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Abstract—This paper presents the results of a more repre-
sentative N-body benchmark utilizing a kD-tree implemented in
multiple languages. We find that while Rust is slightly slower than
C or C++ for smaller simulations, it is the fastest language for
simulations at the scale we use in actual research. On the other
hand, Go is constantly 1.5-2x slower than Rust. The JVM is
competitive with Go for intermediate-size simulations but strug-
gles when we reach one million particles. As expected, scripting
languages are the slowest, though it is rather remarkable how
much slower Python is than Node.js. Also surprising is that our
attempts to speed up the Python implementation using NumPy
made it significantly slower.

Index Terms—simulation, performance, n-body, kD-tree, Rust

I. INTRODUCTION

The Benchmark Game is part of a 20+ year effort to

create a set of simple performance benchmarks across various

languages [1]. Over that time, these benchmarks have become

a reasonably well-known and accepted comparison of language

performance, given the provisos, they note in their discussion.

Recently, these benchmarks have received renewed interest

as the basis for various academic papers comparing energy

efficiency across languages [2], [3].

Fairly early in the history of these benchmarks, one of the

authors of this paper proposed the N-body benchmark and

submitted the original implementations for Java and C++.

This code does a standard O(n2) calculation of gravity for

the planets in our solar system. That N-body approach is a

good benchmark for basic number crunching. However, most

modern N-body simulations involve a much larger number of

particles and use more complex methods, generally involving

data structures, to do the force calculations in O(n log n) or

O(n) time. This paper aims to look at performance across

a number of languages using a more realistic computational

approach.

We are particularly interested in Rust’s performance as an

alternative to C/C++ for these types of simulations [4]. Rust is

a more modern language with greater expressivity and a type

system that provides strong code quality guarantees, so there

is a general interest in being able to use it for astrophysical

and HPC work [5], [6].

II. APPROACH

The most commonly used method for speeding up N-body

calculations is using spatial trees as introduced initially by [7].

The idea of the tree codes is that the gravitational interaction

between a particle and others far away from it are well

approximated by treating the collection of distant particles as

a single unit. The first-order approach is to calculate the force

that a single point mass would exert at the center of mass of

the grouping. More accuracy can be derived by considering

the higher-order terms in a multi-pole expansion [8].

The original work by Barnes and Hut used an octree as their

spatial data structure, where each node was divided into eight

regions of equal size by splitting in the middle along each of

the three spatial axes. More recent work has often used a kD-

tree instead [9], [10]. In a kD-tree, each internal node has two

children, and the split between them is at a specified value

perpendicular to a given axis. So the kD-tree is effectively a

binary tree for high-dimensional spaces. There are many ways

to choose the split parameters for each node in a kD-tree. For

this work, we use the approach of splitting at the median along

the dimension with the largest separation between bodies. One

significant advantage of the kD-tree over the octree is that the

tree is always balanced by splitting at the median.

A rendering of a kD-tree from one of our simulations is

shown in figure 1. The system we simulate for these tests

is a disk of small particles in orbit around a central mass.

The particles are placed on circular orbits and are uniformly

distributed in distance from the central mass and radial loca-

tion. In many ways, it is like a low-mass particle disk in our

Solar System going from 0.1-5.0 AU with a variable number

of particles. The green dots in fig 1 are the locations of bodies

in that particular simulation. Our kD-trees were all constructed

with a maximum of seven particles in each leaf. The complete

code used for this work, with all the details on parameters and

approach, can be found at [11].

A. Language Selection

The Benchmark Game has had years to accrue a broad range

of contributions across various languages from those interested

in improving the performance of particular languages and

platforms. Given time and knowledge constraints, we had to

be somewhat more selective in our choices. We are very open
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Fig. 1. This image shows the kD-tree for a simulation with 10,000 particles
after 90 time steps.

to contributions from others that will add to the language

selection or improve performance in our languages. Our goal

was to include most of the languages/platforms present in the

most recent RedMonk programming language ranking [12].

Following the lead of the Benchmark Game, we include only

one language per platform. So we have TypeScript instead of

JavaScript and Java but not Scala or Kotlin. The argument is

that optimized versions should run at the same speed in all

languages on a single platform1. More idiomatic code in var-

ious languages might indeed produce different performance.

The Scala Center [13] saw this behavior in their work using

the methodology from [2].

While we did not test multiple languages on the same

platform, we did test some variations in some languages. For

example, in Rust, we tried using their explicit SIMD library in

addition to a version without explicit SIMD. In Java, we wrote

a “standard” object-oriented version using a mutable class for

particles and a version that controls the memory layout more

by putting all the coordinates in large arrays.

Another implication of using many languages is that our

code in all languages is single-threaded. This is primarily

because not all of the languages in our sample include good

support for multithreading. Python and JavaScript, particularly,

have weaker support than the other languages. The other

reason to leave out multithreading at this point is because of

the complexity that it adds. While this benchmark has to be

more complex than the O(n2) code in the Benchmark Game,

we did strive to not add additional complexity beyond using

the kD-tree to simplify porting it to various languages. While

1This might not be true for languages like Clojure, because they use
dynamic typing despite being on a platform with statically typed, compiled
languages.

the acceleration calculations are embarrassingly parallel, the

tree building is not. Indeed, the approach to tree building

implemented in this code is greatly simplified by the fact that

it is inherently single-threaded.

B. You can write Fortran in any language
Contrary to the advice of [14], there are several ways in

which the code we have written resembles Fortran in all the

languages used. Most notably, we use arrays and indexing

instead of dynamic memory whenever possible to minimize

memory allocation. Reducing memory allocations provides

speed benefits in all implementations. It also makes translation

between languages easier.
Another reason for this style choice is that it is what had

been used in a more general simulation framework written

in C++ that we were initially comparing the performance of

our Rust implementations to [15], [16]. This code base is

much more advanced, but it gave us a good sanity check for

performance when building the Rust version, which was the

version we created first for this work. We then used the Rust

version as a template for converting to all the other languages

to keep implementations reasonably consistent.

III. RESULTS

We ran performance tests on a workstation with two

Intel®Xeon®E5-2680 v3 CPUs and 64 GB of RAM. To

remove any variability between how language libraries report

timing, we used the Linux time command and collected

the user time. We did this for simulations of various sizes

ranging from 1000 particles up to one million particles. We

ran all simulations for 100 iterations and repeated them five

times. Table I shows the timing results means and standard

deviations.

TABLE I
INTEL XEON TIMING RESULTS (SECS)

Language/ Number of Particle
Style 1000 10,000 100,000 1,000,000
Rust 0.57± 0.01 11.52± 0.05 198± 2 2960± 50

Rust SIMD 0.58± 0.03 12.6± 0.1 221± 2 3190± 50
C++ 0.48± 0.02 10.07± 0.05 181± 6 3820± 30

C 0.50± 0.01 10.17± 0.02 176± 3 3770± 10
Go 0.91± 0.03 16.5± 0.3 262± 2 4830± 40

Java OO 1.92± 0.03 20.2± 0.7 350± 16 8570± 160
Java Array 1.7± 0.1 17.0± 0.3 290± 5 7520± 100
TypeScript 2.11± 0.05 40.3± 0.6 750± 30 22800± 700

Python 109± 3 1760± 15 27200± 300 –

For C and C++, we initially used GCC. However, as Rust

uses an LLVM-based compiler, we decided to try Clang to see

how it might differ. Clang was somewhat faster (< 10%) than

GCC, so the table shows the Clang results. We have omitted a

time for Python at one million particles because the execution

times would be on the order of a week. The Java environment

was GraalVM 22.2.0 for Java 17.0.4, we ran TypeScript using

Node v10.19.0, and Python used CPython 3.10.7.
Figure 2 shows a chart of the execution times as multiples

of the standard Rust version for each size simulation. Python
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has been left out of the graph because the times for Python

were so large that they made it impossible to see the details of

the other languages. There are a few things that stand out in

this figure. Some of them are things we might expect like the

fact that Rust, C, and C++ are faster than the other languages.

Similarly, Go and the JVM are faster than Node.js. In the

smallest runs, with only 1000 particles, the startup time for

the JVM makes it almost as slow as Node.js. At the mid sizes,

the JVM roughly ties Go, but Go is faster at the smallest and

largest sizes. What might be surprising to some who have not

seen these types of results before is that Python is so much

slower than Node.js.
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Fig. 2. Execution times as a multiple of the Rust execution time for that
simulation size.

A. Memory Matters

Memory usage is critical on modern computer hardware.

Fetching memory from RAM takes ˜100 clock cycles while

pulling it from the cache is roughly 10x faster. For this

reason, using memory in a manner that is cache friendly can

significantly benefit performance. The Xeon®E5-2680 v3 used

for these benchmarks has the following cache details.

L1 12 x 32 KB 8-way set associative instruction and

data caches

L2 12 x 256 KB 8-way set associative caches

L3 30 MB 20-way set associative shared cache

The shared vs. separate cache distinction is unimportant be-

cause this code is single-threaded.

The importance of memory size and layout appears in many

ways in these results. The memory layout is significant for the

two versions of Java, while memory size plays a significant

role for Rust. To help understand the role of memory in these

benchmarks, we measured memory usage for each of the

various simulations. Memory usage was measured with the

GNU time command with the -v option. Table II presents

the “Maximum resident set size” from that output. Note that

all values are greater than 1MB, so none of these can fit

completely in L1 or L2 cache on our test platform. However,

all the Rust, C++, and C simulations with fewer than one

million particles can fit in the L3 cache.

TABLE II
RESIDENT MEMORY USAGE IN MB

Language/ Number of Particle
Style 1000 10,000 100,000 1,000,000
Rust 2.8 4.0 16 153

Rust SIMD 3.0 5.5 24 265
C++ 3.8 5.7 19 202

C 2.3 3.2 15.5 153
Golang 2.4 4.4 19.1 174

Java OO 163 154 198 531
Java Array 147 175 190 863
TypeScript 73 109 170 672

Python 12.5 10.9 101 –

This table shows a clear break in memory usage, with Rust,

C++, C, and Go being far more memory efficient than the

other languages. The JVM is notorious for having a large

memory footprint, which clearly shows here, though Node.js

is not much better.

These languages have larger memory footprints because

of their virtualized environments. They also have memory

models that make it hard to control where values are in

memory, so caching behaviors can be poor. For example,

compare the Particle type in both C++ and Java in the

GitHub repository. They look very similar, with positions

and velocities in arrays of three elements and single values

for radius and mass. However, in C++, this compiles to a

single chunk of memory big enough to hold the combined

eight doubles. In comparison, this is one object with two

references and two doubles in Java. Those references point

to array objects with three doubles and a length, plus some

additional overhead. Similarly, the whole system is stored as a

collection of Particle. In C++, that vector<Particle>
becomes a single large chunk of contiguous memory. In Java,

the ArrayList<Particle> stores an array of references

that point to the object just described. So the object-oriented

Java implementation might look like that for Rust, C++, and

C in code, but it has a very different layout in memory with

a lot more overhead in terms of actual memory footprint and

following references during runtime.

To minimize this, we wrote a version that creates large

arrays of double to store positions, velocities, radii, and

masses. In this implementation, there are only four objects,

and because of how Java treats arrays of primitives, each has a

single, large chunk of memory. This approach is consistently

10-20% faster than the object-oriented approach. One thing

that might stand out in the memory usage chart is that this

approach had the largest memory footprint. We speculate

that this is because the reported value is the largest resident

memory set. At the point where the garbage collector copied

these large arrays from short-term memory in the GC pool to

a longer-term segment of memory, they were both active and

resident for a while.

On the Rust side, it might seem odd that using SIMD can

slow things down, but that is what our results consistently

show. We speculate that this is because our vectors only need

24-bytes for three double-precision floating point values. The
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SIMD values include 32-bytes for four values. This explains

why the SIMD version of Rust has a larger memory footprint

for all simulation sizes. The SIMD instructions also work on

those extra values, but if they are done with SIMD instructions,

that should not provide additional overhead. Indeed, in inde-

pendent testing of SIMD instructions on an implementation

of the simpler, O(n2) N-body code, we find that SIMD does

indeed speed things up. What we see in this work is that the

additional memory overhead slows things down more than the

SIMD instructions speed them up.

B. Scaling

As stated earlier, using a tree for gravity calculations should

give us code that scales an O(n log n). Based on that scaling, a

naive prediction of the runtime ratios when the particle count is

increased by 10x would be in the 12-13 range for the sizes we

are testing. Figure 3 shows the actual values for each language.

This figure shows that, in practice, the runtime ratios are more

in the 18-20 range. This value is consistent for 1000 to 10,000

particles and 10,000 to 100,000 particles, except for the JVM

implementations, where the 1000-particle runs were skewed

by JVM startup.
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Fig. 3. Execution time scaling with particle count.

Going from 100,000 to one million particles, we see many

more interesting behaviors that vary across the languages. The

jump to one million particles makes all the simulations use

more memory than the L3 cache on the benchmark platform.

For that reason, we might expect that the increase in runtime

will be larger going from 100,000 to 1,000,000 particles than

for other jumps. Indeed, this is true for all languages except

Rust. We do not yet understand why Rust does so well with a

larger number of particles, but it inevitably deals with details

of how the code is accessing memory. This good scaling makes

Rust the fastest language for the largest simulations. It is also

interesting to note that the JVM and Node.js scale very poorly

in this last jump and are particularly slow for the largest

simulations. We cannot say anything about what happens with

Python at this step because the runtime for Python for one

million particles is so long that it is impractical to benchmark.

C. Python is Horribly Slow

That leads to the next thing that stands out in these bench-

marks. Python is exceptionally slow. To clarify how Python

compares to the other languages, figure 4 shows the same

data as figure 2, including Python and excluding the largest

simulation, for which we did not benchmark Python. One thing

that this figure shows that the table didn’t make clear is that

Python is getting better relative to the faster languages as the

simulations get larger. However, at every size tested, it is well

over 100x slower than Rust.
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Fig. 4. Execution times as a multiple of the Rust execution time for that
simulation size including Python.

Every other language finished the one million particle

simulation faster than Python finished the 100,000 particle

simulation, even Node.js. This result is consistent with the

timing results in the Benchmark Game for the n-body bench-

mark. Their only solution for Python took 9 minutes, which

is over 100x slower than the fastest solutions.

The implementation tested was written in pure Python. We

made several attempts to use NumPy, a library for efficient

arrays and operations on them, to improve execution time.

One set of attempts used NumPy arrays for the positions and

velocities in particles. Another set of attempts used single large

NumPy arrays similar to the faster Java implementation. Ev-

erything we have tried has resulted in ˜2x worse performance

than the pure Python implementation. The fact that NumPy

does not improve performance is consistent with the Python

submissions in the Benchmark Game being written in pure

Python, which indicates that others have not found a way

to improve the performance with NumPy or other numerical

libraries. While NumPy excels at operating on arrays, the

kD-tree approach results in significant time being spent on

traversing the tree. In fact, computing the acceleration by

traversing the tree is an O(n log n) operation and represents

the majority of the computational work while integration,

which can easily be optimized with NumPy, is only O(n).
As such, the kD-tree algorithm does not play into NumPy’s

strengths.

One possible speedup for Python would be using Cython,

a superset of Python that easily integrates C with Python.
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For example, we could write the kD-tree in a Cython or C

extension. However, if most of the logic happens in C, it is

not fitting to still call it Python’s performance.

Each new version of Python adds speed improvements.

For example, Python 3.11 is about to be released at the

time of writing, and they claim a 1.25x speed improvement

[17]. Putting that into perspective, it means Python is 100x

slower than Rust instead of 125x slower. These incremental

performance boosts are helpful but insufficient to make Python

a competitive language for numerical work without most of the

actual code being written in a different language.

D. PyPy to the Rescue?

An alternative to the standard implementation, CPython, is

PyPy. PyPy is a JIT compiler that, on average, can reach 5x

the speed of CPython [18]. Preliminary testing suggests that

for our kD-tree code, PyPy runs 10-15x faster than CPython.

Since our pure Python codebase does not rely heavily on

C functions, the JIT compiler can optimize most of the

computations. Our results for PyPy were even more impressive

than other benchmarks against CPython3.7 using a modified

N-body problem, where a 6.5x speedup was seen compared

to CPython3.7 [19].

While PyPy provides speed improvements, there are other

challenges using PyPy. Our original Python implementations

used features of Python 3.10. The code had to be modified

to use PyPy because the current implementation of PyPy is

for Python 3.7 [20]. In addition, the speed benefits of PyPy

come not only from using a JIT but also from semantic

differences from standard Python as implemented in CPython

[21]. Because of the JIT, PyPy uses significantly more memory

than CPython. PyPy’s memory usage was similar to the JVM

in our testing. So while PyPy is much faster than CPython,

using it comes with some costs, and it is worth pointing out

that PyPy is still 3x slower than Node.js and 10-20x slower

than Rust. So being faster than CPython does not mean it is

competitive with other languages.

E. Performance Where it Matters

While there are many interesting details in these results

related to how performance scales with particle count, it is

worth noting that in practice, the simulations this benchmark

is based on tend to involve at least a million particles. For

that reason, the result that matters the most is for the largest

runs done here. All the others are smaller than our typical

research simulation workloads. Given this fact, there are two

key takeaways from this work. First, Rust seems to be the

fastest language when it counts, with or without explicit

SIMD. Second, using the JVM languages might seem okay

if the systems are smaller, but the performance gap grows

significantly for the systems we want to study. Using Node.js

or Python for this type of work should probably never be

viewed as an option.

We have not said much about the Go language yet. Perhaps

because its behavior is so consistent in the benchmarks, it

is consistently 1.5-2x slower than Rust. Go also scaled vary

consistently from one simulation size to the next. Although

the garbage collector in Go can make it easier to code and

reason about than C or C++ in many situations, our C++ code

has no explicit calls to new or delete which makes this

somewhat moot here. The Rust language does not include

GC, but the way it works removes explicit memory handling

from the majority of programs. Whether one finds Go to be a

sufficiently more productive language than Rust to validate the

decrease in speed is a matter of experience and preference. We

found that the conversion to Go from the original Rust version

had challenges because while Go has a garbage collector, there

is explicit syntax for passing things by reference that must be

considered. This explicit reference handling led to some bugs

that had to be tracked down. Of course, more experienced

Go developers would likely think of this and handle it more

quickly. It is interesting to note that the types of bugs we

experience with the Go implementation would be syntax errors

caught by the type system in Rust.

IV. CONCLUSIONS AND FUTURE WORK

For us, the most significant conclusion of this work is that

Rust is a viable alternative for numerical work at the scale

desired for modern research. It also makes it clear that neither

the JVM, nor scripting languages, are really appropriate for

astrophysical numerical simulations. In general, the JVM is a

highly optimized environment, and the ease of multithreading

makes it temping to consider [22], [23], but there is simply

too much overhead associated with the platform for numerical

work. Perhaps project Valhalla or the new Vector API could

change this somewhat, but this work casts doubt on even that.

Looking forward, this work could be extended in a number

of ways. The most obvious is that we would drop the scripting

languages and add parallelism through multithreading. This is

straightforward for the force calculations for all the languages

used here, but parallelizing the tree building is significantly

more challenging and finding an approach that works well

across all the languages is an interesting problem.

Another area that we did some exploration of is looking at

these benchmarks on other architectures as the Xeon used in

this work is a bit older. We did some preliminary work with the

ARM M1 used in newer Macs and found one potentially inter-

esting result that the advantage for Rust at a million particles

seemed greater on the M1 than on the Xeon. The comparison

between architectures becomes even more interesting once

parallelism is included and pitting ARM against both Xeon

and EPYC architectures for various languages could have

interesting implications for decisions on hardware purchases.
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