
SREP+SAST: A Comparison of Tools for Reverse
Engineering Machine Code to Detect Cybersecurity

Vulnerabilities in Binary Executables

Thomas Ryan Devine
West Virginia University

Morgantown, WV

thomas.devine@mail.wvu.edu

Maximillian Campbell
West Virginia University

Morgantown, WV

mbc0034@mix.wvu.edu

Mallory Anderson
West Virginia University

Morgantown, WV

mka00009@mix.wvu.edu

Dale Dzielski
West Virginia University

Morgantown, WV

dale.dzielski@mail.wvu.edu

Abstract—Cybersecurity of mission components is vital for
safety-conscious industries. This paper examines the effectiveness
of using existing software reverse engineering products (SREPs)
to first reverse engineer binary executables and then detect
cybersecurity vulnerabilities through static application security
testing (SAST) on the output (SREP+SAST). We analyzed 2.3
million lines of code from test suites and open source software.
Results showed that SREP+SAST revealed 48% of the 20,129
vulnerabilities detected by SAST on the source code, including
35% of high-risk vulnerabilities (HRVs). We introduce Smaug, a
novel, open source, customized SAST ruleset optimized for HRV
detection. Smaug boosted our our best-performing combo by
20% and increased the HRV detection rate to 55%. For further
validation, we traced vulnerabilities in source code linked to
specific CVEs and found that Smaug improved the detection
rate for CVE-specific vulnerabilities by 67% for our best-
performing combo. Our methods and code are publicly available
and we believe that further improving SREP+SAST could lead to
enhanced security for systems that depend on COTS technologies.

Index Terms—software reverse engineering, cybersecurity, vul-
nerability detection

I. INTRODUCTION

The incorporation of Commercial Off-The-Shelf (COTS)

software has long been known to pose security risks to safety-

critical systems. However, the potential costs vs. benefits of

utilizing third-party, COTS products are often significant and

difficult to ignore. For example, as the satellite and space

industries have evolved over the last 20 years, launching

satellites into orbit is no longer the sole domain of wealthy

nation-states, but includes both large and small businesses,

universities, high schools, and even hobbyists [1]. This push

toward space by non-traditional actors is largely driven by the

affordability and pervasiveness of COTS technologies, which

are likely “riddled with security vulnerabilities” [2].

Software vulnerability analysis can be accomplished by

performing Static Application Security Testing (SAST), which

involves static code analysis of the software’s source code

[3]. If the source code is unavailable, however, SAST cannot

be performed. Software Reverse Engineering (SRE) is the

process of working backwards from binary, executable code to

reconstruct the probable source code that was used to create it.

Unfortunately, SRE is an inexact science, and although several

SRE products (SREPs) exist that can effectively accomplish

the task, they have recently been shown to produce dissimilar

source code when given the same input [4].

In this paper, we empirically evaluate the effectiveness of

SREP+SAST, a methodology for discovering cybersecurity

vulnerabilities in machine code by first reverse engineering

the machine code and then performing SAST on the reverse

engineered machine code. We also compare the effectiveness

of four existing SREPs and introduce a novel augmentation

to a SAST tool. We present the methodology and results of

a series of experiments designed to evaluate the ability of

four SREPs to create reverse engineered machine code (SREP

code) that could be analyzed for cybersecurity vulnerabilities

using traditional static code analysis methods. We organized

our research goals into three research questions:

1) Can vulnerabilities be revealed by SREP+SAST?

2) Are the tested SREPs equally capable or incapable of

revealing vulnerabilities?

3) Which vulnerabilities are revealed by SREP+SAST?

The experiments have five stages, further detailed in Sec-

tion IV. In Stage 1, we collected source code examples exem-

plifying dangerous software errors from open-source products

with known vulnerabilities and manicured test suites. Stage 2

consisted of performing SAST on all source code to create

vulnerability reports for each source code example. For Stage

3, we compiled the source code into machine code and then

reverse engineered the machine code using four SREPs. In

Stage 4, we performed SAST on the SREP code as in Stage 2

to generate vulnerability reports for each SREP code example.

Finally, in Stage 5 we performed a comparative analysis of

the vulnerability reports from the original source code and the

SREP code to answer our research questions.

Our results show that SREP+SAST, while not perfect, is a

promising methodology for detecting high-risk vulnerabilities

(HRVs) in the SREP code. Our experiments with existing

tools for SREP+SAST resulted in HRV detection rates at

best of 35%. We developed an augmented ruleset optimized

for detecting HRVs in SREP output called Smaug. Using

863

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00228

SREP+Smaug improved the detection rate for HRVs to 55%,

a 20% increase over SREP+SAST. HRVs are the most likely

to be exploited in real-world scenarios to cause harm to an

organization. Additionally, when manually verifying the detec-

tion of vulnerabilities related to specific, real-world CVEs in

vulnerable open source software, we found that our best combo

of SREP+Smaug correctly identified 80% of these CVE-

specific vulnerabilities, a 67% increase over SREP+SAST.

The main contributions of this paper are:

• Extensive empirical verification of the effectiveness of the

SREP+SAST methodology,

• Creation of Smaug, a novel augmentation to an existing

SAST tool, that improves performance when detecting

HRVs in SREP code, and

• Comparison of four existing SREPs.

The remainder of this paper is organized as follows: Sec-

tion II presents a review of current related work. In Section III,

we provide background information on the tools and datasets

used. Section IV details our methods and in Section V we

present the results of our experiments. Finally, Section VI

provides concluding remarks and directions for future work.

II. RELATED WORK

We review five papers from three categories: SAST tools

for software vulnerabilities [5], [6], malware analysis [7], [8],

and testing [9].

In 2021, researchers analyzing Java open source projects

investigated which source quality problems could be detected

by warnings from SAST tools: SonarQube, Coverity Scan,

Better Code Hub, Checkstyle, and FindBugs. The precision

of each SAST tool was measured as the ratio between the

true positive source code quality issues identified and the total

number of issues the tool detected. The researchers concluded

that different SAST warnings covered different issues and

therefore found different source code quality problems [5].

Other studies explored the common defects that can be

detected by SAST tools and the number of false alarms from

these tools that should be ruled out. Researchers used three

top tools when performing tests: CodeSonar, Code Prover, and

Bug Finder. Well-known defects, such as static and dynamic

memory defects, were successfully detected. However, difficult

defects existed even for the top performance tools. CodeSonar

was best at detecting concurrency defects, while Code Prover

was best at stack-related defects [6].

The author of a 2020 study used automated Python scripts

in Ghidra to detect buffer overflows in vulnerable sinks. The

Ghidra API was used to disassemble executables from the

Juliet Suite. They focused on vulnerability sinks from the

libc functions. After the creation of the Python script, it was

observed in the results that buffer overflow detection method

was successful for 95% of the test cases [7].

A 2015 study investigated the use of machine learning and

SAST to predict buffer overflow vulnerabilities. The authors

used SREPs IDA-Pro and ROSE Disassembler and BinAnal-

ysis and VulMiner for SAST. Using the Waikato Environment

for Knowledge Analysis (WEKA) open source machine learn-

ing tool, they tested four machine learning algorithms: Naı̈ve

Bayes, Multi-Layer Perceptron Network, Simple Logistics,

and Sequential Minimal Optimization. On average, the models

were able to predict 60% of vulnerabilities correctly, except

for Naı̈ve Bayes, which had the highest accuracy prediction

of 85.32% [8].

Other researchers evaluated five modern SAST tools

(ARCHER, BOON, PolySpace C Verifier, Splint, and UNO),

along with open source vulnerable software that was com-

prised of various versions of SendMail, BIND, and WU-FTPD.

These researchers’ evaluations indicate that while state-of-the-

art SAST tools can find real buffer overflow with security

implications, warning rates are unacceptably high [9].

III. BACKGROUND

A. Software Reverse Engineering

Software reverse engineering is the process of working

backwards from executable machine code to try to recreate

what may have been the original source code in a higher

level language. A program that performs reverse engineering

on executables works by decompiling the machine code into

assembly language instructions and then inferring what the

high level source code may have been that produced the

machine code. Since compilers perform many optimizations,

an exact determination of the original source code is highly

unlikely, but the process can approximate the source code.

To answer our research questions, we performed SAST on

the output from four SREPs: Ghidra, RetDec, JEB Pro, and

IDA Pro. Two are open source (Ghidra and RetDec) and two

are available commercially (JEB Pro and IDA Pro). Ghidra

is a software reverse engineering suite of tools developed by

the National Security Agency’s Research Directorate. It is

primarily GUI-based. The Ghidra framework includes high-

end software analysis tools to analyze compiled code from

different instruction architectures. Ghidra is capable of disas-

sembly, assembly, decompilation, graphing, and scripting.

RetDec is a command line interface (CLI) tool. Unlike

Ghidra, which decompiles machine code method by method,

RetDec can operate on one input binary file and outputs all the

decompiled source code into one file. RetDec is a decompiler

which produces retargetable machine-code based on LLVM

and is the only decompiler in our research that does not have

a GUI, making it easier to automate with scripts. The LLVM

Project is a collection of modular and reusable compiler and

toolchain technologies.

JEB Pro and IDA Pro are both GUI based. JEB is a

disassembler/decompiler for primarily Android Package Kit

(APK) applications. However, JEB has the ability to dis-

assemble/decompile other applications, such as Executable

and Linkable Format (ELF) binaries. JEB decompiles Dalvik

bytecode to Java source code and x86, ARM, MIPS, RISC-V

machine code to C source code.

In the literature, IDA Pro proved to be a consistent top

performer for analyzing applications. IDA’s decompiler be-

havior is a mixture of Ghidra and RetDec, as IDA is a GUI

864

based application which writes all decompiled code to a single

file. Hex-Rays currently maintains and produces IDA Pro,

which performs automatic code analysis using cross-references

between code sections, knowledge of parameters of API calls,

and other information.

B. Static Application Security Testing

SAST is automated testing that examines source code di-

rectly to detect vulnerabilities. SAST is an effective way of

revealing certain cybersecurity vulnerabilities in source code,

but is unable to analyze machine code. After reviewing several

other products, we chose FlawFinder as our primary SAST

tool. For a thorough discussion of SAST tools, see [10].

FlawFinder1 is a free and open source SAST tool created by

David A. Wheeler. FlawFinder scans C/C++ source code for

potential vulnerabilities using lexical scanning to find tokens

(such as function names) that suggest likely vulnerabilities,

estimates their level of risk, and reports the results. FlawFinder

can scan source code without compilation, unlike many other

SAST tools. This was necessary for our research because

SREP code is not meant to be recompiled. FlawFinder is

officially Common Weakness Enumeration (CWE)-compatible

and has earned the Core Infrastructure Initiative’s (CII) Best

Practice “passing” badge. FlawFinder categorizes each CWE

into one-word phrases, such as Buffer, Integer, Race, etc.,

to give a general idea of the vulnerability that was found.

See the FlawFinder documentation2 for a full list of CWEs

detected by FlawFinder in our experiments and their one-word

descriptions.

FlawFinder also allows customization, which enabled us

to create Smaug. Smaug is a novel ruleset augmentation for

FlawFinder optimized to detect vulnerabilities in the SREP

code. As detailed in Section V, many vulnerabilities associ-

ated with specific CVEs were not detected by SREP+SAST

with FlawFinder. Many of the CVE-linked vulnerabilities we

detected were buffer overflows in libc methods like strcpy,

memcpy, sprintf, or syslog. Because these libc methods are

commonly exploited by attackers, compilers, such as GCC,

have been optimized to protect applications that use these

them by ensuring that the size of the source buffer is smaller

than or equal to the size of the destination buffer. Because

of this protection, decompiled vulnerable libc methods were

translated into ‘ chk’ syntax. For example, ‘strcpy’ becomes

‘ strcpy chk’. The ‘ chk’ syntax is missed by FlawFinder

because ‘ strcpy chk’ is not a real libc method. Smaug, our

new ruleset for FlawFinder, includes the ‘ chk’ syntax.

C. Vulnerable Source Code

We analyzed 26 open source software products that con-

tained known vulnerabilities and two software test suites. One

test suite was designed specifically for reverse engineering

cybersecurity testing with 356 test cases [11]. The other

test suite was designed for the detection of cybersecurity

vulnerabilities in C/C++ code with 99 test cases [12]. Overall,

1https://dwheeler.com/flawfinder
2https://dwheeler.com/flawfinder/flawfinder.pdf

the data set used for our final analysis encompassed 2,341,590

lines of code in 5,041 files.

We obtained the vulnerable open source software by search-

ing the exploit-db3 and MITRE4 vulnerability databases. On

exploit-db, there are two checkboxes, “verified” and “has app”,

that are enabled to find software that is vulnerable and ensure

the correct version of the application was downloaded. The

software studied included vulnerable versions of OpenSSL,

bash, grep sudo, python, and Rsync (the full list could not be

included for space concerns).

We also analyzed several smaller applications, including

aeon, dnstracer, and wifirxpower. These applications had only

a few thousand lines of code, compared to other applications,

with over 100,000 lines of code that we analyzed. The size of

these applications made them easy to analyze, while adding

more real world open source vulnerabilities to the research

project.

IV. EXPERIMENTAL METHODOLOGY

Our experiments were conducted in a five-stage process,

illustrated in Figure 1.

Stage 1: Source Code Collection We first collected the

known exploitable software, which included the 26 open

source software products and 2 software test suites that we

described in detail in Section 3.3.

Stage 2: Source Code SAST We then used FlawFinder, our

chosen SAST tool, to scan and generate the CSV and HTML

vulnerability reports and saved them for later comparison. We

also compiled the source code into executable machine code.

Stage 3: Decompilation with SREPs Next, we decompiled

the machine code generated in Stage 2 using the four SREPs.

We provide more details describing how we accomplished this

stage, as this step was quite involved and required the creation

of custom scripts.

When decompiling open source software products with Ret-

Dec, we used a single command in the terminal to decompile

the entire executable into one file. When decompiling test-

suites using RetDec, we wrote a shell script to traverse,

decompile, and write results for every test case.

Decompilation with Ghidra was more involved than RetDec.

Ghidra is primarily a GUI decompiler. Originally, we used

a pre-written Java program, GhidraDecompiler.java5, created

by Guillaume Valdon, to automate the process of obtaining

Ghidra’s version of the decompiled code. However, the pro-

gram required both the memory location and method name to

decompile the method. We initially created our own program,

DragonBreath.py6, to assist with the task. Our first version

of DragonBreath.py obtained both the memory location and

name of the method being decompiled. The information from

DragonBreath.py was then piped into GhidraDecompiler.java
and the results would be written to a specified text file.

However, GhidraDecompiler.java had a large margin of error

3exploit-db.com
4cve.mitre.org
5https://gist.github.com/guedou/a358df609c80d9fdc1ec4c348129005b
6https://github.com/Soup-tech/DragonBreath

865

Fig. 1. Our scientific workflow depicting the experimental process used to evaluate all source code in this research.

and produced more empty text files than decompiled machine

code. DragonBreath.py generated a list of memory addresses

for Ghidra to decompile. However, the memory addresses

were not always accurate and Ghidra would be unable to

decompile the method that was referenced by the memory

address. Also, if the method that was being decompiled was

too large, DragonBreath.py would timeout and move onto

the next method. Many of the bugs existed because Ghidra

headless, the command line version of Ghidra, was used

in DragonBreath.py. To overcome this, we wrote a revised

version of DragonBreath.py, which served as a direct plugin

for Ghidra. The inclusion of our plugin reduced the error

created by GhdiraDecompiler.java to nearly zero. The time it

took us to decompile an application using Ghidra reduced from

hours to minutes. Since the older version of DragonBreath.py
worked well with smaller applications, it was used when

decompiling test suites.

Since JEB Pro and IDA Pro are similar to Ghidra, they also

required some scripting to accomplish our goals. Fortunately,

JEB Pro came packaged with a batch decompile feature.

866

JEB Pro’s script worked similarly to DragonBreath.py, i.e.,

by decompiling every method in an application and writing

the decompiled machine code to individual files. When we

decompiled test-cases from the two test-suites, the CLI version

of JEB Pro was used in conjunction with Python scripting.

IDA Pro also came pre-packaged with a decompiler script.

Unlike JEB Pro and Ghidra, IDA Pro writes all decompiled

machine code into one file. Like JEB Pro, we wrote two small

Python scripts to automate the process of decompiling and

saving the decompiled machine code for every application in

the test suits.
Stage 4: SREP code SAST We completed this stage by

analyzing the SREP code produced by the four SREPs in

Stage 3 with FlawFinder to generate CSV and HTML reports

comparable to those produced in Stage 2.
Stage 5: Comparative Analysis Once we generated compar-

ative reports for both the decompiled machine code and the

original source code, we performed a comparative analysis of

the results. To accomplish this, we placed all results into one

CSV file for analysis and interpretation. This file contained

all 42,805 vulnerabilities found throughout the course of this

research project.

V. RESULTS

This section provides the results of our comparative analysis

of vulnerability reports generated during our experiments with

SREP+SAST. We present these results as they relate to our

original research questions, organized accordingly.
RQ1: Can vulnerabilities be revealed by SREP+SAST?
Results showed that it is possible to detect cybersecurity

vulnerabilities in binary executables through SREP+SAST.

However, the process with unaltered tools is only 47.6%

effective overall, at best. Table I provides the total number

of vulnerabilities detected throughout our experiments in the

original source code (src) and in the SREP code. Using

FlawFinder for SAST on the IDA Pro SREP code (IDA+FF),

we were able to detect up to 47.6% of the total vulnerabilities

present in the original source code. The performances of

individual SREPs are compared under RQ2.

TABLE I
THE TOTAL NUMBER OF VULNERABILITIES AND DETECTION RATES FOR

THE ORIGINAL SOURCE CODE (SRC) AND THE SREP CODE USING

FLAWFINDER (FF) AND SMAUG FOR SAST. THE LAST TWO COLUMNS

SHOW HRV DETECTIONS AND DETECTION RATES.

SREP+SAST Total DR
(%)

HRV
Total

HRV
DR(%)

src+FF 20,129 - 2,867 -
Ghidra+FF 7,382 36.7 846 29.5
RetDec+FF 2,291 11.4 393 13.7
JEB+FF 3,421 17.0 1,082 37.7
IDA+FF 9,582 47.6 999 34.8
Ghidra+Smaug 2,439 29.9 1,135 41.4
RetDec+Smaug 287 3.5 148 5.4
JEB+Smaug 1,360 16.7 869 31.7
IDA+Smaug 3,050 37.4 1,502 54.7

FlawFinder ranks vulnerabilities according to risk into cat-

egories from 1 to 5, with risk category 1 representing the

least severe vulnerabilities and risk category 5 representing

the most severe. In the last two columns of Table I, we show

the total number of HRVs detected and associated detection

rates. The results show that nearly 35% of HRVs can be

detected from using SAST on SREP code. (Note that the high-

risk detection rate results listed for JEB are anomalous, as

described under RQ2.) Furthermore, when using Smaug, our

optimized ruleset described in Section III-B, we were able to

increase the detection rates for HRVs by almost 20%. Our best

performing combo, IDA+Smaug, achieved a HRV detection

rate of nearly 55%.

Figure 2, provides a breakdown of the number of vulnera-

bilities detected using FlawFinder in each risk category for

all applications analyzed, separated out by SREP for each

category and data set combination. The first row depicts the

results for open source software, while the second and third

rows show the results for both test suites. Note the floating

scales for each row. The results show that a significant portion

of vulnerabilities were risk category 1 and 2 for all data sets.

risk category 1 and 2 represent code smells. Code smells

are not vulnerabilities themselves, but rather violate principles

of good software development, which negatively impacts the

overall quality of the code, e.g., not NULL terminating any

buffers that are initialized. Figure 2 also shows a large number

of vulnerabilities detected in risk category 4. Vulnerabilities in

this category have a risk of exploitation. Many of the CVEs

that we examined were considered risk category 4 or higher,

e.g., copying memory from a source to a destination buffer

without any size restrictions or printing out a variable without

a format identifier in a printf function call.

The majority of vulnerable libc methods detected by

FlawFinder were risk level 1 and 2. FlawFinder is very thor-

ough with buffer vulnerabilities. For example, every instance

of a character array or buffer being instantiated or initialized

was labeled as a potential vulnerability with risk level 1 or 2.

Simultaneously, many of the critical vulnerabilities associated

with CVEs were being missed due to the translation of the

‘ chk’ syntax described in Section III-B. Smaug reduced the

number of level 1 and level 2 vulnerabilities and increased

detections of level 4 vulnerabilities. This is reflected in Fig-

ure 3 and results from our removal of buffer initializations

and addition of all instances of vulnerable ‘ chk’ syntax as

discussed in Section III-B. While this revision to FlawFinder

decreased the quantity of vulnerability detections, the overall

quality of the vulnerabilities detected improved significantly,

as we were able to achieve much higher detection rates on the

HRVs that could lead to exploits.

RQ2: Are the tested SREPs equally capable or incapable of
revealing vulnerabilities?

Ghidra and IDA Pro were consistently top performers when

finding cybersecurity vulnerabilities regardless of SAST tool,

as evidenced by the results presented in Table I and Figures 2

and 3. In particular, IDA+Smaug achieved detection rates for

HRVs of almost 55%, making that combination the overall

best performer, with Ghidra+Smaug in a close second place.

While JEB appears to do very well in the test suites,

867

Fig. 2. Summary counts of vulnerabilities detected for the original source code (src) and all SREPs separated into columns by the risk of the vulnerability
and rows by data set. Results shown are using FlawFinder for SAST.

FlawFinder Smaug
Fig. 3. The number and risk level of vulnerabilities detected by FlawFinder (left) and Smaug (right). Risk Level 1 represents the least severe vulnerabilities
and Risk Level 5 represents the most severe vulnerabilities.

further inspection revealed that the results were anomalous.

There should never be more vulnerabilities detected in the

SREP code than in the source code, which can be seen for

JEB in Figure 2. Upon examination, we found that JEB

has an overabundance of Format vulnerabilities in the test-

suites. This is due to test-suites using printf statements to

categorize test-cases in the standard output. When decompiling

machine code, JEB empties parameters to libc methods to save

memory. Parameter-less printf ’s are flagged as vulnerable by

FlawFinder.
Additional problems for JEB include the incompleteness

of its batch decompilation feature. This led to information

loss and an excess of false positives, making JEB incon-

sistent and unreliable to use when batch decompiling. JEB

is also primarily used for decompiling APKs, while all of

the applications that we analyzed were ELF binaries. JEB,

while consistent when decompiling individual methods in the

GUI, lost information during batch decompilation which, in

turn, created false positives from FlawFinder. This made JEB

unreliable when paired with FlawFinder and also Smaug.

The poor performance of RetDec can be explained by its

decompilation process. During decompilation, RetDec gen-

eralizes functions, libc methods, and character buffers. For

example, rather than calling strcpy directly, RetDec creates a

function which only contains strcpy. Every instance of strcpy
encountered in the application will then call this function.

When FlawFinder scans the decompiled code produced by

RetDec, it will only see one instance of strcpy occur, no matter

how many times it’s wrapper function is called. This explains

why RetDec was consistently the lowest performer out of the

four SREPs.

Ghidra functioned the opposite of RetDec. Rather than gen-

eralizing much of the original source code, Ghidra attempted

to be as precise as possible with its decompilation of the ma-

868

chine code. The only place where this precision falls short is

with data types. For example, on a 32-bit architecture, integers

are allocated 4-bytes in memory. When Ghidra decompiles an

executable, it will only see that 4-bytes of memory have been

allocated for a variable. Ghidra is unsure whether this is an

integer or a 4 byte character buffer. Thus, Ghidra will label this

variable as undefined. This was one reason why not as many

results were found in Ghidra as there were with the original

source code.

RQ3: Which vulnerabilities are revealed by SREP+SAST?
The most detected vulnerabilities when performing SAST

with FlawFinder on SREP code in this project were: buffer,

format, misc, and integer vulnerabilities, as seen in Table II.

Buffer overflow vulnerabilities constituted the largest portion

TABLE II
VULNERABILITIES DETECTED IN ALL SREP CODE BY FLAWFINDER,

WITH TOTAL COUNTS (CENTER COLUMN) AND CORRESPONDING

PERCENTAGE OF THE TOTAL (RIGHT COLUMN).

Vulnerability SREP Count Percent of Total (%)
Access 102 0.4
Buffer 19,525 86.1
Crypto 85 0.4
Format 1,058 5.7
Free 6 0.0
Integer 679 3.0
Misc 754 3.3
Obsolete 13 0.1
Race 298 1.3
Random 42 0.2
Shell 93 0.4
Tmpfile 21 0.1

of the vulnerabilities that were detected, by far. We attribute

this in part to the fact that FlawFinder is vague with its

definition of a buffer overflow vulnerability. However, since

buffer overflow vulnerabilities are known to be one of the most

common type of vulnerabilities to exist in software, it makes

sense that FlawFinder would be thorough when scanning for

buffer overflows.

Table II also shows that all types of vulnerabilities were

detected, to at least some degree. Figure 4, shows the detection

rate achieved for each SREP on all vulnerabilities in the open

source software as the percentage of the total number of

vulnerabilities found in the SREP code vs the total number

found in the original source code. We can see in Figure 4 that

some vulnerabilities, such as Integer, Tmpfile, and Format, had

very few or no discoveries in any of the SREP code, compared

to the original source code, which had many.

We also note that a significant number of integer and format

vulnerabilities were detected in the ITC Test Suite, particularly

by JEB+FF. This is reflected in Figure 2 and is likely due to

the large number of false positives FlawFinder produces when

paired with JEB, as discussed above.

To verify which HRVs were detected by each combination

of SREP+SAST, we manually traced methods associated with

particular CVEs. In the original source code, we identified the

usage of 46 vulnerable methods associated with 20 different

Fig. 4. The ratio of vulnerabilities found in the SREP code compared to
vulnerabilities found in the original source code of the open source software
described in Section III-C for each SREP.

CVEs. We inspected the vulnerability reports from each com-

bination of SREP+SAST to search for detections we could

clearly attribute to these 46 vulnerable methods. For 13 of the

CVEs (and 16 associated methods), there was no difference

in detection between FlawFinder or Smaug, i.e. either all

of the SREP+SAST combos detected the vulnerability or all

combos did not detect it. For the 30 remaining high-impact

vulnerabilities, the results showed that using SREP+Smaug

led to an average 48% increase in detections directly linked to

CVEs for all SREPs. Figure 5 shows a comparison of the num-

ber of CVE-specific vulnerabilities detected for FlawFinder

(left) and Smaug (right). Both Ghidra and IDA Pro benefited

the most from Smaug, with Ghidra+Smaug and IDA+Smaug

both detecting 24 of the 30 CVE-specific vulnerabilities, as

compared to the four detections achieved by both SREPs when

combined with FlawFinder.

VI. CONCLUSIONS

In this paper, we presented an empirical evaluation of

SREP+SAST, a methodology for detecting cybersecurity vul-

nerabilities in binary executables by first reverse engineering

the executable with a SREP and then performing SAST on the

reverse engineered machine code. We tested this method by

scanning both the original source code and the reverse engi-

neered machine code from 26 open source software products

with known vulnerabilities and two vulnerability detection test

suites for twelve types of cybersecurity vulnerabilities. Our ex-

periments evaluated the effectiveness of four SREPs: Ghidra,

RetDec, JEB Pro, and IDA Pro, combined with the SAST

tool FlawFinder and an augmented version of FlawFinder we

named Smaug. Finally, we performed a comparative analysis

of the results to determine the effectiveness of SREP+SAST,

which tools were most effective, and which types of vulnera-

bilities were detected.

Our analysis shows that SREP+SAST can successfully

discover cybersecurity vulnerabilities in binary executables.

The results showed that Ghidra and IDA Pro were best able

to maintain the detectability of vulnerabilities in source code

when reverse engineering the executables. When paired with

869

FlawFinder Smaug
Fig. 5. The number of vulnerabilities detected per CVE by FlawFinder (left) and Smaug (right). Only CVEs with a different number of detections with each
tool are shown.

FlawFinder, IDA Pro and Ghidra achieved detection rates for

all vulnerabilities of 47.6% and 36.7%, respectively. When

paired with Smaug, our optimized ruleset for FlawFinder,

the HRV detection rates for IDA Pro and Ghidra (which are

most likely to be exploited) increased to 54.7% and 41.4%,

respectively. We manually validated SREP+SAST for the de-

tection of cybersecurity vulnerabilities linked to specific CVEs

in open source software and the results showed that Smaug

increased detection rates of CVE-specific vulnerabilities for

IDA Pro and Ghidra from 11.7% to 80%. Furthermore, we

found that all twelve types of vulnerabilities examined were

detectable in reverse engineered machine code to some degree,

with buffer-related vulnerabilities being the most detectable,

comprising 86.1% of all detected vulnerabilities.

In future work, SREP+SAST could be improved in a num-

ber of ways. Detection rates could be improved by customizing

more detection rules for Smaug. Additionally, the results

could be generalized further by testing different SAST tools

and analyzing more vulnerable software. Finally, the results

reported here use one compiler. It is important to explore

the effect of different compilers, as each compiler performs

different optimizations and may produce different results. In

the future, we plan to include additional compilers in our

analysis.

VII. ACKNOWLEDGEMENTS

This research was made possible by the NASA Katherine

Johnson IV&V Facility through the WV Space Grant Consor-

tium (Grant #80NSSC18M0128).

REFERENCES

[1] B. Nussbaum and G. Berg, “Cybersecurity implications of commercial
off the shelf (cots) equipment in space infrastructure,” in Space infras-
tructures: From risk to resilience governance. IOS Press, 2020, pp.
91–99.

[2] G. Falco, “Job one for space force: Space asset cybersecurity,” Belfer
Center, Harvard University, Cambridge, MA, Tech. Rep., 2018.

[3] A. Brucker and U. Sodan, “Deploying static application security testing
on a large scale,” Sicherheit 2014–Sicherheit, Schutz und Zuverlässigkeit,
2014.

[4] Z. Liu and S. Wang, “How far we have come: Testing decompilation
correctness of c decompilers,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 475–487.

[5] V. Lenarduzzi, S. Lujan, N. Saarimaki, and F. Palomba, “A critical
comparison on six static analysis tools: Detection, agreement, and
precision,” 2021, pre-Print.

[6] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” 11 2015.

[7] C. Wikman, Eric, “Static analysis tools for detecting stack-based buffer
overflows,” Naval PostGraduate School, Monterey, CA, Tech. Rep.,
2020.

[8] B. M. Padmanabhuni and H. B. K. Tan, “Buffer overflow vulnerability
prediction from x86 executables using static analysis and machine learn-
ing,” in 2015 IEEE 39th Annual Computer Software and Applications
Conference, vol. 2, 2015, pp. 450–459.

[9] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis tools using
exploitable buffer overflows from open source code,” in Proceedings of
the 12th ACM SIGSOFT Twelfth International Symposium on Founda-
tions of Software Engineering, ser. SIGSOFT ’04/FSE-12. New York,
NY, USA: Association for Computing Machinery, 2004, p. 97–106.

[10] B. Chess and J. West, Secure Programming with Static Analysis, 1st ed.
Addison-Wesley Professional, 2007.

[11] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong, “Vuldeepecker: A deep learning-based system
for vulnerability detection,” Proceedings 2018 Network and
Distributed System Security Symposium, 2018. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2018.23158

[12] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in 2015 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2015, pp. 12–15.

870

