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Abstract—This paper presents a paradigm for automating 
penetration testing for the purpose of retesting systems to ensure 
that previously detected issues have not been reintroduced.  This 
approach, which is patterned off of path-based attack techniques, 
is described and an implementation of the proposed paradigm, 
using the Blackboard Architecture, is presented.  The efficiencies 
and potential pathway to more automated testing provided by the 
proposed paradigm are also discussed. 
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I. INTRODUCTION 
Cybersecurity has become a major area of international 

focus.  Numerous causes for this exist, such as its implications 
for nations’ security, the losses incurred by firms that have 
suffered data breaches and individuals concern for their personal 
information.  In some cases, security vulnerabilities are caused 
by human error or the compromise of human-held information 
through social engineering.  In other cases, misconfiguration is 
responsible.  In many cases, though, issues that originated during 
software or hardware design and implementation are to blame. 

Penetration testing is used by many firms as part of a multi-
faceted cybersecurity strategy.  During a penetration test, ethical 
hackers attempt to break into IT systems to identify 
vulnerabilities so that they can be corrected before nefarious 
individuals find and exploit them.  Due to the skillset required 
and limited number of individuals with these skills, penetration 
tests are expensive and, in many cases, occur over a short period 
of time.  While some firms have internal penetration testing 
teams, most external penetration tests are short-term projects 
with time gaps in between them.  Even with internal testers, there 
may be time gaps due to the need for the testers to split their time 
between testing multiple internal systems. 

This paper discusses the efficacy of automating penetration 
testing in a manner similar to how identified software bugs’ 
retesting is automated during some software engineering 
processes.  It presents a multi-step process for testing, including 
test identification, test development, primary testing, test 
outcome evaluation, automated retesting, and ongoing outcome 
evaluation.  It also describes a methodology for implementing 
this testing paradigm. 

II. BACKGROUND 
This section provides an overview of prior work in several 

different areas which inform the work presented herein.  First, 

prior work on cybersecurity, generally, is presented.  Next, 
testing automation is discussed.  Following this, the Blackboard 
Architecture is reviewed.  Finally, prior work on command and 
control for cybersecurity is presented. 

A. Cybersecurity 
The interconnectivity of modern information technology 

systems has created an increased surface area for attackers to 
target and numerous security vulnerabilities [1].  Security 
incidents have been shown to be likely to cost companies at least 
$10,000, while data breaches can cost $1 million or more [2]. 
Attacks can also damage organizations’ reputations [3]. 

In response to these issues, numerous approaches to 
cybersecurity have been proposed.  For example,   King, et al. 
[4] proposed a focus on “human factors” while  Mateski, et al. 
[5] developed a “threat matrix” which can draw upon a wide 
number of techniques.  Techniques which focus on identifying 
threat vectors – which include the Microsoft STRIDE [6], 
MITRE ATT&CK [7] and Lockheed Martin Cyber Kill Chain 
[8] – can provide input to this matrix.  Tree-based systems [9], 
such as attack graphs [10], can also be used.  The use of these 
trees for cybersecurity automation has also been previously 
considered [11].  Manual analysis can also use these techniques 
to direct funding and effort to the areas of highest need [12]. 

B. Testing automation 
Stefinko, Piskozub and Banakh [13] proffer that “manual 

penetration tests are still more popular and useful” than 
automated ones.  However, a variety of automated penetration 
testing tools are publicly available [14].  Many penetration 
testing tools utilize an attack library; however, testing a limited 
set of scenarios doesn’t prove that a system is secure, due to the 
potential of unforeseen [15] and not included attack types.  
Systems may also be vulnerable to complex attacks which 
cannot be exposed by a single test [16].  Testing tools may also 
inadvertently damage infrastructure [17] and create outages 
themselves [18].  Tools can also create information overload for 
their users and present other issues [19]. 

In addition to the existing tools, research has been conducted 
on automation techniques that could support the development of 
new tools or the augmentation of existing ones to support testing 
systems such as web services [20]–[23], cloud applications [24], 
[25], internet of things devices [26] and WiFi networks [27], as 
well as technologies such as Blockchain contracts [28].  
Vulnerability-specific testing software has also been developed 
[29].  A number of approaches to testing automation have been 
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proposed which utilize techniques such as machine learning 
[30]–[36], static and dynamic analysis [37], agent-based 
modeling [38], expert systems [39] and threat models [40]. 

C. Blackboard Architecture 
One prospective approach to implementing testing 

automation is to utilize the Blackboard Architecture, which was 
introduced by Hayes-Roth [41] based on the Hearsay II system 
[42]. The Blackboard Architecture adds an actualization 
capability to rule-fact expert systems which trace their roots to 
the early AI systems of Dendral and Mycin [43]–[45].   

At its most basic, a Blackboard Architecture system has a 
central Blackboard that stores the data used by the system [46].  
However, numerous enhancements to the basic system have 
been proposed, such as techniques to increase speed [47], [48] 
and to facilitate distributed [49] processing, message handling 
[50] and parallel processing [51].  Solving [52], [53] has also 
been demonstrated as a way to facilitate the implementation of 
goal-driven Blackboard Architecture systems. 

The Blackboard Architecture has found numerous uses.  
Examples include robotic command [54], [55], vehicle control 
[56] and modeling proteins [57]. 

D. Cybersecurity command and control 
Command and control (C2) capabilities are critical for both 

nefarious attackers and penetration testers [58]. Penetration 
testers, in particular, must be aware of adversaries’ potential C2 
capabilities, to ensure they conduct testing in similar ways.  
Attackers, for example, could use mutators [59] to avoid 
signature-based detection [60] and malware that lays dormant 
for a period of time to avoid anti-malware detection [60].   

Both nefarious attackers and penetration testers may need to 
use lateral movement [61] and decentralization [62] to access 
systems that are not directly attackable from their current 
vantage point.  Path-based models, such as the MITRE 
ATT&CK framework [12], [61], can be used to inform C2 
decision making and capability needs. 

III. CHALLENGES OF PENETRATION TESTING 
Penetration testing is an inherently manually intensive 

activity, at present.  While some tools are used for scanning and 
carrying out attacks, much of the process relies upon the skill 
and expertise of human testers who identify potential points of 
vulnerability within networks and computing systems that they 
believe are likely to be exploitable. 

While a number of methodologies for testing exist, 
penetration testing is typically not considered conclusive.  
Instead, it seeks to find vulnerabilities so that they can be 
corrected.  However, a penetration test that ends without 
identifying vulnerabilities does not guarantee that a network is 
secure.  In fact, if penetration testers lack an appropriate level of 
skill and experience, are not up to date on current vulnerabilities, 

or are unfamiliar with some areas of a system, the test outcome 
may be largely meaningless. 

Because of the heavy reliance on human testers’ skill and 
expertise and the limited number of people with this skillset, 
testers command high wage levels and can be hard to recruit.  
Many organizations may find them unaffordable altogether or 
may only be able to afford short tests at infrequent intervals. 

When testers are available at an organization, the results may 
vary tremendously by the individual or individuals conducting 
the test.  The types of attacks used, systems targeted and, thus, 
the overall results may be highly dependent on the tester 
performing the analysis. 

Because of this, subsequent human testing may focus on 
finding new vulnerabilities, as opposed to verifying that 
previously known ones have not reoccurred.  In fact, a new 
group of penetration testers may not even have access to the 
report from an earlier group – particularly if an intervening 
discovered-vulnerability retest has occurred to verify that the 
vulnerability has (at least temporarily) been resolved. 

IV. PATH-BASED MODELS 
A variety of attack, threat and penetration testing models 

have been developed based on a path-finding approach.  Two of 
the most commonly known ones are the Cyber Kill Chain and 
ATT&CK models.  The Microsoft STRIDE framework, 
similarly, uses a threat tree-like model focused on data.  These 
models, and their potential use in automation, are now discussed. 

The Lockheed Martin Cyber Kill Chain model [63], which is 
shown in Figure 1, begins with a reconnaissance phase, where 
the target landscape is assessed.  This is then followed by several 
phases concerned with actually preparing and launching an 
attack and a phase where a local command capability is 
established.  Finally, actions on objectives – the actual goal of 
the attack – are performed during the final phase. 

The MITRE ATT&CK model [7], [64] is very similar to the 
Cyber Kill Chain model.  While both models differ in the 
supplemental materials and systems that they offer, their core 
has significant overlap [11], as shown in Table 1.  There are a 
limited number of differences, though.  The ATT&CK model 
combines the “exploitation” and “installation” phases, from 
Cyber Kill Chain, into a single “exploit” phase.  The ATT&CK 
model also includes a “maintain” phase focused on retaining a 
footprint on and the ability to conduct future attacks against a 
system, that is explicitly included in the Cyber Kill Chain model. 

The Microsoft STRIDE [6] model is comprised of five steps: 
“decomposition”, “create data flow diagrams”, “analyze the data 
flow diagrams for threats”, “identification of vulnerabilities 
based on these threats”, and “develop mitigation approaches”.  
This approach is data-centric and allows the modeling of both 
system components and interactions between them.  A key 
rationale for this approach is that simply analyzing components 
may not capture all threats relevant to a system [6]. 
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Figure 1.    Lockheed Martin Cyber Kill Chain [67]. 
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Table 1. Comparison of ATT&CK and Cyber Kill Chain models [11]. 

ATT&CK Cyber Kill Chain 

Recon Reconnaissance 

Weaponize Weaponization 

Deliver Delivery 

Exploit Exploitation 

 Installation 

Control Command and Control 

Execute Actions on Objectives 

Maintain  

 

Prior work [11] has demonstrated how these models can be 
implemented using an artificial intelligence system.  Figure 2 
combines the ATT&CK, Cyber Kill Chain and Microsoft 
STRIDE models into a single combined model.  Then, in Figure 
3, an example of this combined operational model is shown 
implemented as a Blackboard Architecture system. 
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Configure System 

for Persistent 
Access

Assess Data 
Flow

Identify 
Vulnerability 

Identify 
Exploitation

Key STRIDE Specific Cyber Kill Chain Specific ATT&CK Specific  
Figure 2.   Example of attack framework combining Cyber Kill Chain, 

STRIDE and ATT&CK frameworks [11]. 

This Blackboard Architecture-based implementation can be 
further extended with tools, such as the testing mechanism 
proposed in [58] and the system knowledge collection and 
modeling capability proposed in [65].  However, the full 
implementation of testing automation may be beyond the 
capabilities and budgets of many firms.  Thus, this paper focuses 
on a retest-based paradigm that is much simpler than the fully 
automated approach proposed in [65]. 

V. RETEST-BASED PARADIGM 
The retest-based paradigm (RBP) is based on a simple 

concept of developing all penetration tests used during a testing 
campaign in an automatable manner, implemented via a tool.  
This can be done in three ways.  First, the test can be developed 
using an automation tool initially and the initial testing can be 
performed using the tool.  Second, a manual approach can be 
used to initially conduct the test (which may be particularly 
useful if exploration or experimentation is needed before a 
particular test is finalized).  This is immediately followed by the 
embodiment of this test into a tool.  Finally, a bank of existing 
tests may exist (either generally or from prior firm activities) 
which can be used without requiring new implementation. 

The RBP, which is depicted in Figure 4, begins with a 
process of test identification.  During this process, the human 
penetration tester identifies a particular system that they wish to 
attack-test and a method that they wish to use to do so.  Then, a 
test is developed or an existing test is obtained and testing is 
performed (or testing is performed and the test is developed 
afterwards).  In all cases, the outcomes of this initial test (i.e., 
whether it detected a vulnerability) are evaluated.   

Finally, unless the test is judged to not be useful for the 
system through the outcome evaluation process, it is setup for 
retesting.  This is performed on an ongoing basis with outcome 
evaluation being performed after each iteration of testing. 

The goal of this testing paradigm is to significantly reduce 
the cost of the retesting phase by removing the need for a human 
to perform the test (though testing is still human initiated, 
controlling when it occurs).  Allowing the testing to be 
performed without the expensive resource of the human 
penetration tester removes a major cost.  It also facilitates 
recurrent retesting of all areas of a system to allow reintroduced 
vulnerabilities to be detected more quickly.  In at least some 
cases, vulnerabilities may be introduced by gaps in system 
administrator knowledge or administrator misunderstandings.  It 
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Figure 3.   Example of attack using combined Cyber Kill Chain, STRIDE and ATT&CK framework [11]. 
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is, thus, likely that the same (or similar) issues could be 
reintroduced during the normal course of operations due to the 
same individuals making configuration changes that reintroduce 
them.  Software defect-based vulnerabilities could be 
reintroduced by the manufacturer or through the installation of 
the same (vulnerable) software version on the same or other 
computers.  Attackers who are able to maintain a foothold on the 
system or network during the time that a vulnerability is 
corrected may even re-introduce it to facilitate their access into 
different systems or areas. Automated retesting should, ideally, 
provide a low-cost way to rapidly reidentify these issues. 

VI. USE OF BLACKBOARD ARCHITECTURE FOR RETESTING 
To implement the retesting paradigm using the Blackboard 

Architecture, a network of rules, facts and actions is created.  
This network includes knowledge about system state (embodied 
in facts), decision-making rules, and attack steps (embodied in 
actions).  An attack-test is, thus, modeled using a collection of 
these three node types. 

Every attack and system implementation will differ 
somewhat; however, the data elements needed for a given type 
of attack progression will be similar.  In many cases, if they are 
well designed, the actual attack-actions will be able to be reused 
with only settings modifications.  This Blackboard Architecture 

network is developed (and potentially used) during the primary 
testing, as previously described, and can then be used for 
subsequent testing. 

Figure 5 depicts an example of how a simple attack could be 
implemented.  In this case, a simple network management 
protocol (SNMP) attack is used to compromise the passwords of 
a firewall and switch.  These devices are reconfigured to create 
a VLAN connecting the firewall to a server and to open an 
outside port on this firewall.  Finally, a brute force attack is 
implemented against the server which compromises it and 
allows the actions on objectives to be performed. 

Notably, this is simplified somewhat for presentation.  A 
real-world implementation would potentially have more detail in 
several areas. Additional actions may be needed to collect data 
regarding the state of devices after an attack (to determine if it 
was successful or not).  Some actions, such as the one that 
creates the VLAN and opens the ports, could be further 
decomposed into multiple nodes for greater understandability by 
operators and component reusability. 

This simple example shows that the creation of a Blackboard 
Architecture implementation of an attack-test is logical and 
relatively straight forward.  Notably, a tool that allowed the 
attack to be created visually, by creating the structure shown in 
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Automated 
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Test Development

Test DevelopmentPrimary Testing
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Figure 4. Automated penetration testing retest paradigm. 
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Figure 5, could aid its use greatly.  The Blackboard Architecture 
implementation requires additional time over simply carrying 
out the attack; however, it also produces documentation that 
could aid the human penetration tester in the development of 
their testing report (particularly if a tool was available to 
facilitate this).  The exact time cost to the primary testing will 
vary somewhat, as reusability of attacks could save significant 
amounts of time; however, new attack development and 
structure creation would likely be somewhat slower than simply 
performing a given test.  Given this, the additional time cost 
should be considered in light of the combined value of attack-
test reusability and resting (versus the additional time costs 
incurred) to determine whether to utilize this paradigm for a 
particular testing program or portion of a testing program. 

VII. ADVANTAGES AND DRAWBACKS 
There are a number of advantages and drawbacks to the 

proposed system.  Several key ones are now discussed. 

A. Advantages 
Several of the most pronounced benefits of the proposed 

system have already been discussed.  The paradigm facilitates 
retesting to identify recurring vulnerabilities.  It also can provide 
time savings via the reuse of attack-tests, once they have been 
implemented and utilized initially.  The potential documentation 
benefits of the approach have also been briefly discussed. 

In addition to these, a number of other potential sources of 
benefit merit consideration.  First, the retesting tasks and the 
adaptation of attack-tests, developed for one context, for other 
uses provides tasks that can be performed by junior penetration 
testers.  Due to the high reliance on the skills and abilities of the 
testers for test effectiveness, pathways for junior penetration 
testers to gain the skills needed, while also contributing to the 
performance of tests, are not always readily available.  This 
paradigm creates a clear set of roles for junior penetration testers 
which are comparable to junior roles for IT staffers and 
programmers. 

Second, the paradigm promotes greater penetration test rigor.  
The ability to define a test in terms of standard modules that are 
used (and can be re-used for re-testing) removes ambiguity 
regarding exactly what tests were performed (or not) and allows 
both the areas of robustness and vulnerability of the system 
under test to be documented.  This may also have a notable 
benefit for IT professionals who may be upset with penetration 
testing results that only document system security failures. 

Third, the proposed paradigm could have documentation 
benefits for testers and testing clients, particularly if attack-tests 
are annotated with metadata and attack-test step details at the 
point of creation.  This data could facilitate the rapid creation of 
robust reports that explain what was tested, how it was tested, 
document the results of testing and how assessment was 
conducted.  These reports could be more detailed, potentially use 
references to standard attack-test module details to remove 
redundant text, and also be faster to create than less detailed 
manually created vulnerability documentation reports. 

Fourth, by facilitating greater documentation of all activities, 
the proposed paradigm may facilitate quality assurance of 
penetration testing activities.  A focus on documenting all tests 

that were run and their results, as opposed to producing only 
vulnerability documentation, allows the testers’ decisions to be 
assessed to determine whether they were selecting and 
performing a robust collection of tests.  Additionally, testing 
routines, for testing specific types of systems performing 
specific functions, could be developed which could serve as 
design patterns for testing, further augmenting its robustness. 

B. Drawbacks 
Several key drawbacks to the proposed approach also exist.  

First, the approach could result in testing that is very mechanical 
and which does not explore the nuances of the system being 
tested.  While performing well under a standardized collection 
of tests provides some assurance as to the security level of the 
system, it does not mean the system is secure.  Penetration 
testing should always include a focus on the ‘unknown 
unknown’ which an adversary could utilize to target the system.  
Thus, while using common modules can save time and retesting 
can identify if problems have returned, this shouldn’t be a 
substitute for manual exploration for implementation-specific 
issues.  Ideally, time saved from performing automatable tasks 
could be redirected to higher value manual exploration use. 

Second, the proposed approach could potentially lead to a 
false sense of confidence if it were to completely replace 
exploratory manual testing.  Systems might not be vulnerable to 
the common test suite elements; however, this should not be 
taken as saying that they are secure.  Defining testing 
requirements (e.g., for specific industries) in terms of test suites 
could further reinforce this problematic overconfidence and lead 
to exploratory penetration testing not being performed. 

Third, this same type of issue could manifest itself with firms 
trying to conduct penetration testing entirely with inexperienced 
or less experienced, than would be typical, penetration testers.  
This approach would rely highly on the collection of pre-defined 
attack-tests.  While using only less experienced testers for re-
testing may be appropriate (though not a replacement for regular 
exploratory testing by highly qualified testers), utilizing 
inexperienced testers for primary testing would be problematic 
and result in tests that are potentially of minimal value 
(particularly if they don’t identify issues for correction). 

Finally, the use of pre-packaged tests or custom-designed 
tests for retesting may create issues if minimal changes are made 
to the system under test that make it no longer vulnerable to the 
specific test implementation without fixing the underlying issue.  
While retesting can be an effective way to potentially identify 
recurring or not-yet-fixed vulnerabilities, it should not be a 
substitute to new testing. 

VIII. PATHWAY TO AUTONOMOUS TESTING 
As previously discussed, the development of a collection of 

attack-tests facilitates reduced work being required, over time, 
for the manually-controlled test-retest model described herein, 
due to the potential for test reuse.  However, perhaps one of the 
largest longer-term benefits of the utilization of the proposed 
approach is that this same library of tests can be used to facilitate 
automated testing, if the tests are annotated with details 
indicating criteria for their appropriate use.  This facilitates 
movement towards the autonomous testing approach described 
in [58], [65], [66], as it removes the issue of a large upfront 
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investment being required to develop the test suite that is needed 
to make the system useful.  While the fully autonomous system 
is of limited use with a limited attack-test set collection (unless 
it was curated for a specific limited-purpose use), the automation 
of specifically identified testing for the approach described 
herein can be immediately useful while also developing a 
collection of attack-tests that can support automated use. 

IX. CONCLUSIONS AND FUTURE WORK 
This paper has presented a test and retest-based paradigm for 

penetration testing automation which is patterned off of attack-
path based techniques, such as the ATT&CK and Cyber Kill 
Chain models. Notably, while these models demonstrate one 
way the system could be utilized, its efficacy is not limited to 
approaches compliant with them.  This paper has also 
demonstrated how attacks could be implemented using the 
Blackboard Architecture to facilitate retesting and automation. 

It is hoped that this paradigm can have an immediate benefit 
for organizations by facilitating rapid and automated retesting to 
verify that prior configuration issues and software vulnerabilities 
have not been inadvertently or deliberately reintroduced.  Over 
time, organizations may benefit from the development of a 
collection of reusable attack modules to facilitate the testing of 
new or reconfigured environment.  Attack modules could also 
be shared between organizations to provide additional benefit. 

The development of modules and attack logic, for use during 
retesting, will also facilitate the acquisition of knowledge and 
resources that can be used to facilitate more fully automated 
testing.  This, potentially, will provide a pathway to greater 
levels of primary test penetration testing automation. 
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