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Abstract—Response time is one of the most important metrics
in cloud data centers that measure application performance and
availability. The response time depends on how the scheduler
distributes tasks belonging to a job to various cores. Even with
at a maximum level of parallelism, the slowest task (the straggler)
dominates the response time, thereby increasing the average and
extending the tail of the response time distribution.

In this paper, we propose a distributed scheduling scheme
where tasks are systematically assigned to randomly selected
servers based on the expected response time of each server and
the size of the tasks. Consequently, straggling tasks are less likely
to become head-of-line blockers and are more likely to finish
in a shorter period of time. In light of the bursty nature of
task arrivals, the instantaneous response time is not an accurate
measure of a server’s load. Therefore, we developed a Truncated
Exponentially Weighted Moving Average (TEWMA) for the selec-
tion of servers. To adapt to the new schemes, we augmented the
Sparrow simulation and compared its performance to Sparrow’s.
Our approach probes fewer servers and selects most suitable ones
based on a simple matching algorithm. The results have shown
that the tail of response time distribution has been declined
considerably, and consequently the average response time has
been reduced accordingly.

Keywords—Cloud, Job Scheduling, Response Time, Tail Latency,
TEWMA

I. INTRODUCTION

Cloud computing is a seamless on-demand computing re-

source allocation platform that provides application services

without direct active management by the user. Cloud appli-

cations and their business driven configurability often need

different quality-of-service requirements.

Recent advancements in cloud computing have helped

seamless integration of resources on-demand and the quick

arrangement of inter-connected data centers that are geo-

graphically dispersed for offering high quality and dependable

services [1]. Cloud computing has risen as another Internet-

based model for empowering clients. It can organize access

to a shared pool of configurable assets on-demand, which

can be immediately deployed and discharged with very little

administration or cloud provider cooperation [2].

The various environments where cloud computing is ap-

plicable, such as finance, medicine, industry, etc., made the

the cloud computing resources and services having different

features to meet the different user requirements. Thus, it is

necessary to study cloud computing scheduling algorithms

because cloud computing represents further development of

parallel computing, distributed computation and grid comput-

ing [3]. Scheduling algorithms are generally categorized as

static and dynamic. In static scheduling algorithms, all the

required information such as the number of jobs, the number of

resources, the processing times, etc must be known in advance.

In contrast, in dynamic scheduling, resources are allocated as

and when users require.

For cloud computing, task scheduling technology is one

of the core technologies of cloud platform. There are some

deficiencies in existing task scheduling algorithms, which

restrict the application of cloud computing technology in

the field of application. Thus, an excellent task scheduling

algorithm should not only effectively reduce the total task

completion time, but also better realize the load balancing of

the system and improve the utilization of cloud computing

resources [4].

Some of the current parallel cloud applications show a

decrease in CPU utilization whenever there is an increase

in parallelism [5]. The scheduling mechanism plays a crucial

role in cloud computing performance. If arriving jobs are not

scheduled in an efficient way, then the performance reduces

as the cloud processes a huge amount of data. Moreover, any

increasing in the number of clients using the cloud makes

the scheduling more difficult and then an efficient scheduling

algorithm needs to be utilized.

The users of cloud may utilize hundreds or thousands of

virtualized resources and users cannot allocate each task man-

ually. Thus, scheduling plays a vital role in cloud computing

to assign the resources efficiently and effectively.

It can be difficult for service providers to maintain small

tails of latency distribution, especially for large-scale interac-

tive systems. Consistency in service delivery becomes more

challenging as system size and complexity increase. When

a request is handled in parallel, the long tail distribution of

the parallel operation may become problematic right away

and take over the total response time. Each response must be

consistent and latency-free, or the operation’s response time

will increase.

Furthermore, load balancing, scalability, response time, re-

liability, dynamic re-allocation of resources to the computing

machines are all the major conspicuous problems in task

scheduling. Hence, an efficient task scheduling algorithm

is needed in the cloud computing environment. Thus, the

objective of this paper is to propose a new task scheduling
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algorithm for low latency applications in cloud computing

environments.

The proposed algorithm in this paper focuses on providing

a fine-grained task scheduling for low-latency applications.

This scheduling approach assumes that there is already a long-

running executor process running on each server, and it uses

a modified truncated waiting moving average (TEWMA) as an

indicator to the expected server response time. The mechanism

of our proposed approach is explained in more details in

Section III.

The rest of this paper is organized as follows. Section II

shows a literature on the recent researches and contributions

in task scheduling in cloud environments. Section III presents

the design goals of developing task scheduling approach and

illustrates how the proposed task scheduling approach handle

job parallelism. Section IV shows the simulation results and

the parameters used for the cloud computing environment.

Section V provides a new method to efficiently compute

the expected waiting moving average (TEWMA). Section VI

provides a conclusion.

II. RELATED WORK

In cloud computing, scheduling has been recently capturing

attention of many researchers. Many scheduling algorithms

and approaches have been developed, entailing concepts from

the service oriented computing and aspects from the constantly

changing distributed systems environments.

In [6], a scheduling algorithm for the cloud computing

system based on the driver of dynamic essential path to solve

the problem of the scheduling result affected by the scheduling

order change of each task node in the scheduling process.

In [7], a job scheduling algorithm for edge computing based

on Modified Monte Carlo Tree Search (MMCTS) proposed to

guide the jobs to the most suitable edge server to improve

resources utilization. To minimize the overhead and the num-

ber of fail jobs which overstep their deadline in edge cloud,

[8] proposed a parallel job scheduling algorithm to solve the

scheduling problem based in edge cloud on the process mode

that job scheduling on parallel batch processing machines (P-

BPM), called P-MACO algorithm (Parallel-batch multi-object

ant colony algorithm).

The heterogeneity of resources and the various execution

periodicity of tasks in jobs significantly impact the efficiency

of large scale job executions. Peng et al. [9] proposed a peri-

odic task-oriented two-level job scheduling architecture which

provides resource domains for the scheduler to shield the de-

tails of the underlying heterogeneous resources. Moreover, all

tasks with the same resource requirements are assigned to the

same sub-job scheduler to reduce the scheduling complexity.

To ensure service quality when improving the resource uti-

lization rate, Cheng et al. [10] developed an online framework

for task scheduling in large-scale warehouse data centers. Zhao

et al. [11] combined q-learning with deep neural networks

and used the maximum completion time and load balance as

performance indicators to solve the task scheduling problem

in the cloud environment. In [12], the whale optimization

algorithm was used for cloud task scheduling with multiple

objectives.

To reduce the task completion time and cost, Randa et al.

[13] developed a heuristic scheduling algorithm that is based

on perceptual mobility, and [14] proposed a Multi-objective

Evolutionary Algorithm on the Cloud (MEAC), which pro-

vides some novel schemes including problem-specific encod-

ing and also evolutionary operations, such as crossover and

mutation. This algorithm shows a significant reduction in cost

and time of task scheduling.

This paper explores a different scenario in the design space

as it proposes a set of decentralized machines that operate

autonomously. This decentralized scheduling system provides

better scaling and availability properties. For example, users

can send requests to an alternate scheduler if a scheduler

fails. Moreover, given the fact that providing response times

in decentralized systems comparable to those provided by

centralized systems is challenging, this paper adopts the power

of using the exponential moving weighted average (EWMA)

concept in scheduling user requests to provide better decisions

when placing jobs (better load balancing) on the servers with

the minimum average waiting times.

III. SCHEDULING ALGORITHM FOR PARALLEL JOBS

There has been various types of scheduling algorithm

exist in distributed computing system. For the best system

throughput, a job scheduling algorithm should achieve a high

performance computing. Traditional job scheduling algorithms

may not be able to provide the same scheduling in the cloud

environments.

Since batch workloads acquire resources for long periods of

time and thus require infrequent task scheduling, low-latency

workloads have more demanding scheduling requirements than

batch workloads do. The goal of scheduling algorithm is to

minimize the job completion time. The start time and finish

time of each task within a job are essential and significantly

influence the completion time, which basically entails the

computation and communication time.

A task scheduler usually have a complete view of which

tasks are running and on which servers. Then, it uses this view

to schedule the arriving tasks to available servers. Sparrow [15]

came up with a different approach in which many schedulers

operate in parallel and do not maintain any state about cluster

load. In Sparrow, schedulers rely on instantaneous load infor-

mation acquired from servers. In this paper, a new approach

is proposed to improve performance, introduces the idea of

calculating the workload at the servers in terms of the expected

waiting time of tasks arrived at servers. In this approach, the

placement of jobs is done through assigning the tasks with the

highest exponentially estimated processing time to the servers

with the lowest expected average waiting time, so the problem

of task starvation is minimized.

A. Simulation Model

In our simulation, a cluster composed of servers that execute

tasks and schedulers that assign tasks to server is used. A job
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consists of k tasks that are each allocated to a server and that

job can be handled by any scheduler. If a server currently

doesn’t have enough resources for the new arriving tasks to

be executed, it queues those new arriving tasks until existing

tasks release enough resources.

Additionally, the time from when a task is submitted to the

scheduler until when the task begins executing is called wait
time. The time the task spends executing on a server is called

service time, and the time the job spends from when the job is

submitted to the scheduler until the last task finishes executing

is called job response time. The time difference between the

job response time using a given scheduling technique and the

job response time if all of the job’s tasks are scheduled with

zero wait time is called delay (the total delay within a job is

due to both scheduling and queuing).

B. Job Scheduling and Task Placement

The mechanism of the proposed scheduling technique is

to aggregate load information in terms of expected average

waiting time for tasks within server queues rather than queue

lengths.

For each arriving job consists of several tasks with dif-

ferent durations, a task must be placed in a server queue

with the lowest expected queuing delay. This expected delay

is estimated using the concept of late binding, which was

proposed by Sparrow [15]. In late binding, the scheduler sends

a reservation request to a server. Once the request reaches

the front of the server queue, the server sends a RPC back

to the scheduler indicating the queuing delay. However, late
binding unnecessarily increases the delay for the scheduler.

The delay exasperates with the server request getting behind

a head-of-line blocking task (or long task). Consequently, this

will negatively impact the performance of the scheduler in

terms of its throughput.

The control chart EWAM has been widely used to smooth

data variations and reduce system fluctuation or oscillation.

Given the most recent RPC’s are more representative of a

server response time, we have used the truncated EWAM

(TEWMA) with a limited sliding window of RPC samples.

Equation (1) describes how an exponentially weighted moving

average is computed, where W t is the moving average at time

t and α is a smoothing factor 0 < α ≤ 1.

The mechanism of our proposed algorithm adopts two

important aspects. First, schedulers send probes to servers,

and the probed servers instantaneously responds back to the

schedulers with their expected average waiting times for each

sent probe. Let Wt be the sample waiting time observed from

a turnaround time of a job being executed. Then, the moving

average waiting time (EWMA) is computed as

W t =

{
W0, if t = 0

αWt + (1− α)W t−1, if t > 0
(1)

Second, a scheduler assigns job tasks to the set of servers in

such away that the task with the highest duration time is placed

on the server with the least expected average waiting time, the

second task with the second highest duration time is placed

on the server with the second least average expected waiting

time and so on. This new scheduling approach is shown in

Algorithm 1.

Algorithm 1 A Job Scheduling Algorithm for Cloud

1: M = {m1,m2, · · · ,mn}: Set of servers

2: p: probe factor, p ≥ 1

3: W (mi): represents the mean waiting time of server mi

4: E(tj): represents the expected finish time of task tj

5: for each arriving job J at the scheduler do

6: P = k × p Probe size

7: S = {m′
1,m

′
2, · · · ,m′

P } : Set of P probed servers,

such that W (m′
i) ≤W (m′

j) and m′
i,m

′
j ∈M, i ≤ j

8: T = {m′
1,m

′
2, · · · ,m′

k } : Set of the first k servers in S

9: J ′ = {t′1, t′2, · · · , t′k } : Set of k tasks in job J ,

such that E(t′i) ≤ E(t′j), i ≤ j

10: for t′j ∈ J ′ do

11: m′
j ← t′j j = 1, 2, · · · , k, assign task t′j to server m′

j

12: T = T \m′
j

13: end for

14: end for

IV. EXPERIMENTS AND RESULTS

Experiments are executed and explained in this section to

verify the effectiveness of the proposed Algorithm 1. The

parameters of our algorithm are shown in Table 1.

TABLE I
TABLE OF NOTATIONS

Parameter

M servers

p probe factor

W average waiting time

E expected finish time

J job

P probe size

t task

Our proposed algorithm is implemented using Python 3.8.

We compare our algorithm with another scheduling algorithm,

Sparrow, and within the same environment and under the same

conditions. Sparrow is a stateless decentralized scheduler that

provides near optimal performance using two key techniques,

batch sampling and late binding. All experiments were con-

ducted on a real VM-based cloud platform consisting of 10000

machines.
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(a)

(b)

Fig. 1. (a) Shows the performance when using 1000 machines of 4-core and
probe factor of 2 (b) Shows the performance when using 1000 machines of
4-core and probe factor of 3

A. Response Time Performance

In Figure 1, it can be seen that changing the probe factor

impact the performance, especially at higher cluster loads.

Figure 1 depicts the response time for both Sparrow Batch-Job

and our proposed approach. Figure 1 shows that our proposed

approach provides a better performance (less response time)

when probe factor increases from 2 to 3, especially when load

goes above 70% in a 1000-machine cluster of 4-core machines

running the synthetic workload.

The probe factor is one of the major factors in our proposed

approach as changing its value impacts the performance. A

small probe factor negatively impacts the performance because

schedulers do not sample enough machines to find least light

loaded machines. However, over-sampling may also negatively
impact the performance due to the increasing in the communi-
cation messaging. Overall, using machines with higher cores

and a better probe factor chosen carefully/properly improves

the performance as shown in Figure 3. The effect is most

apparent, especially when load goes above 70%.

Another important factor in our scheduling approach is α.

Changing the α value in computing the expected average

waiting time formula plays a crucial role and heavily impacts

the performance. Figure 2 depicts the response time for both

(a)

(b)

Fig. 2. (a) Shows the performance when using 1000 machines of 4-core and
α value of 0.2 (b) Shows the performance when using 1000 machines of 4-
core and α value of 0.3

Sparrow Batch-Job and our proposed approach when changing

the α value.

To further see how our proposed approach performs when

increasing size of cluster, we considered a 10000-machine

cluster of 6-core and 8-core machines. The proposed approach

still gives a better performance when increasing probe factor

from 2 to 3, alpha value from 0.2 to 0.3, and average job size

from ∼= 50 to ∼= 150 in comparison to Sparrow as shown in

Figure 3. Overall, our experiment tests show that for small

jobs of less than 100 tasks, the α value should be small too,

0.2 in our case. For large jobs, jobs of more than 100 tasks,

α value of 0.3 gives the best performance.

B. Performance Evaluation

As shown in Figure 4, response time exponentially increases

with increasing load, because schedulers have less success

finding free machines on which to schedule tasks. In this paper,

the percentage of performance gain is computed as

Performance Gain (%) = 1− TW

TS

,

where TS and TW represent the average response times in

Sparrow and our approach respectively.
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(a)

(b)

Fig. 3. (a) Shows the performance when using 10000 machines of 6-core and
probe factor of 2, α of 0.2 and job size of 50 tasks (b) Shows the performance
when using 10000 machines of 6-core and probe factor of 3, α of 0.3 and
job size of 150 tasks

At 70% load, WaitingTime-Based sampling improves per-

formance by 14% compared to Sparrow Batch-Job placement,

and this performance improvement increases from 19% to 24%
when load increases from 80% to 90%.

It is obvious that the curves of our proposed approach and

Sparrow are largely offset when load goes above 70% as

shown in Figure 1 and 2. Figure 3 shows a remarkable insight

that the performance gain is increased with the increasing

in number of cores on machine servers and the increasing

in the carefully-chosen probe factor and alpha. In a cluster

of 10000 of 8-core machines and a probe factor of 3, the

performance gain of our proposed approach nearly reaches

15% when load is 70%, and it increases to 24% when loads

is 90%. The performance is slightly decreased when reducing

number of cores to only 6 on the servers so the performance

nearly reaches 10% when load is 70%, and it increases to

20% when loads is 90%. Overall, the performance is linearly

reduced with the decreasing in the cluster size, probe factor,

alpha and number of cores.

Based on the experimental results, the following suggestions

seems considerable

• For heavy load (above 70%) and small number of virtual

Fig. 4. Shows the performance gain percentage in the proposed approach
when changing the values of the five key parameters, M , p, α, k, and Cores.

machines available, the proposed approach gives a better

performance

• For a load (above 70%), a large number of virtual

machines available and a small probe factor, the proposed

approach gives a better performance

• For virtual machines with higher cores, the proposed

approach gives a better performance, especially when

load goes above 70%

V. EXPECTED SERVER RESPONSE TIME

As a result of the time-invariant of server response times,

the arithmetic mean of consecutive response times is not an

ideal indicator of the average load on a server. Thus, the recent

results (server response times) should be regarded as reliable

to consider the required accuracy of the coming results. This is

sometimes called a ’history window’ or ’spin-up interval’. The

effect of prior server response times on the resultant moving

average depends on α; smaller α values make the choice of

T̄ ′w relatively more important than larger α values, since a

higher α discounts older observations faster.

Therefor, we consider a modified Exponentially Weighted

Moving Average (TEWMA), which is a sliding-window-based
1. In a typical TEWMA, a weight α is given to the most

recent response time and α(1 − α)j is given to the previous

w response times, respectively, where j = 1, 2 · · · .
However, given the bursty nature of the traffic in data

centers, the average response time depends only on a few

recent w terms. Therefore, a relationship between w andα

is required. To establish such a relationship, we first need to

expand the recursive relationship in EWMA as:

1See https://ieeexplore.ieee.org/abstract/document/4341677 for more details
about the truncated weighted moving average
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T̄i = αTi + (1− α)T̄i−1

= αTi + (1− α)[αTi−1 + (1− α)T̄i−2]

= αTi + (1− α)[αTi−1 + (1− α)[αTi−2 + (1− α)T̄i−3]]

...

= α[Ti + (1− α)Ti−1 + (1− α)2Ti−2 + (1− α)3Ti−3

+ · · · (1− α)kTi−w)] + 1− α)w+1Ti−(w+1) + · · ·
=

T1 + (1− α)T2 + (1− α)2T3 + (1− α)3T4 + · · ·
1 + (1− α) + (1− α)2 + (1− α)3 + · · ·

Since 1/α = 1+ (1− α) + (1− α)2 + (1− α)3 + · · · and

to determine how far to go back for an initial weight value,

the weight is omitted by stopping after w terms:

T̄ ′w = α[(1− α)w + (1− α)w+1 + (1− α)w+2 + · · · ]
= α((1− α)w[1(1− α)2 + (1− α)3 + · · · ] = (1− α)w

w =

⌊
log(0.001)

log(1− α)

⌋
(2)

A. Implementation

Once a task of job is completed by a server, its turnaround

time, which is composed of the server response time plus the

network delay, is recorded in the lth most recent position of a

sliding window of size w first and then shift the other w − 1
response times to the right. The sliding window acts as an

truncated exponentially weighted sliding window with weights

distributed as below. In our simulation, the network is set to

0.5 milliseconds.

. . . Ti+1

α(1− α)/sα/s

Ti+w Ti+w−1

α(1− α)w−1/s

where s = α
∑w−1

i=1 (1− α)i.

Job tasks are scheduled on the first k servers in S with

the minimum expected average waiting times. The expected

average waiting time for each of the probed servers in S
is computed as the average of the recent w waiting time

observations. This gives a better scheduling decision due to the

fact that the concurrently operating schedulers may make con-

flicting scheduling decisions when considering instantaneous

response times.

As shown in Figure 5, using the ’history sliding window’

and considering w terms related to α improves the perfor-

mance by 10% when heavy loads (above 70%) . To verify our

(a)

(b)

Fig. 5. (a) Shows the performance when using 10000 machines of 6-core
and probe factor of 2, α of 0.2 and job size of less than 100 tasks (b) Shows
the performance when using 10000 machines of 6-core and probe factor of
3, α of 0.2 and job size of more that 100 tasks

results, we considered the best α value, which is 0.2, based

on the results obtained in our previous experiments.

Our proposed approach shows performance improvements

through mitigating the the tail latency by 15% as shown in

Figure 6. It shows that 99% of jobs takes less than 400 ms,

while 99% of jobs in Sparrow takes 500 ms or less. Our

approach also gives better average response times by about

12%. We ran our simulation for 10000 time units.

VI. CONCLUSION

In this paper, a stochastic distributed scheduling scheme

was proposed to minimize the average response times so as

to mitigate the tail latency. The proposed approach uses a

truncated exponential waiting moving average (TEWMA) in

computing the expected server response time on the probed

machine workers due to the fact that queue length is not an

ideal indicator when it comes to load balancing and execution

times. The proposed approach uses a sliding window of recent

response time observations in making decisions when task

placements. Tasks are systematically scheduled on randomly

chosen servers based on the expected server response times.

It also provides the ability to schedule the least duration
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Fig. 6. Shows the tail latency comparison between the proposed approach
(TEWMA) and Sparrow using 10000 machines of 6-core, probe factor of 2,
α of 0.2 and job size of 100 tasks.

time tasks on the highest expected waiting time servers so

as to avoid the problem of task starvation and to improve the

load balancing. Our approach showed a better performance

when high loads. Experiments using a synthetic workload

demonstrate that the proposed approach is resilient to different

values of probe factor and provides a quite better performance

compared to the sampling approach, Sparrow.
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