) Contagion attempt: The “contagion attempt” used by

both cycles boils down to:

1) Obtaining the probability of the offending cycle or

environment (can be another patient, chair, bed). The

probability is retrieved from the system, the value de-

pends on the pair of agents involved.

2) Generating a random number in the range [0, 1).
3) If the random number is less than the probability of

contagion obtained in 1), the cycle is infected or con-

taminated.

For each healthy person and clean object currently in the

simulation, the model iterates over the agents sorrounding said

agent, and executes the contagion attempt logic between the

two agents. The iteration is performed once per simulation

tick.

D. Medical personnel and objects

In order to increase performance and provide greater flex-

ibility to model the system, the medical staff is not logical.

Shifts are administered by the queues and not by the agents

representing the medical staff. In each turn, the condition of

each physician is periodically observed, and if a sick physician

is detected, he/she is replaced by a healthy one.

The objects (chairs and beds) were modeled outside Repast

HPC, i.e., they are not agents, in order to increase the

performance of the system. This is because Repast HPC syn-

chronizes agents by proximity, and since objects interact with

patients in the same location, it is unnecessary to synchronize

them.

V. CALIBRATION

The calibration of the system consists of adjusting parame-

ters so that it resembles the values collected by Maccallini [1]

in his project. In particular, the relevant metrics to match are

Point Prevalence —percentage of infected patients— and the

Point Prevalence in the Intensive Care Unit, —percentage of

infected patients in the ICU—.

TABLE I: Calibration results for the point prevalence.

Data set
Point Prevalence (%)

Reference Maccallini Actual

Calibration 1.190 1.244 1.156
Validation 1.220 1.713 1.284

TABLE II: Calibration results for the ICU point prevalence.

Data set
Point Prevalence in ICU (%)

Reference Maccallini Actual

Calibration 3.370 3.398 3.348
Validation 3.180 3.203 3.543

As can be seen in Table I and II, the results are closer to the

reference values than in the original version of the simulation,

so they are taken as valid. With these values we proceed to

the system performance analysis, which is the main objective

of the project.

The parameters used to obtain the previous results are shown

in Table III. As explained in previous sections, the probabilities

are splitted in two groups, depending on the victim (in this

table labeled as target). The following table contains every

possible combination of disease transmission, where source is

an infected person or a contaminated object, and target is a

healthy person or clean object.

TABLE III: Parameters used in the new Simulator in order to

obtain the same results as Maccallini [1].

Target
Source

Person Chair Bed

Person 4.9× 10−2 3× 10−5 7× 10−8

Chair 4× 10−4 0 0
Bed 3× 10−5 0 0

VI. PERFORMANCE ANALYSIS

First of all, it is worth remembering that the parallelism

in Repast HPC is given in terms of a spatial partition of the

1370

hospital plane. The framework takes as parameters the number

of partitions to be performed along each dimension (x and y).
This implies that the use of, for example, 4 processes, requires

the partition of the space in 1 of 3 possible combinations:

• (1, 4): the hospital is partitioned into 4 horizontal “strips”,
i.e., the y-axis is partitioned.

• (4, 1): the hospital is partitioned into 4 vertical zones of

equal size, i.e., the x-axis is partitioned.

• (2, 2): the hospital is partitioned into 4 equal quadrants.

The “local” benchmarks are performed in a tuned virtual

machine, which offers the same performance as a bare-metal

operating system. The host is a AMD Zen2 8c16t CPU; each

guest has 4vCPUs, 8GB of RAM and runs Debian 11.

First, we run the simulation in Repast Simphony (the

original version), whose average performance is 187 s. Then,
the new simulation (implemented in Repast HPC) is run in

a single node with the data and parameters obtained in the

calibration. Table IV shows the results obtained; the Time

column is obtained from the median of 10 runs for each

configuration.

TABLE IV: System performance using the calibration data set.

Processes Configuration (x, y) Time (s)

1 (1, 1) 200

2
(1, 2) 209
(2, 1) 334

3
(1, 3) 393
(3, 1) 426

4
(1, 4) 359
(2, 2) 312
(4, 1) 390

The data in Table IV are plotted in Fig. 4, sorted by

time. As can be seen, the performance is far from being an

improvement.

1x1

0

50

100

150

200

S
u
m

o
f
ti
m
e
o
f
e
a
c
h
p
ro
c
e
s
s
[s
]

1x22x1

Configuration

0

100

200

300

400

500

600

2x21x44x1

0

200

400

600

800

1000

1200

Triage queue

Repast HPC

Reception queue

Logic

ICU queue

Doctors queues

Chair assignments

Fig. 3: Time distribution in one, two, and four processes

simulation. For each configuration, an internal measurement of

the time spent in each section of the simulation is performed.

Then, the individual times of each processes are added.

Checkpoints are introduced into the code in order to mea-

sure the distribution of the time taken for the simulation. A

graph generated from such data is shown in Fig. 3 (first plot). It

can be seen that even in single-process execution, where there

should be no synchronization, about 40% of the execution

time is consumed by the framework.

(1, 1) (1, 2) (2, 2) (2, 1) (1, 4) (4, 1) (1, 3) (3, 1)

Configuration (x, y)

0

100

200

300

400

S
im

u
la
ti
o
n
ti
m
e
[s
]

Repast Symphony

Fig. 4: System performance using calibration data set (65 713
annual patients). The blue line (Repast Symphony) is the per-

formance of the original simulation developed by Maccallini

[1].

In addition, internal metrics are collected from the execu-

tions in two processes (see Fig. 3, second plot), which have

between them a large difference in performance. The execution

(1, 2) takes 209 s while the configuration (2, 1) takes 334 s,
60% more.

(a) If the x-axis is divided (config-
uration 2x1), the patient switches
processes several times.

(b) If the division is performed in
the y-axis (configuration 1x2), the
worst case scenario involves only
2 process switches.

Fig. 5: The diagram shows the space partition (purple line)

and one possible path of a patient. Space partitioning has

an influence in performance, since the number of movements

between processes is determined by the agent path and the

map distribution.

The change in performance between one configuration and

another can be understood by analyzing the partitioning of

the hospital (lengthwise or widthwise) and the distribution of

the hospital areas. If partitioned vertically (Fig. 5a), the patient

“crosses” the hospital meridian several times, generating a syn-

chronization between the two processes running the hospital.

This does not occur if it is partitioned horizontally (Fig. 5b),

leaving the entrance, chairs, reception and triage in the same

process.

Furthermore, Fig. 6 shows the time distribution inside each

process, for both configurations (1x2 and 2x1). This measure-

ments confirm the increased synchronization time (in brown,

Repast HPC) between processes when using an improper

1371

1x2, P0 1x2, P1 2x1, P0 2x1, P1

Configuration, Process

0

100

200

300

T
im

e
[s
]

Triage queue

Repast HPC

Reception queue

Logic

ICU queue

Doctors queues

Chair assignments

Fig. 6: The internal distribution of each process in both 1x2

and 2x1 configuration is measured and plotted. The analysis

shows the increased synchronization time (in brown) when

using a “bad” partition.

partition. Not only the synchronization increases, but also the

logic becomes unbalanced, plotted in red in the same figure.

A similar situation occurs in the case of 4 processes (Fig. 3,

third plot), although on a smaller scale, since the performance

in all cases is poor (due to the above mentioned). The best

case (which is still bad compared to the original) is when the

simulation is distributed equally. On the other hand, if one axis

is “over-partitioned”, the performance worsens, as the agents

“cross” too many processes to reach their destination.

A. Varying the number of agents

In addition to the original simulation, the responses of both

the original version (implemented in Repast Simphony by

Maccallini [1]) and the new parallel version are tested by

varying the number of agents. The behavior is summarized

in Fig. 7. As detailed in the legend, the execution time is

measured for all combinations of up to 4 processes, varying

the number of patients between 0 and 70 000. There are two

key points that can be drawn from the graph:

• The performance of the framework without patients, and

consequently, almost without agents (there is still the

staff), is considerably poor.

• As the number of agents increases, the difference between

single-process execution and the best multi-process con-

figurations is reduced.

Furthermore, Fig. 7 shows a consistent performance degra-

dation in performance for each patient increment.

This leads one to believe that Repast HPC —–despite hav-

ing considerable overhead—– is geared towards considerably

larger space simulations with larger numbers of agents. Other

models that make use of Repast HPC, simulate from 100 000
concurrent agents [11], up to 3 000 000 [12].

Since the performance of the original sequential version of

the simulation starts to approach the new parallel version at

60 000 annual patients, an extended test was performed. The

extended test (Fig. 8), measures the performance while varying

the annual patients from 60 000 to 120 000.
The number of patients exceeds the capacity of the hospital

designed by Maccallini [1], which can be observed by the

increased number of derivations to other hospitals (Fig 8, green

line). This implies a maximum number of concurrent agents

0 10000 20000 30000 40000 50000 60000 70000

Patients in a year

0

100

200

300

400

500

T
im

e
[s
]

(x,y)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(3, 1)

(4, 1)

Simphony

Fig. 7: System performance while varying number agents (x-
axis), of processes, and configuration (each line). The olive

line is the original simulation in Repast Simphony. All mea-

surements where performed in the same environment described

in Performance Analysis.

60000 70000 80000 90000 100000 110000 120000

Annual patients

0

200

400

600

800

E
x
e
c
u
ti
o
n
ti
m
e
[s
]

0

20

40

60

80

100

D
e
ri
v
e
d
p
a
ti
e
n
ts

[%
]

RepastHPC (1, 2)

Repast Simphony

Derived patients [%]

Fig. 8: Simulation response while varying the number of

patients. The test is performed in the original simulation and

a two-process simulation (1, 2) in Repast HPC. Since the

hospital was designed for 65 000 annual patients, the number

of derivations due to saturation increases significantly after

this point.

is reached, due to patients arriving at the hospital and been

immediately derived due to lack of free chairs. Nevertheless,

a favorable scenario can be observed, since the new parallel

simulator (blue line in Fig. 8) offers a better performance when

the number of annual patients exceeds 70 000.

B. Cloud Performance

Due to the growing popularity of cloud computing services,

we chose to run the simulation on Google Cloud Platform,

to observe how the simulation responds when run in an

unpredictable environment such as cloud.

The instance used is n2-standard-2. Each node con-

tains 2 vCPUs (Intel Xeon), 8GB of RAM, and Ubuntu 20.04.

Each node executes a single MPI process, this means that,

for a 2 process simulation, the communication is performed

via network. Due to the random nature of instance allocation, it

is impossible to determine is said network relies on a physical

or virtual communication path.

1372

TABLE V: System performance in Google Compute Platform.

Configuration (x, y) Patients Time (s)

(1, 1) 0 62
(1, 1) 25 000 152
(1, 1) 50 000 237
(1, 1) 70 000 281
(1, 2) 0 14 971
(1, 2) 25 000 14 161

As can be seen, the system performance when using 2

nodes, which communicate via SSH (as documented in the

manual [13]), is 2 orders of magnitude worse. In order to

determine the origin of the performance loss, the simulation

is measured on two virtual machines running on the same

machine, this minimizes the network factor since the network

interface used by the Virtual Machines are not limited by

a physical medium. But again, a considerable performance

impact is found, which is detailed in Table VI.

TABLE VI: System performance in VirtualBox.

Configuration (x, y) Patients Time (s)

(1, 2) 0 4379
(1, 2) 65 713 9148

Although the performance does not worsen as much as in

the cloud case, it exceeds what is expected. To complete the

analysis of the situation, the internal metrics of the execution in

virtual machines are extracted. This analysis is shown in Fig.

9, where the relative increase of the sub-systems implemented

outside Repast HPC can be observed. From this graph, it can

be determined that Repast HPC, in addition to being oriented

to the execution of a large number of agents, was optimized

to minimize the impact when using network communication.

0 1

Process

0

2000

4000

6000

8000

P
ro
c
e
s
s
in
g
ti
m
e
[s
] Triage queue

Repast HPC

Reception queue

Logic

ICU queue

Doctors queues

Chair assignments

Fig. 9: Time distribution in two processes simulation in a

simulated cluster. The experiment is conducted using two

virtual machines, which communicate via virtual network.

VII. CONCLUSION AND FUTURE WORK

Although no performance improvement was obtained, the

research provides an overview of Repast HPC and the chal-

lenges that a distributed memory framework presents when

implementing small simulations.

With respect to Repast HPC, it is difficult to justify the

exclusive use of distributed memory with the abundance

of multi-core processors. In particular, for this simulation,

the high degree of mobility of the agents and the reduced

space where they are moved has an important impact on the

performance of the system.
A noteworthy point of the data obtained and useful for future

work is the overhead in single-process execution. If it is con-

sidered that the framework takes 40% of the execution time

even when it has no communication with other instances, it can

be assumed that using a framework with lower overhead and

working on shared memory has the potential to considerably

improve performance.
Due to the simplicity of the model, an alternative to increase

performance is to implement a solution with no framework,

using conventional APIs such as pthreads or OpenMP.

Since Repast Simphony allows the usage of parallelism, it can

be also be considered for future works.

REFERENCES

[1] L. Maccallini, D. O. Encinas, and F. Romero, “An approach to
the modeling and simulation of intra-hospital diseases,” Journal of
Computer Science and Technology, vol. 21, no. 2, p. e14, Oct.
2021. [Online]. Available: https://journal.info.unlp.edu.ar/JCST/article/
view/1827

[2] “Departamento de estadísticas e información de salud de chile.”
last accessed 13 Feb 2022. [Online]. Available: https://deis.minsal.cl/
#estadisticas

[3] “Estudio de las prevalencias de infecciones nosocomiales
en españa (epine),” last accessed 13 Feb 2022. [Online].
Available: https://epine.es/api/documento-publico/2019%20EPINE%
20Informe%20Espa%C3%B1a%2027112019.pdf/reports-esp

[4] “Módulos de principios de epidemiología para el control de
enfermedades (mopece), segunda edición revisada, salud y enfermedad
en la población, organización panamericana de la salud.” last
accessed 13 Feb 2022. [Online]. Available: https://www.paho.org/col/
dmdocuments/MOPECE2.pdf

[5] N. Gomez Cruz, Simulación basada en agentes: Una metodología para
el estudio de sistemas complejos. Colombia: Universidad de Antioquia,
Jan. 2018, pp. 230–268.

[6] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal,
M. Bragen, and P. Sydelko, “Complex adaptive systems modeling with
repast simphony,” Complex Adaptive Systems Modeling, vol. 1, no. 1,
p. 3, Mar 2013.

[7] N. Collier and M. North, “Parallel agent-based simulation with repast
for high performance computing,” SIMULATION, vol. 89, no. 10, pp.
1215–1235, 2013.

[8] K. P. Fennelly, “Particle sizes of infectious aerosols: implications for
infection control,” The Lancet Respiratory Medicine, vol. 8, no. 9,
pp. 914–924, Sep. 2020. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S2213260020303234

[9] W. Chen, N. Zhang, J. Wei, H.-L. Yen, and Y. Li, “Short-range
airborne route dominates exposure of respiratory infection during
close contact,” Building and Environment, vol. 176, p. 106859, Jun.
2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0360132320302183

[10] C. Blazejewski, M.-J. Guerry, S. Preau, A. Durocher, and S. Nseir,
“New methods to clean ICU rooms,” Infectious Disorders Drug Targets,
vol. 11, no. 4, pp. 365–375, Aug. 2011.

[11] N. Huynh, P. Perez, M. Berryman, and J. Barthélemy,
“Simulating transport and land use interdependencies for strategic
urban planning—an agent based modelling approach,” Systems,
vol. 3, no. 4, pp. 177–210, 2015. [Online]. Available:
https://www.mdpi.com/2079-8954/3/4/177

[12] C. M. Macal, N. T. Collier, J. Ozik, E. R. Tatara, and J. T. Murphy,
“Chisim: An agent-based simulation model of social interactions in a
large urban area,” in 2018 Winter Simulation Conference (WSC), 2018,
pp. 810–820.

[13] “Mpich installer’s guide,” Available at:
https://www.mpich.org/static/downloads/4.0.2/mpich-4.0.2-
installguide.pdf, last accessed 27 Jul 2022.

1373

