
Development of an Autonomous Retesting
Penetration Testing Paradigm

Jeremy Straub
Department of Computer Science

North Dakota State University
Fargo, ND, USA

jeremy.straub@ndsu.edu

Abstract—This paper presents a paradigm for automating
penetration testing for the purpose of retesting systems to ensure
that previously detected issues have not been reintroduced. This
approach, which is patterned off of path-based attack techniques,
is described and an implementation of the proposed paradigm,
using the Blackboard Architecture, is presented. The efficiencies
and potential pathway to more automated testing provided by the
proposed paradigm are also discussed.

Keywords—artificial intelligence, penetration testing, retesting,
cybersecurity, ethnical hacking, Blackboard Architecture

I. INTRODUCTION
Cybersecurity has become a major area of international

focus. Numerous causes for this exist, such as its implications
for nations’ security, the losses incurred by firms that have
suffered data breaches and individuals concern for their personal
information. In some cases, security vulnerabilities are caused
by human error or the compromise of human-held information
through social engineering. In other cases, misconfiguration is
responsible. In many cases, though, issues that originated during
software or hardware design and implementation are to blame.

Penetration testing is used by many firms as part of a multi-
faceted cybersecurity strategy. During a penetration test, ethical
hackers attempt to break into IT systems to identify
vulnerabilities so that they can be corrected before nefarious
individuals find and exploit them. Due to the skillset required
and limited number of individuals with these skills, penetration
tests are expensive and, in many cases, occur over a short period
of time. While some firms have internal penetration testing
teams, most external penetration tests are short-term projects
with time gaps in between them. Even with internal testers, there
may be time gaps due to the need for the testers to split their time
between testing multiple internal systems.

This paper discusses the efficacy of automating penetration
testing in a manner similar to how identified software bugs’
retesting is automated during some software engineering
processes. It presents a multi-step process for testing, including
test identification, test development, primary testing, test
outcome evaluation, automated retesting, and ongoing outcome
evaluation. It also describes a methodology for implementing
this testing paradigm.

II. BACKGROUND
This section provides an overview of prior work in several

different areas which inform the work presented herein. First,

prior work on cybersecurity, generally, is presented. Next,
testing automation is discussed. Following this, the Blackboard
Architecture is reviewed. Finally, prior work on command and
control for cybersecurity is presented.

A. Cybersecurity
The interconnectivity of modern information technology

systems has created an increased surface area for attackers to
target and numerous security vulnerabilities [1]. Security
incidents have been shown to be likely to cost companies at least
$10,000, while data breaches can cost $1 million or more [2].
Attacks can also damage organizations’ reputations [3].

In response to these issues, numerous approaches to
cybersecurity have been proposed. For example, King, et al.
[4] proposed a focus on “human factors” while Mateski, et al.
[5] developed a “threat matrix” which can draw upon a wide
number of techniques. Techniques which focus on identifying
threat vectors – which include the Microsoft STRIDE [6],
MITRE ATT&CK [7] and Lockheed Martin Cyber Kill Chain
[8] – can provide input to this matrix. Tree-based systems [9],
such as attack graphs [10], can also be used. The use of these
trees for cybersecurity automation has also been previously
considered [11]. Manual analysis can also use these techniques
to direct funding and effort to the areas of highest need [12].

B. Testing automation
Stefinko, Piskozub and Banakh [13] proffer that “manual

penetration tests are still more popular and useful” than
automated ones. However, a variety of automated penetration
testing tools are publicly available [14]. Many penetration
testing tools utilize an attack library; however, testing a limited
set of scenarios doesn’t prove that a system is secure, due to the
potential of unforeseen [15] and not included attack types.
Systems may also be vulnerable to complex attacks which
cannot be exposed by a single test [16]. Testing tools may also
inadvertently damage infrastructure [17] and create outages
themselves [18]. Tools can also create information overload for
their users and present other issues [19].

In addition to the existing tools, research has been conducted
on automation techniques that could support the development of
new tools or the augmentation of existing ones to support testing
systems such as web services [20]–[23], cloud applications [24],
[25], internet of things devices [26] and WiFi networks [27], as
well as technologies such as Blockchain contracts [28].
Vulnerability-specific testing software has also been developed
[29]. A number of approaches to testing automation have been

884

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00229

proposed which utilize techniques such as machine learning
[30]–[36], static and dynamic analysis [37], agent-based
modeling [38], expert systems [39] and threat models [40].

C. Blackboard Architecture
One prospective approach to implementing testing

automation is to utilize the Blackboard Architecture, which was
introduced by Hayes-Roth [41] based on the Hearsay II system
[42]. The Blackboard Architecture adds an actualization
capability to rule-fact expert systems which trace their roots to
the early AI systems of Dendral and Mycin [43]–[45].

At its most basic, a Blackboard Architecture system has a
central Blackboard that stores the data used by the system [46].
However, numerous enhancements to the basic system have
been proposed, such as techniques to increase speed [47], [48]
and to facilitate distributed [49] processing, message handling
[50] and parallel processing [51]. Solving [52], [53] has also
been demonstrated as a way to facilitate the implementation of
goal-driven Blackboard Architecture systems.

The Blackboard Architecture has found numerous uses.
Examples include robotic command [54], [55], vehicle control
[56] and modeling proteins [57].

D. Cybersecurity command and control
Command and control (C2) capabilities are critical for both

nefarious attackers and penetration testers [58]. Penetration
testers, in particular, must be aware of adversaries’ potential C2
capabilities, to ensure they conduct testing in similar ways.
Attackers, for example, could use mutators [59] to avoid
signature-based detection [60] and malware that lays dormant
for a period of time to avoid anti-malware detection [60].

Both nefarious attackers and penetration testers may need to
use lateral movement [61] and decentralization [62] to access
systems that are not directly attackable from their current
vantage point. Path-based models, such as the MITRE
ATT&CK framework [12], [61], can be used to inform C2
decision making and capability needs.

III. CHALLENGES OF PENETRATION TESTING
Penetration testing is an inherently manually intensive

activity, at present. While some tools are used for scanning and
carrying out attacks, much of the process relies upon the skill
and expertise of human testers who identify potential points of
vulnerability within networks and computing systems that they
believe are likely to be exploitable.

While a number of methodologies for testing exist,
penetration testing is typically not considered conclusive.
Instead, it seeks to find vulnerabilities so that they can be
corrected. However, a penetration test that ends without
identifying vulnerabilities does not guarantee that a network is
secure. In fact, if penetration testers lack an appropriate level of
skill and experience, are not up to date on current vulnerabilities,

or are unfamiliar with some areas of a system, the test outcome
may be largely meaningless.

Because of the heavy reliance on human testers’ skill and
expertise and the limited number of people with this skillset,
testers command high wage levels and can be hard to recruit.
Many organizations may find them unaffordable altogether or
may only be able to afford short tests at infrequent intervals.

When testers are available at an organization, the results may
vary tremendously by the individual or individuals conducting
the test. The types of attacks used, systems targeted and, thus,
the overall results may be highly dependent on the tester
performing the analysis.

Because of this, subsequent human testing may focus on
finding new vulnerabilities, as opposed to verifying that
previously known ones have not reoccurred. In fact, a new
group of penetration testers may not even have access to the
report from an earlier group – particularly if an intervening
discovered-vulnerability retest has occurred to verify that the
vulnerability has (at least temporarily) been resolved.

IV. PATH-BASED MODELS
A variety of attack, threat and penetration testing models

have been developed based on a path-finding approach. Two of
the most commonly known ones are the Cyber Kill Chain and
ATT&CK models. The Microsoft STRIDE framework,
similarly, uses a threat tree-like model focused on data. These
models, and their potential use in automation, are now discussed.

The Lockheed Martin Cyber Kill Chain model [63], which is
shown in Figure 1, begins with a reconnaissance phase, where
the target landscape is assessed. This is then followed by several
phases concerned with actually preparing and launching an
attack and a phase where a local command capability is
established. Finally, actions on objectives – the actual goal of
the attack – are performed during the final phase.

The MITRE ATT&CK model [7], [64] is very similar to the
Cyber Kill Chain model. While both models differ in the
supplemental materials and systems that they offer, their core
has significant overlap [11], as shown in Table 1. There are a
limited number of differences, though. The ATT&CK model
combines the “exploitation” and “installation” phases, from
Cyber Kill Chain, into a single “exploit” phase. The ATT&CK
model also includes a “maintain” phase focused on retaining a
footprint on and the ability to conduct future attacks against a
system, that is explicitly included in the Cyber Kill Chain model.

The Microsoft STRIDE [6] model is comprised of five steps:
“decomposition”, “create data flow diagrams”, “analyze the data
flow diagrams for threats”, “identification of vulnerabilities
based on these threats”, and “develop mitigation approaches”.
This approach is data-centric and allows the modeling of both
system components and interactions between them. A key
rationale for this approach is that simply analyzing components
may not capture all threats relevant to a system [6].

R
Reconnaissance

W
Weaponization

D
Delivery

E
Exploitation

I
Installation

C
Command & Control

A
Actions on Objectives

Figure 1. Lockheed Martin Cyber Kill Chain [67].

885

Table 1. Comparison of ATT&CK and Cyber Kill Chain models [11].

ATT&CK Cyber Kill Chain

Recon Reconnaissance

Weaponize Weaponization

Deliver Delivery

Exploit Exploitation

 Installation

Control Command and Control

Execute Actions on Objectives

Maintain

Prior work [11] has demonstrated how these models can be
implemented using an artificial intelligence system. Figure 2
combines the ATT&CK, Cyber Kill Chain and Microsoft
STRIDE models into a single combined model. Then, in Figure
3, an example of this combined operational model is shown
implemented as a Blackboard Architecture system.

Reconnaissance

Identify Target
System

Identify System
Components

Weaponize
Find Threats in

DFD

Deliver
Get Access,

Deliver Malware

Installation
Install

Malware

Control
Gain Control of

System

Execute
Access Data,

Send Data

Maintain
Configure System

for Persistent
Access

Assess Data
Flow

Identify
Vulnerability

Identify
Exploitation

Key STRIDE Specific Cyber Kill Chain Specific ATT&CK Specific
Figure 2. Example of attack framework combining Cyber Kill Chain,

STRIDE and ATT&CK frameworks [11].

This Blackboard Architecture-based implementation can be
further extended with tools, such as the testing mechanism
proposed in [58] and the system knowledge collection and
modeling capability proposed in [65]. However, the full
implementation of testing automation may be beyond the
capabilities and budgets of many firms. Thus, this paper focuses
on a retest-based paradigm that is much simpler than the fully
automated approach proposed in [65].

V. RETEST-BASED PARADIGM
The retest-based paradigm (RBP) is based on a simple

concept of developing all penetration tests used during a testing
campaign in an automatable manner, implemented via a tool.
This can be done in three ways. First, the test can be developed
using an automation tool initially and the initial testing can be
performed using the tool. Second, a manual approach can be
used to initially conduct the test (which may be particularly
useful if exploration or experimentation is needed before a
particular test is finalized). This is immediately followed by the
embodiment of this test into a tool. Finally, a bank of existing
tests may exist (either generally or from prior firm activities)
which can be used without requiring new implementation.

The RBP, which is depicted in Figure 4, begins with a
process of test identification. During this process, the human
penetration tester identifies a particular system that they wish to
attack-test and a method that they wish to use to do so. Then, a
test is developed or an existing test is obtained and testing is
performed (or testing is performed and the test is developed
afterwards). In all cases, the outcomes of this initial test (i.e.,
whether it detected a vulnerability) are evaluated.

Finally, unless the test is judged to not be useful for the
system through the outcome evaluation process, it is setup for
retesting. This is performed on an ongoing basis with outcome
evaluation being performed after each iteration of testing.

The goal of this testing paradigm is to significantly reduce
the cost of the retesting phase by removing the need for a human
to perform the test (though testing is still human initiated,
controlling when it occurs). Allowing the testing to be
performed without the expensive resource of the human
penetration tester removes a major cost. It also facilitates
recurrent retesting of all areas of a system to allow reintroduced
vulnerabilities to be detected more quickly. In at least some
cases, vulnerabilities may be introduced by gaps in system
administrator knowledge or administrator misunderstandings. It

Reconnaissance

Installation Control Execute Maintain Action Fact Rule Final FactKey

Weaponize

Exploitation
Technique

Identify
Exploitation
Technique

Password
Attack?

Deliver

System
Credentials

System
credentials exist
and are known

good
Use credentials

and login
Try credentials

Needed
Credentials

No:
Needed =

True

Yes

Credentials Exist? Generate
Credentials

No

YesSystem
Credentials

Known Good
Status

Set credentials to generated value

If successful, set to known good to true; else set to false

Target System

Identify Target
System

Figure 3. Example of attack using combined Cyber Kill Chain, STRIDE and ATT&CK framework [11].

886

is, thus, likely that the same (or similar) issues could be
reintroduced during the normal course of operations due to the
same individuals making configuration changes that reintroduce
them. Software defect-based vulnerabilities could be
reintroduced by the manufacturer or through the installation of
the same (vulnerable) software version on the same or other
computers. Attackers who are able to maintain a foothold on the
system or network during the time that a vulnerability is
corrected may even re-introduce it to facilitate their access into
different systems or areas. Automated retesting should, ideally,
provide a low-cost way to rapidly reidentify these issues.

VI. USE OF BLACKBOARD ARCHITECTURE FOR RETESTING
To implement the retesting paradigm using the Blackboard

Architecture, a network of rules, facts and actions is created.
This network includes knowledge about system state (embodied
in facts), decision-making rules, and attack steps (embodied in
actions). An attack-test is, thus, modeled using a collection of
these three node types.

Every attack and system implementation will differ
somewhat; however, the data elements needed for a given type
of attack progression will be similar. In many cases, if they are
well designed, the actual attack-actions will be able to be reused
with only settings modifications. This Blackboard Architecture

network is developed (and potentially used) during the primary
testing, as previously described, and can then be used for
subsequent testing.

Figure 5 depicts an example of how a simple attack could be
implemented. In this case, a simple network management
protocol (SNMP) attack is used to compromise the passwords of
a firewall and switch. These devices are reconfigured to create
a VLAN connecting the firewall to a server and to open an
outside port on this firewall. Finally, a brute force attack is
implemented against the server which compromises it and
allows the actions on objectives to be performed.

Notably, this is simplified somewhat for presentation. A
real-world implementation would potentially have more detail in
several areas. Additional actions may be needed to collect data
regarding the state of devices after an attack (to determine if it
was successful or not). Some actions, such as the one that
creates the VLAN and opens the ports, could be further
decomposed into multiple nodes for greater understandability by
operators and component reusability.

This simple example shows that the creation of a Blackboard
Architecture implementation of an attack-test is logical and
relatively straight forward. Notably, a tool that allowed the
attack to be created visually, by creating the structure shown in

Outcome Evaluation

Ongoing Outcome
Evaluation

Test Identification

Primary Testing

Automated
Retesting

Test Development

Test DevelopmentPrimary Testing

Primary TestingObtain Existing Test

Figure 4. Automated penetration testing retest paradigm.

Action Fact RuleKey

Firewall 3
Password

Compromised FW3 & SW1
Compromised

PWD

SNMP Attack
Firewall 3

Switch 1
Password

Compromised

SNMP Attack
Switch 1

Create VLAN Connecting
Firewall 3 to Server 2,

Open External Port

External Access
to Server 2 Via

Firewall 3 Brute Force
Password Attack
Against Server 2

Server 2
Password

Compromised

Actions on
Objectives

Server 2
Password
Unknown

Figure 5. Blackboard Architecture implementation of re-testing paradigm.

887

Figure 5, could aid its use greatly. The Blackboard Architecture
implementation requires additional time over simply carrying
out the attack; however, it also produces documentation that
could aid the human penetration tester in the development of
their testing report (particularly if a tool was available to
facilitate this). The exact time cost to the primary testing will
vary somewhat, as reusability of attacks could save significant
amounts of time; however, new attack development and
structure creation would likely be somewhat slower than simply
performing a given test. Given this, the additional time cost
should be considered in light of the combined value of attack-
test reusability and resting (versus the additional time costs
incurred) to determine whether to utilize this paradigm for a
particular testing program or portion of a testing program.

VII. ADVANTAGES AND DRAWBACKS
There are a number of advantages and drawbacks to the

proposed system. Several key ones are now discussed.

A. Advantages
Several of the most pronounced benefits of the proposed

system have already been discussed. The paradigm facilitates
retesting to identify recurring vulnerabilities. It also can provide
time savings via the reuse of attack-tests, once they have been
implemented and utilized initially. The potential documentation
benefits of the approach have also been briefly discussed.

In addition to these, a number of other potential sources of
benefit merit consideration. First, the retesting tasks and the
adaptation of attack-tests, developed for one context, for other
uses provides tasks that can be performed by junior penetration
testers. Due to the high reliance on the skills and abilities of the
testers for test effectiveness, pathways for junior penetration
testers to gain the skills needed, while also contributing to the
performance of tests, are not always readily available. This
paradigm creates a clear set of roles for junior penetration testers
which are comparable to junior roles for IT staffers and
programmers.

Second, the paradigm promotes greater penetration test rigor.
The ability to define a test in terms of standard modules that are
used (and can be re-used for re-testing) removes ambiguity
regarding exactly what tests were performed (or not) and allows
both the areas of robustness and vulnerability of the system
under test to be documented. This may also have a notable
benefit for IT professionals who may be upset with penetration
testing results that only document system security failures.

Third, the proposed paradigm could have documentation
benefits for testers and testing clients, particularly if attack-tests
are annotated with metadata and attack-test step details at the
point of creation. This data could facilitate the rapid creation of
robust reports that explain what was tested, how it was tested,
document the results of testing and how assessment was
conducted. These reports could be more detailed, potentially use
references to standard attack-test module details to remove
redundant text, and also be faster to create than less detailed
manually created vulnerability documentation reports.

Fourth, by facilitating greater documentation of all activities,
the proposed paradigm may facilitate quality assurance of
penetration testing activities. A focus on documenting all tests

that were run and their results, as opposed to producing only
vulnerability documentation, allows the testers’ decisions to be
assessed to determine whether they were selecting and
performing a robust collection of tests. Additionally, testing
routines, for testing specific types of systems performing
specific functions, could be developed which could serve as
design patterns for testing, further augmenting its robustness.

B. Drawbacks
Several key drawbacks to the proposed approach also exist.

First, the approach could result in testing that is very mechanical
and which does not explore the nuances of the system being
tested. While performing well under a standardized collection
of tests provides some assurance as to the security level of the
system, it does not mean the system is secure. Penetration
testing should always include a focus on the ‘unknown
unknown’ which an adversary could utilize to target the system.
Thus, while using common modules can save time and retesting
can identify if problems have returned, this shouldn’t be a
substitute for manual exploration for implementation-specific
issues. Ideally, time saved from performing automatable tasks
could be redirected to higher value manual exploration use.

Second, the proposed approach could potentially lead to a
false sense of confidence if it were to completely replace
exploratory manual testing. Systems might not be vulnerable to
the common test suite elements; however, this should not be
taken as saying that they are secure. Defining testing
requirements (e.g., for specific industries) in terms of test suites
could further reinforce this problematic overconfidence and lead
to exploratory penetration testing not being performed.

Third, this same type of issue could manifest itself with firms
trying to conduct penetration testing entirely with inexperienced
or less experienced, than would be typical, penetration testers.
This approach would rely highly on the collection of pre-defined
attack-tests. While using only less experienced testers for re-
testing may be appropriate (though not a replacement for regular
exploratory testing by highly qualified testers), utilizing
inexperienced testers for primary testing would be problematic
and result in tests that are potentially of minimal value
(particularly if they don’t identify issues for correction).

Finally, the use of pre-packaged tests or custom-designed
tests for retesting may create issues if minimal changes are made
to the system under test that make it no longer vulnerable to the
specific test implementation without fixing the underlying issue.
While retesting can be an effective way to potentially identify
recurring or not-yet-fixed vulnerabilities, it should not be a
substitute to new testing.

VIII. PATHWAY TO AUTONOMOUS TESTING
As previously discussed, the development of a collection of

attack-tests facilitates reduced work being required, over time,
for the manually-controlled test-retest model described herein,
due to the potential for test reuse. However, perhaps one of the
largest longer-term benefits of the utilization of the proposed
approach is that this same library of tests can be used to facilitate
automated testing, if the tests are annotated with details
indicating criteria for their appropriate use. This facilitates
movement towards the autonomous testing approach described
in [58], [65], [66], as it removes the issue of a large upfront

888

investment being required to develop the test suite that is needed
to make the system useful. While the fully autonomous system
is of limited use with a limited attack-test set collection (unless
it was curated for a specific limited-purpose use), the automation
of specifically identified testing for the approach described
herein can be immediately useful while also developing a
collection of attack-tests that can support automated use.

IX. CONCLUSIONS AND FUTURE WORK
This paper has presented a test and retest-based paradigm for

penetration testing automation which is patterned off of attack-
path based techniques, such as the ATT&CK and Cyber Kill
Chain models. Notably, while these models demonstrate one
way the system could be utilized, its efficacy is not limited to
approaches compliant with them. This paper has also
demonstrated how attacks could be implemented using the
Blackboard Architecture to facilitate retesting and automation.

It is hoped that this paradigm can have an immediate benefit
for organizations by facilitating rapid and automated retesting to
verify that prior configuration issues and software vulnerabilities
have not been inadvertently or deliberately reintroduced. Over
time, organizations may benefit from the development of a
collection of reusable attack modules to facilitate the testing of
new or reconfigured environment. Attack modules could also
be shared between organizations to provide additional benefit.

The development of modules and attack logic, for use during
retesting, will also facilitate the acquisition of knowledge and
resources that can be used to facilitate more fully automated
testing. This, potentially, will provide a pathway to greater
levels of primary test penetration testing automation.

REFERENCES
[1] S. Hasan, A. Ghafouri, A. Dubey, G. Karsai, and X. Koutsoukos,

“Vulnerability analysis of power systems based on cyber-attack and
defense models,” 2018 IEEE Power Energy Soc. Innov. Smart Grid
Technol. Conf. ISGT 2018, pp. 1–5, Jul. 2018, doi:
10.1109/ISGT.2018.8403337.

[2] P. Dreyer et al., “Estimating the Global Cost of Cyber Risk: Methodology
and Examples,” Santa Monica, CA, 2018. Accessed: Jan. 26, 2022.
[Online]. Available: www.rand.org/jie/stp.

[3] N. Kesswani and S. Kumar, “Maintaining Cyber Security: Implications,
Cost and Returns,” in SIGMIS-CPR’15, Jun. 2015, pp. 161–164, doi:
10.1145/2751957.2751976.

[4] Z. M. King, D. S. Henshel, L. Flora, M. G. Cains, B. Hoffman, and C.
Sample, “Characterizing and measuring maliciousness for cybersecurity
risk assessment,” Front. Psychol., vol. 9, no. FEB, pp. 1–19, 2018, doi:
10.3389/fpsyg.2018.00039.

[5] M. Mateski et al., “Cyber Threat Metrics,” Sandia Natl. Lab. Rep., Mar.
2012, Accessed: Feb. 19, 2022. [Online]. Available:
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online.

[6] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “STRIDE-based threat
modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe, ISGT-Europe 2017 -
Proceedings, Jul. 2017, vol. 2018-January, pp. 1–6, doi:
10.1109/ISGTEurope.2017.8260283.

[7] B. E. Strom et al., “Finding Cyber Threats with ATT&CKTM-Based
Analytics,” Jun. 2017.

[8] T. Yadav and A. M. Rao, “Technical Aspects of Cyber Kill Chain,” in
International Symposium on Security in Computing and Communication,
Springer, 2015, pp. 438–452.

[9] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and attack
tree visual syntax in cyber security,” Comput. Sci. Rev., vol. 35, p.
100219, Feb. 2020, doi: 10.1016/J.COSREV.2019.100219.

[10] A. K. Nandi, H. R. Medal, and S. Vadlamani, “Interdicting attack graphs
to protect organizations from cyber attacks: A bi-level defender–attacker
model,” Comput. Oper. Res., vol. 75, pp. 118–131, Nov. 2016, doi:
10.1016/J.COR.2016.05.005.

[11] J. Straub, “Modeling Attack, Defense and Threat Trees and the Cyber Kill
Chain, ATTCK and STRIDE Frameworks as Blackboard Architecture
Networks,” in 2020 IEEE International Conference on Smart Cloud, Nov.
2020, pp. 148–153.

[12] T. H. Bhuiyan, A. K. Nandi, H. Medal, and M. Halappanavar,
“Minimizing expected maximum risk from cyber-Attacks with
probabilistic attack success,” 2016 IEEE Symp. Technol. Homel. Secur.
HST 2016, Sep. 2016, doi: 10.1109/THS.2016.7568892.

[13] Y. Stefinko, A. Piskozub, and R. Banakh, “Manual and automated
penetration testing. Benefits and drawbacks. Modern tendency,” Mod.
Probl. Radio Eng. Telecommun. Comput. Sci. Proc. 13th Int. Conf.
TCSET 2016, pp. 488–491, Apr. 2016, doi:
10.1109/TCSET.2016.7452095.

[14] M. P. Shah, “Comparative Analysis of the Automated Penetration Testing
Tools,” National College of Ireland, Dublin, 2020.

[15] F. Wotawa, “On the automation of security testing,” Proc. - 2016 Int.
Conf. Softw. Secur. Assur. ICSSA 2016, pp. 11–16, Feb. 2017, doi:
10.1109/ICSSA.2016.9.

[16] H. H. Thompson, “Why security testing is hard,” IEEE Secur. Priv., vol.
1, no. 4, pp. 83–86, Jul. 2003, doi: 10.1109/MSECP.2003.1219078.

[17] F. Guo, Y. Yu, and T. C. Chiueh, “Automated and safe vulnerability
assessment,” Proc. - Annu. Comput. Secur. Appl. Conf. ACSAC, vol.
2005, pp. 150–159, 2005, doi: 10.1109/CSAC.2005.11.

[18] S. M. Mohammad and L. Surya, “Security Automation in Information
Technology,” Int. J. Creat. Res. Thoughts, vol. 6, no. 2, Jun. 2018,
Accessed: Jan. 28, 2022. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3652597.

[19] M. Metheny, “Continuous monitoring through security automation,” Fed.
Cloud Comput., pp. 453–472, 2017, doi: 10.1016/B978-0-12-809710-
6.00013-5.

[20] A. Falkenberg, C. Mainka, J. Somorovsky, and J. Schwenk, “A new
approach towards DoS penetration testing on web services,” Proc. - IEEE
20th Int. Conf. Web Serv. ICWS 2013, pp. 491–498, 2013, doi:
10.1109/ICWS.2013.72.

[21] N. Antunes and M. Vieira, “Penetration testing for web services,”
Computer (Long. Beach. Calif)., vol. 47, no. 2, pp. 30–36, 2014, doi:
10.1109/MC.2013.409.

[22] C. Mainka, J. Somorovsky, and J. Schwenk, “Penetration testing tool for
web services security,” Proc. - 2012 IEEE 8th World Congr. Serv. Serv.
2012, pp. 163–170, 2012, doi: 10.1109/SERVICES.2012.7.

[23] N. Singh, V. Meherhomji, and B. R. Chandavarkar, “Automated versus
Manual Approach of Web Application Penetration Testing,” 2020 11th
Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, Jul. 2020,
doi: 10.1109/ICCCNT49239.2020.9225385.

[24] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “A methodology for
automated penetration testing of cloud applications,” Int. J. Grid Util.
Comput., vol. 11, no. 2, pp. 267–277, 2020, doi:
10.1504/IJGUC.2020.105541.

[25] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Towards
automated penetration testing for cloud applications,” Proc. - 2018 IEEE
27th Int. Conf. Enabling Technol. Infrastruct. Collab. Enterp. WETICE
2018, pp. 30–35, Oct. 2018, doi: 10.1109/WETICE.2018.00012.

[26] G. Yadav, A. Allakany, V. Kumar, K. Paul, and K. Okamura, “Penetration
Testing Framework for IoT,” Proc. - 2019 8th Int. Congr. Adv. Appl.
Informatics, IIAI-AAI 2019, pp. 477–482, Jul. 2019, doi: 10.1109/IIAI-
AAI.2019.00104.

[27] S. P. Kadam, B. Mahajan, M. Patanwala, P. Sanas, and S. Vidyarthi,
“Automated Wi-Fi penetration testing,” Int. Conf. Electr. Electron. Optim.
Tech. ICEEOT 2016, pp. 1092–1096, Nov. 2016, doi:
10.1109/ICEEOT.2016.7754855.

[28] A. Bhardwaj, S. B. H. Shah, A. Shankar, M. Alazab, M. Kumar, and T. R.
Gadekallu, “Penetration testing framework for smart contract
Blockchain,” Peer-to-Peer Netw. Appl., vol. 14, no. 5, pp. 2635–2650,
Sep. 2021, doi: 10.1007/S12083-020-00991-6/TABLES/7.

889

[29] S. Shah and B. M. Mehtre, “An automated approach to vulnerability
assessment and penetration testing using net-nirikshak 1.0,” Proc. 2014
IEEE Int. Conf. Adv. Commun. Control Comput. Technol. ICACCCT
2014, pp. 707–712, Jan. 2015, doi: 10.1109/ICACCCT.2014.7019182.

[30] M. C. Ghanem and T. M. Chen, “Reinforcement Learning for Intelligent
Penetration Testing,” Proc. 2nd World Conf. Smart Trends Syst. Secur.
Sustain. WorldS4 2018, pp. 90–95, Jan. 2019, doi:
10.1109/WORLDS4.2018.8611595.

[31] J. Schwartz and H. Kurniawati, “Autonomous Penetration Testing using
Reinforcement Learning,” arXiv Prepr., May 2019, Accessed: Feb. 18,
2022. [Online]. Available: https://arxiv.org/abs/1905.05965v1.

[32] R. Gangupantulu et al., “Using Cyber Terrain in Reinforcement Learning
for Penetration Testing,” arXiv Prepr., Aug. 2021, Accessed: Feb. 18,
2022. [Online]. Available: https://arxiv.org/abs/2108.07124v1.

[33] M. C. Ghanem and T. M. Chen, “Reinforcement Learning for Efficient
Network Penetration Testing,” Inf. 2020, Vol. 11, Page 6, vol. 11, no. 1,
p. 6, Dec. 2019, doi: 10.3390/INFO11010006.

[34] S. Chaudhary, A. O’Brien, and S. Xu, “Automated Post-Breach
Penetration Testing through Reinforcement Learning,” 2020 IEEE Conf.
Commun. Netw. Secur. CNS 2020, Jun. 2020, doi:
10.1109/CNS48642.2020.9162301.

[35] Z. Hu, R. Beuran, and Y. Tan, “Automated Penetration Testing Using
Deep Reinforcement Learning,” Proc. - 5th IEEE Eur. Symp. Secur. Priv.
Work. Euro S PW 2020, pp. 2–10, Sep. 2020, doi:
10.1109/EUROSPW51379.2020.00010.

[36] K. Tran et al., “Deep hierarchical reinforcement agents for automated
penetration testing,” arXiv Prepr., Sep. 2021, Accessed: Feb. 18, 2022.
[Online]. Available: https://arxiv.org/abs/2109.06449v1.

[37] W. G. J. Halfond, S. R. Choudhary, and A. Orso, “Improving penetration
testing through static and dynamic analysis,” Softw. Testing, Verif.
Reliab., vol. 21, no. 3, pp. 195–214, Sep. 2011, doi: 10.1002/STVR.450.

[38] G. Chu and A. Lisitsa, “Poster: Agent-based (BDI) modeling for
automation of penetration testing,” 2018 16th Annu. Conf. Privacy, Secur.
Trust. PST 2018, Oct. 2018, doi: 10.1109/PST.2018.8514211.

[39] M. Rak, G. Salzillo, and D. Granata, “ESSecA: An automated expert
system for threat modelling and penetration testing for IoT ecosystems,”
Comput. Electr. Eng., vol. 99, p. 107721, Apr. 2022, doi:
10.1016/J.COMPELECENG.2022.107721.

[40] N. A. Almubairik and G. Wills, “Automated penetration testing based on
a threat model,” 2016 11th Int. Conf. Internet Technol. Secur. Trans.
ICITST 2016, pp. 413–414, Feb. 2017, doi:
10.1109/ICITST.2016.7856742.

[41] B. Hayes-Roth, “A blackboard architecture for control,” Artif. Intell., vol.
26, no. 3, pp. 251–321, 1985.

[42] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The
Hearsay-II speech-understanding system: Integrating knowledge to
resolve uncertainty,” ACM Comput. Surv., vol. 12, no. 2, pp. 213–253,
1980.

[43] E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg, “On generality and
problem solving: A case study using the DENDRAL program,” Stanford
Univ. Rep., 1970, [Online]. Available:
https://ntrs.nasa.gov/api/citations/19710028679/downloads/1971002867
9.pdf.

[44] V. Zwass, “Expert system,” Britannica, Feb. 10, 2016.
https://www.britannica.com/technology/expert-system (accessed Feb. 24,
2021).

[45] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg,
“DENDRAL: A case study of the first expert system for scientific
hypothesis formation,” Artif. Intell., vol. 61, no. 2, pp. 209–261, Jun.
1993, doi: 10.1016/0004-3702(93)90068-M.

[46] J. Dong, S. Chen, and J.-J. Jeng, “Event-based blackboard architecture for
multi-agent systems,” in Information Technology: Coding and
Computing, 2005. ITCC 2005. International Conference on, 2005, vol. 2,
pp. 379–384.

[47] G. Goodman and R. Reddy, “Alternative control structures for speech
understanding systems,” 1977.

[48] I. D. Craig, “CASSANDRA-II: a distributed Blackboard system,”
Department of Computer Science, University of Warwick, Coventry, UK,

1987. [Online]. Available: http://eprints.dcs.warwick.ac.uk/1210/1/cs-rr-
090.pdf.

[49] K. S. Ettabaa, I. R. Farah, B. Solaiman, and M. Ben Ahmed, “Distributed
blackboard architecture for multi-spectral image interpretation based on
multi-agent system,” in Information and Communication Technologies,
2006. ICTTA’06. 2nd, 2006, vol. 2, pp. 3070–3075.

[50] I. D. Craig, “A new interpretation of the Blackboard architecture,”
Department of Computer Science, University of Warwick, Coventry, UK,
1993. [Online]. Available: http://eprints.dcs.warwick.ac.uk/1368/1/cs-rr-
254.pdf.

[51] H. Velthuijsen, B. J. Lippolt, and J. C. Vonk, “A parallel blackboard
architecture,” in Proc. Third Int. Expert Systems Conf, 1987, vol. 487, p.
493.

[52] J. Straub, “Evaluation of a multi- goal solver for use in a blackboard
architecture,” Int. J. Decis. Support Syst. Technol., vol. 6, no. 1, 2014, doi:
10.4018/ijdsst.2014010101.

[53] J. Straub, “Comparing the Effect of Pruning on a Best-Path and Naive-
Approach Blackboard Solver,” Int. J. Autom. Comput., vol. 12.5, pp. 503–
510, 2015.

[54] G. Brzykcy, J. Martinek, A. Meissner, and P. Skrzypczynski, “Multi-agent
blackboard architecture for a mobile robot,” in 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2001, vol. 4,
pp. 2369–2374.

[55] Y. Yang, Y. Tian, and H. Mei, “Cooperative Q learning based on
blackboard architecture,” in International Conference on Computational
Intelligence and Security Workshops, 2007, 2007, pp. 224–227.

[56] A. M. de Campos and M. J. Monteiro de Macedo, “A blackboard
architecture for perception planning in autonomous vehicles,” in 1992
International Conference on Industrial Electronics, Control,
Instrumentation, and Automation, 1992, pp. 826–831.

[57] M. V Johnson Jr and B. Hayes-Roth, “Integrating Diverse Reasoning
Methods in the BBP Blackboard Control Architecture,” in AAAI-87
Conference, 1987, pp. 30–35, [Online]. Available:
https://www.aaai.org/Papers/AAAI/1987/AAAI87-006.pdf.

[58] J. Hance, J. Milbrath, N. Ross, and J. Straub, “Distributed Attack
Deployment Capability for Modern Automated Penetration Testing,”
Comput. 2022, Vol. 11, Page 33, vol. 11, no. 3, p. 33, Feb. 2022, doi:
10.3390/COMPUTERS11030033.

[59] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic Blending Attacks,” in Security ’06: 15th USENIX Security
Symposium, 2006, pp. 241–256.

[60] J. Gardiner, M. Cova, and S. Nagaraja, “Command & Control:
Understanding, Denying and Detecting - A review of malware C2
techniques, detection and defences,” arXiv Prepr. arXiv1408.1136, Aug.
2014, Accessed: Jan. 25, 2022. [Online]. Available:
https://arxiv.org/abs/1408.1136v2.

[61] CrowdStrike, “What is Lateral Movement,” CrowdStrike Website, 2022.
https://www.crowdstrike.com/cybersecurity-101/lateral-movement/
(accessed Jan. 28, 2022).

[62] D. Dittrich and S. Dietrich, “Command and Control Structures in
Malware,” Login, vol. 32, no. 6, pp. 8–17, Dec. 2007.

[63] M. S. Khan, S. Siddiqui, and K. Ferens, “A Cognitive and Concurrent
Cyber Kill Chain Model,” in Computer and Network Security Essentials,
Springer International Publishing, 2018, pp. 585–602.

[64] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington,
and C. B. Thomas, “MITRE ATT&CKTM: Design and Philosophy,” Jul.
2018.

[65] N. Ritter, R. Fedor, M. Johnson, D. Newstrum, and J. Straub, “Evaluation
of the Efficacy of a Blackboard Architecture-Based Automated
Cybersecurity Assessment Sensing Tool,” Submitt. to Expert Syst. with
Appl.

[66] J. Straub, “POSTER: Blackboard-Based Electronic Warfare System,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1681–1683.

[67] J. Straub, “Software Engineering: The First Line of Defense for
Cybersecurity,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol.
2020-Octob, pp. 531–536, 2020, doi:
10.1109/ICSESS49938.2020.9237715.

890

