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Abstract—Monitoring maritime areas is a challenging task
which generally benefits from sensing systems such as radars
or cameras, with different electromagnetic or optical capabili-
ties. Infrared (IR) cameras in particular allow night and day
surveillance, but their image is affected by maritime atmospheric
conditions, e.g., the aerosol concentration. Further classification
process thus inherits this image degradation resulting in possibly
poor target classification results. To overcome this issue, we
propose in this paper a contextual classifiers fusion system
where two neural networks are trained into two environmental
contexts and further combined with Bayesian reasoning. Indi-
vidual classifier’s reliability is considered, enabling to balance
between the two classifiers depending on the uncertain context
of use. Additionally, we apply an imprecise decision rule for a
greater flexibility allowing a compromise between two criteria
of accuracy and specificity. Results are obtained on simulated
classifiers’ outputs as well as on a synthetic dataset of IR
images degraded with atmospheric context. It is shown that the
proposed approach allows the possibility to increase accuracy
while foregoing specificity and adds explainability.

Index Terms—Maritime surveillance; image classification;
Bayesian network; marine aerosols; imprecise classifier.

I. INTRODUCTION

Control of littoral activities and maritime surveillance in

general require sensing devices covering specific areas of

interest, with different ranges, for early detection of anomalous

events at sea. Manual coastal surveillance work is challenging

for operators because they might miss a key information in a

lot of situations. Long hours of work can diminish alertness

and focus. The surveillance zone can be crowded and thus sus-

picious ships can hide amid the mass. Moreover, atmospheric

conditions can decrease the visibility range and negatively

impact the target recognition task. Visibility also decreases

during night time. In such situations, operators would benefit

from semi-automated surveillance tools to support their daily

tasks, improving the detection range, the recognition and

identification of vessels and enabling them to focus on events

of interest.

Infrared images are used for vessel recognition tasks spe-

cially during night episodes. In this waveband, machine learn-

ing algorithms are sensitive to environmental variations during

rain or fog episodes but also in presence of maritime aerosols

created by sea sprays. The impact of the environment on

ship classification is for instance considered in [1] where a

method based on Convolutional Neural Network (CNN) and

data augmentation with weather challenged data was proposed.

To address this problem of uncertain and possibly variable

atmospheric conditions, we proposed a classification system

composed of (1) two contextually trained neural networks, (2)

combined with a Bayesian approach considering the reliability

of the individual classifiers and (3) with an imprecise decision

(labeling) function.

In Section II, we provide some background on classification

in uncertain context, describing the environmental parameters

and phenomena impacting the infrared image quality. The

classification problem is also formalized, with an emphasis

on imprecise decision. The proposed classifier system is de-

scribed in Section III, as a contextually trained two-classifier

system, with a Bayesian combination of outputs. Section IV

is dedicated to results obtained on both simulated classifier’s

output and modified synthetic IR images of ships. We finally

conclude in Section V and open on future work.

II. CLASSIFICATION IN UNCERTAIN CONTEXT

Coastal surveillance relies on the ability of the different

authorities to detect and identify any suspicious or anomalous

event at sea which can cause safety or security issues and

would require an early intervention. Vessel Traffic Services

(VTS) are shore-side systems which provide situational aware-

ness to operators by means of sensing and communication

devices, gathering and analysing information about the mar-

itime traffic or meteorological hazard. While the most common

sensors are radar systems, Automatic Identification Systems

(AIS) or radio direction finders, cameras are often used to

complement the maritime picture. Environmental conditions

such as fog, wind, sun light reflection or marine aerosols

[2], [3] have an impact on the signal, and thus on further

processing until the outcome sent to the user. Visible cameras

use wavelengths similar to the spectrum that the human eye

perceives. Working on visible data is challenging because

of the dynamic sea background, varying angles of view,

variation in lighting conditions and a lot of different scale

ratios in the same image. Although some methods exist to

handle these aspects, they do not or barely consider severe

weather conditions [4]–[6]. Infrared cameras instead provide

data which is much more invariant than visible sensor to
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atmospheric irradiance such as solar glint and offer a wide

range of use from daylight to night conditions. In this paper,

we focus on the problem of ship recognition with degraded

IR images by environmental conditions.

A. From observation to user

Although fog, glint and low irradiance are conditions

handled by infrared sensing, this waveband is sensitive to

attenuation due to environmental conditions variations. In con-

junction with humidity, the atmospheric visibility is affected

by molecular and aerosol attenuation1. In extreme conditions,

high wind and high sea state drastically increase the marine

aerosol concentration which degrades thus the quality of the IR

image captured by the camera. For instance, the visibility loss

due to sea spray aerosols can reach up to 0.2 km−1 [7]. We

do not take into account other aerosols like dust or pollution.

Vessel emits and reflects electromagnetic signal. The scene

environment adds noise and distorts vessel’s signal (diffusion,

absorption, attenuation from molecules in atmosphere and

aerosols from sea spray and dust, adverse weather conditions

[1]). Then the sensor affects the radiance emitted by the ship

because of its resolution, spectral bandwidth, distance, pitch

and camera response function. The sensor output is an image

with specific contrast, saturation and sharpness which can be

modified by software in acquisition process. The classification

process aims at labeling the image of a vessel and depends on

classification method and training data. The labeling process

finally outputs the decision for the operator and can be prone

to errors, lack of explanation or not adapted to operational

needs.

In this paper, we define context as the conditions under

which the classifier is to be used. We distinguish between

environmental context (for instance, sea spray aerosols vis-

ibility loss in this case) and operational context (e.g., user

needs). For instance, the operator may not be interested in

knowing the precise type of a vessel, but only in distinguishing

between military and civilian vessels, while a finer-grained set

of classes may be required later.

In the following, we will assume that the environmental

conditions are gathered under a variable of visibility which

impacts the classifiers’ reliability in their ability to provide

correct classifications (see Section III-B).

B. Imprecise classification

Imprecise classification allows selecting several class as part

of the decision. Different methods have been proposed framed

in different uncertainty theories such as belief functions (e.g.,

[8], [9]), possibility (e.g., [10]) or credal sets (e.g., [11]).

Formally, we consider a set of N classes Ω = {ω1, ..., ωN}
and a set of M samples X = {x1, ..., xM}. An imprecise
classification function Ψ assigns one or several classes to a

sample, such that Ψ(xm) ⊆ Ω is the classifier’s estimate of a

subset of classes possibly containing the true classes. The true

class of sample xm is denoted by ω∗m. This function Ψ can

1The atmospheric visibility or meteorological range is defined quantita-
tively, eliminating the subjective nature of the observer

be seen as a composition of two sub-functions s and l, where

s : X → R
N and l : RN → 2Ω, with 2Ω denoting the power

set of Ω. s is the function which assigns scores to a sample,

and l is the decision function. Precise classification consists in

choosing one class (usually the class with the highest score)

and is a special case of imprecise classification. Generally, the

minimization of expected loss is used ( [11], [12]) with a loss

function as a compound measure of accuracy and specificity

(linked to the number of classes output measures).

In the following, we will exploit the flexibility of impre-

cise classification to adapt the classifier’s output to different

contexts of use.

III. CONTEXTUAL BAYESIAN REASONING FOR

CLASSIFIERS COMBINATION

We describe in this section the proposed approach as a

classifier system involving two contextually trained classifiers

combined with a Bayesian approach and a proper reliability

model [13].

A. Classifier system with contextual training

The proposed classifier system is depicted in Fig. 1. The

process is made of three steps: (1) the sample xm is pre-

processed by two classifiers trained previously on different

contexts; (2) their attributed scores are combined with a

classification fusion module based on Bayesian reasoning with

evidence on context (see Section III-B); (3) the posterior

probability is then handled by the imprecise decision function

lα (see Section III-C).

A classifier is linked to a context through its training data

and defined by its subset of fixed parameters. For instance, a

low visibility image dataset contains images with low contrast.

In this paper, we consider two contexts of use as defined by the

meteorological conditions impacting the visibility, and denoted

as low and medium visibility, characterized by a 2 km and

10 km visibility respectively. Two classifiers are trained in

their respective context, medium visibility for classifier 1 and

low visibility for classifier 2. The reliability of the classifier

depends on the context, as captured by the confusion matrices

during the training phase.

B. Bayesian contextual reasoning

The Bayesian contextual reasoning for classifier’s fusion

follows the general evidential model proposed in [14], [15]

and is displayed as Bayesian networks in Fig. 2.

We denote by X the random variable (and corresponding

node of the network) the true type of the ship, by C1 and C2

the estimations from classifier 1 and 2 respectively, by R1 and

R2 their corresponding reliability variables and by V the con-

textual visibility variable. Variables X , C1 and C2 have Ω =
{Corvette; Frigate;Destroyer; Ferry} as universe of discourse,

R1 and R2 have two possible states {Reliable;Not reliable},
while V can take values within {Low;Medium}. The prior

probability on X is assumed to be uniform. The conditional

probabilities connecting variables X , C1 and C2 are excerpt

from the classifiers’ confusion matrices on training datasets.
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Fig. 1: Contextual fusion for cautious classification
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Fig. 2: Four contextual classification architectures as Bayesian networks

The behavior of the classifier depends on its reliability Ri,

i ∈ {1; 2}. This reliability comes from the classifier context

of use which itself can have two states, either medium or

low visibility. The model implemented considers unreliable

classifiers as randomizers [13]. Finally, classifier outputs are

processed as soft evidence on variables C1 and C2. The

originality of this model is to consider variable reliability

depending on context.

The architectures are named Ca-b, where a is the number

of classifiers and b corresponds to the step of contextual

reliability involved. As such, C1-3 is the architecture with one

classifier C1 and the reliability R depending on the contextual

visibility variable V . In the same way, C2-1, C2-2 and C2-3

are architectures with two classifiers, the later being the more

complete one. Their performances will be compared in Section

IV-A.

C. Variable thresholds for imprecise classification

We consider a new cautious way for selecting imprecise

classes. Instead of considering scores themselves, we consider

the relation and similarity between scores and define the

following decision function lα : RN → 2Ω such that:

lα(s(xm)) = {ωj ∈ Ω|sj(xm) ≥ αmax ((s(xm))} (1)

where sj(xm) is the score associated with the class ωj . The

parameter α ∈ [0, 1] dictates how scores should be alike to be

considered.

D. Performance measures

Performances of the classifier systems are compared by

means of a pair of measures which quantify respectively no-

tions of accuracy and specificity. The accuracy is the measure

proposed in [8]:

acc =
1

M
·

M∑
m=1

δ(ω∗m,Ψ(xm)) (2)

with

δ(ω∗m,Ψ(xm)) =

{
1 if ω∗m ⊆ Ψ(xm)
0 else

(3)

while we define a specificity measure as:

spe = 1− 1

M · acc ·
M∑

m=1

δ(ω∗m,Ψ(xm))
log |Ψ(xm)|

logN
(4)
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where |.| denotes the cardinality operator. Specificity in this

paper is based on a normliased version of Hartley entropy,

where only correctly classified samples are considered. It

should not be confused with true negative rate like in confusion

matrix. The acc measure quantifies how much the classifier

system’s outputs are correct (acc = 1 if it never makes

mistakes), and the spe measure quantifies how much the

classifier’s outputs are specific (spe = 1 if all outputs are

singletons).

IV. RESULTS

We demonstrate below the benefits of the proposed approach

for the classification of vessels with uncertain context, on

simulated outputs of imprecise classifiers in Section IV-A, and

on synthetic IR images of ships in Section IV-B.

A. On simulated imprecise classifiers

In order to test our approach with full control on parameters,

we designed a simulator of imprecise classification outputs.

The parameters are the number of classes N , the number of

samples per class, the global accuracy (mean and variance),

the ratio of non-specific outputs (mean and variance), the

maximal number of classes in case of a non-specific output

and a likeness criterion for non-specific outputs. The simulator

produces an imprecise confusion matrix in percentage before

converting it into numbers of samples and producing a list of

imprecise decisions and corresponding scores. Fig. 3 displays

the results obtained with simulated imprecise classification

results, according to the four architectures of Fig. 2. The

curves specificity/accuracy are obtained for different values

of α (1). Performances of the two basic simulated classifiers

are displayed with dashed lines.

Fig. 3: Performances in accuracy and specificity of our clas-

sification method with simulated imprecise classifiers

We can observe in Fig. 3 that all systems have a better per-

formance than the two basic classifiers. For a given specificity,

accuracy is systematically improved.

The effects of combination can be observed by comparing

C1-3 and C2-3. Although accuracy values are similar for

low specificity values, the system with two classifiers C2-3

allows more modulation on specificity, which ranges from 0

to 1 instead of 0 to 0.5 for C1-3. The reason behind this

phenomenon lies in the statistical nature of the specificity

measure. Indeed, C1-3 decision cardinality is maximal for 50%

of the samples because the system is reliable on only one

context while C2-3 is reliable on both contexts and enables

full specificity.

The effects of adding the reliability variable in the model

are exposed by comparing C2-1 and C2-2. We observe that

performances are really close to each others with an advantage

for C2-2. Indeed, the reliability variable mildly increases the

accuracy when the specificity decreases.

Finally, the effects of adding context to reliability to form

contextual reliability can be observed by comparing C2-2 and

C2-3. This comparison shows that with two classifiers, for a

given specificity contextual reliability increases the accuracy

(up to 28% when spe = 1). Also, the system makes less

mistakes at maximal specificity. And we could obtain a good

compromise of an accuracy of 95% at the expense of a

specificity of circa 81%.

B. On synthetic IR images with real classifier

1) Data: We used the IRShips database gathering, synthetic

IR of 9 military ships and one ferry, grouped into 4 classes

of Corvette, Frigate, Destroyer and Ferry [16]. Each image

is described by a series of parameters including ship name,

thermal appearances, ranges, bearings and elevations. The

dataset has then been modified following four steps: (1) 1024

images per ship were selected from the original dataset while

keeping maximum variability in terms of bearing and range,

(2) images were then cropped and centered around ships

resized to the same dimension, (3) the dataset was divided into

two subsets and (4) one context was applied on each subset.

For Step (4), images were thus modified to represent two

contexts with varying visibility according to Beer-Lambert law

and Kim model for optical attenuation [17]:

I = I0 · e−β·d +R (5)

where I is the modified image, I0 the original image,d
the distance of the ship from the camera (in km) and R
a normal random matrix with the same size as the image,

R ∼ MNn,p(μ, σ) with μ = 2 and σ = 2. The atmospheric

attenuation coefficient β is used to simulate an atmospheric

veil due to sea spray. We are using β = 1.98 for low visibility

and β = 0.16 for medium visibility. Atmospheric turbulence

is not taken into account in analysis.

The resulting contextual datasubsets are named ctxt1 and

ctxt2 for context 1 and context 2 respectively. Examples of

resulting images are presented in Fig. 4.

The ResNeXt50 algorithm [18] was selected due to its high

accuracy and for its easy set up. The models are pre-trained
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(a) Corvette with medium visi-
bility

(b) Corvette with low visibility

(c) Destroyer with medium vis-
ibility

(d) Destroyer with low visibility

Fig. 4: Veiled ship images from the IRships database at

medium and low visibility with Eq. (5)

on ImageNet2 by PyTorch3 and used for transfer-learning on

our contextual datasets. Both subdatasets were concatenated

into the dataset ctxt0 that was used to create a reference

classifier with the same parameters. Each classifier is named

after the context of its training dataset: Classifier 1 was trained

on ctxt1, Classifier 2 was trained on ctxt2 and Classifier 0 was

trained on ctxt0. The three classifiers were trained with the

same hyper-parameters, obtaining the average performances

of 89,97%, 79,60%, and 96,33% respectively on a 6-fold

cross-validation for error estimation. As expected, Classifier

0 performs better than the two others because it was trained

with twice the images number.

The general dataset was sliced to build separate training and

test datasets with 1/6 ratio.

2) Performances: Among all the architectures we focused

on C2-3 which gives the most interesting results. In Figure 5a,

performances are shown for a variable context, thus mixing

observations with both low and medium visibility. Although

the reference classifier (red dashed line) produces the best

accuracy for the maximum specificity, it remains limited

in decreasing specificity, and thus increasing accuracy. In

practice, even if the user is willing to lose some specificity for

gaining accuracy Classifier 0 would not offer that flexibility.

C2-3 instead enables a gain of 10% (to circa 95%) in accuracy

for a specificity of 80%.

Figures 5b and 5c show that this result is not always true

and depends on the context. When operating conditions with

medium visibility (Fig. 5b), Classifier 0 performs better than

Classifier 1 (trained itself only with images with medium

visibility). This shows that adding data with low visibility to

training data increases slightly the accuracy. When operating

conditions with low visibility (Fig. 5c), Classifier 2 is more

accurate than Classifier 0 while C2-3 allows more accuracy

than Classifier 2 when lowering the specificity.

2www.image-net.org/index.php
3www.pytorch.org

Those results convey that under variable atmospheric con-

ditions, our classification system C2-3 is at least as good as

the reference classifier 0 but allows to make less mistakes at

the expense of some loss in specificity.

V. CONCLUSIONS AND FUTURE WORK

In order to automatically adapt to varying atmospheric con-

ditions while performing automatic target recognition tasks,

we proposed in this paper an hybrid classification system built

from two pre-trained CNNs under specific visibility conditions

combined by a Bayesian reasoning, which enables to con-

textually consider the classifiers’ reliability. Furthermore, we

propose an original imprecise labeling rule enabling classifiers

to output non-specific sets of classes for a greater flexibility in

improving accuracy. The efficiency of the proposed approach

was demonstrated on simulated classifiers’ outputs as well

as on synthetic IR images of ships. The results show that

with medium visibility, a classifier trained on more data gives

better accuracy than one specialized, trained on that specific

context. But with low visibility, a specialized classifier and

our C2-3 method enables more flexibility to increase accuracy

with possible specificity loss. This is an important practical

result, as the hybrid classifier system C2-3 enables to adapt

to possible varying user needs. In future work, we will extend

to other frameworks for uncertainty reasoning, in particular

belief functions, while the C2-3 classifier will be validated in
situ with testing on the French Mediterranean coastline.
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“Learning nondeterministic classifiers,” Journal of Machine Learning
Research, 10, vol. 10, pp. 2273–2293, 2009.

[13] L. Bovens and S. Hartmann, Bayesian Epistemology. Oxford University
Press, 2003.

[14] P. Kowalski and A.-L. Jousselme, “Multi-source contextual reasoning
for vessel behavourial analysis,” Tech CMRE-FR-2020-002, NATO STO
Centre for Maritime Research and Experimentation (CMRE), 2020.

[15] P. Kowalski and A.-L. Jousselme, “Context-awareness for information
correction and reasoning in evidence theory,” International Journal of
Approximate Reasoning, Nov. 2022. In press.

[16] S. T. Westlake, T. N. Volonakis, J. Jackman, D. B. James, and A. Sherriff,
“Deep learning for automatic target recognition with real and synthetic
infrared maritime imagery,” in Artificial Intelligence and Machine Learn-
ing in Defense Applications II, vol. 11543, pp. 41–53, SPIE, Sept. 2020.

[17] I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam
propagation at 785 nm and 1550 nm in fog and haze for optical wireless
communications,” in SPIE Optics East (E. J. Korevaar, ed.), (Boston,
MA), pp. 26–37, Feb. 2001.

[18] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995, 07
2017.

379


