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Abstract—A dynamic clustering method can reconstruct IoT
nodes into logical group units when using several groups of
IoT nodes. However, massive control at a logical group level
does not guarantee optimal control performance. To efficiently
deliver and execute a massive control command within a certain
communication delay, it is necessary to cluster each logical group
into subgroups and execute massive control commands by each
subgroup. This paper proposes the DBDC(Delay-Based Dynamic
Clustering) method, a clustering method based on DBSCAN that
can optimize the communication delay of a massive control within
a logical group. Through several simulations, the parameters of
the DBSCAN algorithm create different clustering cases, and the
DBDC method can find the optimal parameter value that satisfies
the optimization condition. Therefore, this study shows that the
DBDC method can effectively design a cluster system so collective
IoT clusters have the best massive control performance.

Index Terms—Delay Based Dynamic Clustering, IoT cluster,
DBDC method, DBSCAN algorithm, Logical group

I. INTRODUCTION

The development of IoT technology has primarily con-

tributed to the remote control field that controls various devices

through the Internet. Such IoT technology is adopted on a

diverse scale: a small scale of IoT usage includes households

and offices that use several to dozens of devices, and a large

scale includes architectures such as smart buildings, smart

factories, and smart campuses. Recently, there have been

increasing cases where IoT technologies based on cutting-

edge smart systems are utilized in large-scale areas. Generally,

large-scale areas are designed and divided into subspaces by

their functions and purposes. In such spaces and subspaces,

various IoT devices are installed by their purposes and usages

and controlled by the smartphone or smart pad through cutting-

edge IoT control systems that collectively control IoT devices

through central control or distributed control [1]. Collective

IoT control technology has an extensive application field, for

example, in the case of architectures like smart buildings.

There has been an increasing need for the collective operation

of IoT devices and sensors in smart cities that employ many

environmental IoT sensors, such as air pollution, temperature,

and humidity [2].

In an IoT cluster environment that uses collective IoT

devices, IoT devices are installed in specified spaces by

clustering method and perform massive control by segment

and group [3]. Static clustering and dynamic clustering are

typically used to cluster numerous IoT devices. In the static

clustering method, the cluster structures are designed and

installed statically in the system planning stage. Since the

static clustering method clusters IoT devices by the physical

architecture and arrangement of their network equipment and

cables, it requires more costs and effort when reinstalling IoT

devices and systems or modifying segments of IoT clusters.

Also, as the users’ requirements or the uses of subspace

change, it is difficult to accommodate those changes to IoT

clusters. On the other hand, dynamic clustering uses a method

that logically composes IoT devices connected by a cluster

regardless of their physical network connection and performs

massive control by their logical groups [4]. Compared to

static clustering, dynamic clustering has a flexible system

reconfiguration capability by freely constructing groups, which

is the basic unit of massive control, without a change in

physical network architecture, thereby efficiently providing

flexibility on changes in the architecture of the space where

IoT is applied [5].

Static clustering techniques can organize massive control

groups so that network communication delays can be phys-

ically optimized when collective control is performed. On

the other hand, in a dynamic clustering method with logical

groups, optimizing communication delay for IoT devices be-

longing to the same group is difficult because the IoT devices

are clustered according to the user’s logical requirements.

In the dynamic clustering method, IoT devices belonging

to a specific logical group would belong to the different

physical networks. So, the communication delay while the

same collective control command is delivered to IoT devices

belonging to the logical group may vary for each device. For

this reason, communication delays in the dynamic clustering

method using logical groups would be more significant than

those in the static clustering method, which degrades the per-

formance of the entire IoT cluster. To improve this problem, it

is necessary to break a logical group into several subgroups in

the dynamic clustering method and perform collective control

on these subgroups in parallel. In other words, to improve

the overall collective control performance by dividing the

collective control of one logical group into several subgroups,

it is necessary to re-cluster IoT devices in the logical group
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to optimize communication delays in each subgroup.

This paper presents a DBDC(Delay-Based Dynamic Clus-

tering) method based on the DBSCAN algorithm to optimize

collective IoT control communication delay and simulates

whether the proposed method can effectively improve the

communication delay within the logical group.

II. RELATED WORKS

A. Clustering Algorithm

Clustering aims to group data with high similarities in

the same class and separate data with low similarities in

separate classes[6]. In the clustering process, deciding how

many groups to create and how to define the data similarity

is a critical problem. The K-Means algorithm is a well-known

method that resolves such a problem [7].

The K-Means algorithm finds the expected clusters or

number of clusters, the minimum value of the mean distance

from each data, and the center of the cluster that the data

belongs to from the given data set. Therefore, the K-Means

algorithm randomly locates K centroids and forms clusters by

assigning data to the closest centroid. Then, based on the data

assigned to specific clusters, it repeatedly updates the centroid

of each cluster until the centroids are no longer updated. As

centroids are wholly updated, it can decide which cluster the

data should be assigned to when new data is entered. Indeed,

to properly perform this process, it is essential to decide the

appropriate number of clusters that should be created from the

entire dataset. If correctly clustered, samples in each cluster

will be clustered by their density at a close distance. The

density of data in clusters can be computed by the inertia,

the distance from each data, and the centroid of the cluster

it belongs to. We can say the data is suitably clustered if the

inertia is low.

The K-Means algorithm can converge fast and powerfully

interpret a model. However, if the dataset is non-convex, it

is difficult to converge and often finds just a locally optimal

solution. Another clustering method that redeems those issues

is the Hierarchical clustering algorithm(HCA) [8]. Since HCA

can easily define the distance and similarity without setting

the number of clusters, it can find the hierarchical relationship

among the clusters in various shapes. However, HCA often

requires a high computational complexity and is sensitive to

single values.

B. DBSCAN Algorithm

DBSCAN(Density-Based Spatial Clustering of Application

with Noise) algorithm performs based on the density of the

data distribution, while K-Means and HCA cluster by the

distances among data and clusters groups where the density

of data is high. Therefore, when the data is represented as a

distribution of 2D or 3D distances, based on specific data of

a cluster, if there are n points(data) within radius r, it groups

them in a cluster [9] [10]. To apply the DBSCAN algorithm,

specific data that acts as a benchmark, the value of r, and the

number of minPts that should be included within that radius

should be decided. The candidate point of the core point is

randomly selected, and if the number of points within radius r
from the candidate point k is greater than or equal to minPts,

they become a cluster, and point k becomes the core point of

this cluster. However, if the number of points within radius r
from the candidate pointk is less than minPts, the candidate

point k cannot be a core point. In this case, another random

point is selected as a candidate point and determined if it

can form a cluster. Repeating this process, DBSCAN clusters

all points. In the case of massive IoT clustering, a point is

an IoT node, and a cluster is a subgroup of a logical group.

Consequently, DBSCAN can be applied when re-clustering

IoT nodes included in logical groups that form massive IoT

clusters into subgroups.

III. DELAY-BASED DYNAMIC CLUSTERING METHOD

A. Logical Group Re-clustering

We can use the existing clustering algorithms, such as

K-Means and HCA, to break up a single logical group in

IoT clusters consisting of massive IoT nodes into multiple

subgroups. However, IoT nodes or network tools that form

IoT clusters are installed in specific areas and frequently have

an inhomogeneous density distribution instead of a uniform

density distribution. Also, the communication delay from data

transmission between IoT nodes and network equipment is

directly related to their physical space and arrangement. There-

fore, when re-clustering a single logical group that consists

of dozens to thousands of nodes into several subgroups, DB-

SCAN, which performs clustering based on density, is more

appropriate to optimize the communication delay compared to

other clustering methods. Accordingly, this research presents

a new clustering method based on DBSCAN. It confirms its

appropriateness to improving the communication delay in IoT

clusters and the advances in communication delay through

experiments.

B. Basic concept of the Delay-Based Dynamic Clustering

As shown in Fig. 1, Dynamic clustering splits the entire

system into several logical groups, such as logical group A,

logical group B, and logical group C and conducts massive

control by logical group unit. IoT devices in each logical

group are called nodes. If there are N nodes in a random

logical group, one of the nodes becomes a core node(CNorg).

The cluster control app sends a massive control command to

the core nodes of specific logical groups, and the core nodes

perform massive control by spreading the command to each

node in the same logical group.

Assume the time each node takes to complete an individual

control command is the same. Suppose the communication

delay that each node i takes to perform its control command

from the core node CNorg is represented as delay(CNorg, i).
Therefore, the time a logical group completes a massive

control, Delayorg , is the sum of the time the command
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Fig. 1. A large scale IoT control concept with logical groups

is spread from the core node to each node, as defined in

Formula (1):

Delayorg = sum(delay(CNorg, 0), delay(CNorg, 1),
. . . , delay(CNorg, n–1))

(1)
If there are more than 2 subgroups SGi

(i = 0, 1, ...,m− 1,m > 2) in a logical group, a core

node CNi is created for each subgroup SGi. If the

communication delay when a core node sends a control

command is defined as delay(CNi, j), the communication

delay from each subgroup SGi is defined as Formula (2),

where ki is the number of nodes in SGi. When a single

logical group is clustered into several subgroups, the control

command is sent to each node through the core node CNi

of each subgroup instead of the original core node CNorg of

a logical group. Accordingly, the total communication delay,

Delaytotal, to send the massive control is the sum of the

communication delay from the original core node to the core

nodes of each subgroup, delay(CNorg, CNi), and the delay

from the core nodes of each subgroup to the nodes in the

subgroup, delaySG(i). The communication delay that each

subgroup SGi takes to send a massive control command to

its nodes, delaySub(i) can be represented as Formula (3).

delaySG(i) = sum(delay(CNi, 0), ..., delay(CNi, j)) (2)

delaySub(i) = delay(CNorg, CNi) + delaySG(i) (3)

Therefore, when a logical group is clustered into m sub-

groups, the total communication delay Delaytotal is defined

in Formula (4).

Delaytotal = sum(delaySub(0), delaySub(1), ...,
delaySub(m–2), delaySub(m–1))

(4)

The result of re-clustering a logical group of

IoT clusters into several subgroups must satisfy the

optimization condition, Delaytotal < Delayorg . The

DelayImprovementRatio(DIR) of the result that satisfies

such a condition is calculated as (5), and the communication

delay of a logical group can be optimized by re-clustering it

with the highest DIR value.

DIR(%) =
(Delayorg–Delaytotal)

Delayorg
(5)

In order to optimize the communication delay, we can split

a logical group into as many subgroups as possible. However,

if there are too many subgroups, the average delaySub(i) con-

verges to the average delay(CNorg, k). Therefore, a clustering

method that can produce a proper number of clusters should

be selected.

In the case of architectures or facilities that apply smart

technologies, IoT devices are used to be installed in specific

areas with non-uniform distribution. Therefore, among unsu-

pervised clustering algorithms, the DBSCAN algorithm can

meet the optimization condition when it clusters a logical

group into proper size and number of subgroups and uses

the r and minPts values of the DBSCAN method that can

optimize DIR to cluster IoT nodes. When clustering a logical

group into subgroups, SGi should be created so that each

subgroup gets the minimum delaySG(i). To accomplish this

task, selecting a subgroup’s core nodes is important. If there

are too many subgroups, the communication delay increases as

the communication traffic by the core nodes increases. Thus,

we should create minimal subgroups and select core nodes

so that delaySG(i) can be minimized. This study called this

clustering method Delay-Based Dynamic Clustering(DBDC).

The DBSCAN algorithm is based on 2-dimensions or 3-

dimensions in the distance to apply the DBDC method, each

node in a logical group must be represented as a 2-dimensional

coordinate. Similarly, the DBDC method processes the com-

munication delay of IoT nodes as 2-dimensional distance

values. Although the communication delay among nodes is

determined by communication devices such as switches and

nodes, the physical distance of the communication link almost

affects the delivery time by the spatial location. To simplify

the problem, we assume each node’s delay time corresponds to

the spatial distance. Like the DBSCAN algorithm, the DBDC

method selects a random node in a logical group as a candidate

node. It expands to other nodes within a communication delay

d from the candidate node. If the number of explored nodes

is greater than the size of a cluster, minPts, the nodes are

grouped as a new subgroup, and the candidate node becomes

the core node of the subgroup. After clustering with the

DBSCAN algorithm, the nodes classified as noise are assigned

to subgroups whose core node is the closest to those nodes.

Fig. 2 is an example that explains the DBDC method,

where it clusters a logical group A that consists of 13 nodes

with the minPts of 3 and r = d into three subgroups:

SG0, SG1, and SG2. Here, nodes 1, 6, and 8 are the core

nodes of each subgroup SG0, SG1, and SG2, represented

by CN0, CN1, and CN2, and more than three nodes that

satisfy delay(CNi, j) < d are clustered into corresponding
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Fig. 2. An IoT example of the clustering with the DBDC method

subgroups. In the case of node 2, while it can be assigned

to either SG0 or SG2, it is assigned to a subgroup with less

delay(CNi, j). Node 13 is not included in any subgroup called

noise in the DBSCAN algorithm, and this node is excluded

from clustering. However, the DBDC method assigns such

noises to subgroups whose communication delay with the core

node is the smallest, represented as dotted lines, which is SG2

in this case.

IV. PERFORMANCE EVALUATION AND CLUSTERING

OPTIMIZATION

Since DBDC is a method that modifies the DBSCAN

algorithm, the resulting clusters differ by the value of the

parameters such as minPts, the size of a cluster, and d, the ra-

dius of a cluster. We must decide the parameters properly to get

clustering results that satisfy the optimization condition. In this

work, we constructed a simulation program and evaluated the

performance to assess the performance of the DBDC method

for each parameter value. The major target of this performance

evaluation is the total communication delay Delaytotal after

clustering and the rate of communication delay improvement

DIR if it satisfies the optimization condition. Through a

simulation, we evaluated the performance using those two

metrics and analyzed how effective the method presented in

this article is for massive control of IoT cluster systems.

A. Simulation environments

The simulation program for DBDC method evaluation is

written in Python and executed by the Anaconda environment

in JupyterNotebook using iMac with Intel Corei5 CPU.

The simulation input is the communication delay value calcu-

lated by the x, y coordinate representing the spatial location

of the nodes of a logical group. The simulation results include

the number of subgroups after clustering, the nodes in each

subgroup, and the performance evaluation.

Fig. 3 graphically illustrates the IoT devices in IoT clusters

used in the simulation, which are the spatial locations of the

nodes. This data represents the locations of 228 IoT devices

and network equipment on the 3rd and 4th floors in the

University Research Center where this study is conducted. For

convenience, two floors are on the same plane, and the nodes

between two floors represent the nodes attached between the

floors or on the ceiling. The nodes outside the border of the

building represent nodes installed outside the building.

Fig. 3. IoT node distribution sample

In Fig. 3, three different subgroups with different densities

SB1, SB2, and SB3 are sampled among all possible sub-

groups that can be formed with the DBDC method in the

simulation. Each subgroup contains nodes within a communi-

cation delay d from the core nodes in red at the location where

the density is the highest. If no more subgroups can be created,

other nodes not in any subgroups are included in a subgroup

whose core node is the closest to them. Clustering completes

when all nodes are assigned to subgroups and creates a list of

the total number of subgroups with the list of nodes.

The basic algorithm implemented in DBDC is the same

as DBSCAN. Table I shows the logical groups used in the

simulation and the value and range of parameters of the

DBSCAN algorithm. In the simulation, a subgroup’s radius

d and minPts are given as inputs. The simulation program

executes the clustering method by repeatedly changing the

radius and minPts and calculating Delaytotal.

TABLE I
SIMULATION PARAMETERS

Parameters Values(Ranges)

Amount of nodes 228

radius(d) 1.6 2.4 ns

minPts 5, 8, 10, 12, 15

Communication delay 0.2 25 ns

B. Simulation results and analyses

The objective of the simulation is to find the optimal result

that gives the highest DIR when clustering a logical group

into more than two subgroups with a fixed CNorg . Although

it is better to simulate as many results as possible, to verify

the effectiveness of the DBDC method, this experiment uses
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five values for minPts and three for d. Table II shows the

results of the simulation.

TABLE II
SIMULATION RESULTS WITH THE DBDC METHOD

d minPts # of subgroups Delaytotal(ns) DIR(%)

1.5 5 11 776.7 58.5

1.5 8 2 1,255.7 32.9

1.5 10 1 1,870.9 0.0

1.5 12 1 1,870.9 0.0

1.5 15 1 1,870.9 0.0

1.8 5 3 1,630.9 12.8

1.8 8 7 709.6 62.1

1.8 10 3 1,137.3 39.2

1.8 12 1 1,870.9 0.0

1.8 15 1 1,870.9 0.0

2.1 5 1 1,870.9 0.0

2.1 8 1 1,870.9 0.0

2.1 10 4 1,023.4 45.3

2.1 12 4 967.6 48.3

2.1 15 1 1,870.9 0.0

2.4 5 1 1,870.9 0.0

2.4 8 1 1,870.9 0.0

2.4 10 1 1,870.9 0.0

2.4 12 2 1,599.9 14.5

2.4 15 3 1,145.7 38.8

In the simulation, Delaytotal in the case of the single

subgroup can substitute the Delayorg in Table I. Fig. 4 shows

one of the clustering results when d = 1.8 and minPts =

8. There are seven subgroups created by the DBDC method,

and each subgroup is marked as a specific color. The red dot

represents the centroid of each subgroup.

Fig. 4. An example of the clustering with the DBDC method

Fig. 5, Fig. 6, and Fig. 7 show the results of Table II that,

performed the simulation by applying the DBDC technique in

a graph. In Fig. 5, the graph’s x-axis represents the minPts
value, and the y-axis represents the DIR. Within the factor

range given in Table II, DIR has the largest value when d
= 1.8 and minPts = 8, indicating that communication delay

can be improved the most when clustering is performed with

the corresponding factor value. However, for all experiments,

DIR is not improved. The simulation shows that if the d value

is 1.8 or 2.1, the DIR value increases by clustering only if the

minPts value is within a certain range. It shows that when

the d value is determined in clustering, the improvement rate

DIR of the communication delay varies greatly depending

on the minPts value. Therefore, it can be confirmed through

this simulation that the DBDC technique can determine the

minPts value that can derive the maximum DIR if an

appropriate d value is determined when clustering one logical

group into a subgroup.

Fig. 5. Simulation result: DIR vs. d and minPts

Fig. 6 shows the sum of the communication delays from

clustering by the overall DBDC technique. As in Fig. 5, the

communication delay time varies greatly by the minPts value

when the d value is determined.

Fig. 6. Simulation result: Delaytotal vs. d and minPts

Fig. 7 shows the number of subgroups created as a result

1204



of clustering. Like Fig. 5 and Fig. 6, the number of sub-

groups depends on the minPts value for the value of d.

Since the number of subgroups and nodes included in the

subgroup is related to overall communication traffic, clustering

into appropriate subgroups can prevent further communication

delays. Simulation results also show that the most frequently

generated subgroup in Fig. 7 (d = 1.5, minPts = 5) does

not correspond to the highest DIR in Fig. 5 (d = 1.8,

minPts = 8). Therefore, creating a large number of subgroups

does not necessarily increase DIR. It shows that the DBDC

technique presented in this study can effectively provide design

elements that can perform effective clustering for clusters with

concentrated regional densities.

Fig. 7. Number of subgroups vs. d and minPts

V. CONCLUSION

To enhance the performance of massive control in a large-

scale IoT system that uses a dynamic clustering method,

it must minimize the communication delay in each logical

group. To this end, this study employs DBSCAN, one of

the unsupervised learning methods, to implement the DBDC

method that clusters a logical group into several subgroups.

The suggested method can reduce the general communication

delay of a massive control command for a specific logical

group by splitting it into multiple subgroups and having

them execute the command in parallel. However, if too many

subgroups exist, a cluster’s massive control performance will

decrease as the communication traffic increases. Based on

the parameter values of the DBSCAN algorithm, the DBDC

method can cluster logical groups into subgroups and measure

the communication delay for the logical groups after cluster-

ing. The outcome of the simulation shows that the DBDC can

effectively produce clustering results with the communication

delay that meets the optimization condition and bring out

the best clustering result with the greatest DIR among the

others. Such a result can be utilized when constructing logical

groups with the optimal communication delay for a massive

IoT cluster and as a useful technology that can improve IoT

clustering.

The DBDC method introduced in this study is a kind of

hybrid technology of designing a massive, large-scale IoT

cluster with improved efficiency by combining the DBSCAN

algorithm, an unsupervised learning method often applied in

the humanities and sociology, and the dynamic clustering

method in IoT, one of the major technology in the fourth

Industrial Revolution. Such a hybrid technology can provide

a basis for a new technological advance to emerge by com-

bining the advantages of different fields. Although several

constraints and assumptions limit the technique and results of

the experiment in this study, the effectiveness of the DBDC

method is proven enough. Hence, further research will apply

a meaningful scale of clusters and concentrate on a method

that can accurately measure the communication delay between

nodes. This research will be applied in modern IoT system

design, which will be enlarged daily, maintenance technology

development, and management.
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