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Abstract—Diabetic Retinopathy is one of the main causes of
vision loss and can be identified through ophthalmological exams
that aim to locate the presence of retinal lesions such as microa-
neurysms, hemorrhages, soft exudates, and hard exudates. The
development of computerized methods to perform the instance
segmentation of lesions may support in the early diagnosis of the
disease. However, the instance segmentation of retinal artifacts
is a complex task due to factors such as the size of objects
and their morphological characteristics. This article proposes a
method based on a Mask R-CNN neural network architecture to
perform instance segmentation of lesions associated with diabetic
retinopathy. The proposed method was trained, adjusted, and
tested using the public DDR and IDRiD Diabetic Retinopathy
datasets, and implemented with the Detectron2 and OpenCV
libraries. The proposed method reached in the DDR dataset,
using the SGD optimizer, the mAP of 0.2660 for the limit
of IoU of 0.5 in the validation step. The results obtained in
the experiments demonstrate that the proposed method showed
promising results in the instance segmentation of fundus lesions.

Index Terms—fundus image, lesions detection, instance seg-
mentation, Mask R-CNN

I. INTRODUCTION

The development of solutions for automated medical image

diagnosis is an expanding scientific research field. Digital

medical images are present in most diagnostic laboratories,

providing easy manipulation through various computerized

systems. The analysis of biomedical images through resources

extracted from public datasets, and the construction of methods

based on deep learning algorithms provide more subsidies for

the decision-making of specialist physicians during diagno-

sis [1]. The implementation of measures that guarantee the

rapid diagnosis of diseases, as well as the implementation of

preventive measures and effective treatment are fundamen-

tal [2]. Diabetic retinopathy (DR) is a disease that affects

the eyes and is caused by diabetes, being one of the main

causes of vision loss in adults of working age [3]. Vision loss

resulting from DR can be prevented when treated early [4].

DR is usually identified through eye exams that aim to identify

retinal lesions, including microaneurysms (MA), hemorrhages

(HE), soft exudates (SE), and hard exudates (EX). However,

early screening of HR using traditional methods is a challenge

due to the scarcity of professionals and resources to meet

the growing demands, especially in poorer regions [5]. A

computerized method can assist in the process of identifying

retinal lesions and aid in the diagnosis and screening of DR.

In addition, only an automatic method is able to accurately

quantify the increase or decrease of the retinopathy lesions

when applied to temporal images of the same patient. In the

literature, solutions based on two-stage detectors have been

presented to assist in the identification of the disease, but there

are still limitations in the results presented by these works,

mainly in the precision associated with the identification of

very small objects in the fundus images.

In this context, the motivation for this article is to present

a new method for instance segmentation of retinal lesions

associated with DR, and thus assist in the identification and

diagnosis of the disease. Instance segmentation is a hybrid

of object detection and image segmentation, where pixels are

not only classified according to the class they belong to, but

individual objects within those classes are also extracted [1],

[6], which is important when it comes to medical imaging.

The detection with instance segmentation of fundus lesions

is still a little explored problem and with limited results. In

this context, the main contribution of this work is to present

a new method based on deep learning to perform instance

segmentation of retinal lesions.

The article is structured as follows: Section II describes

related works. In Section III the materials and methods used

for this work are presented. Section IV will describe the

results and discussions obtained through the proposed method.

Finally, in Section V the final considerations will be described.

II. RELATED WORK

According to the challenges discussed in the previous Sec-

tion, the following methods proposed in the literature that aim
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to instance segmentation of fundus lesions will be reviewed.

Li et al. [7] presented a new diabetic retinopathy dataset called

Dataset for Diabetic Retinopathy (DDR), and evaluated deep

learning models for the classification, detection, and segmen-

tation of retinal lesions. The results presented by authors in

the semantic segmentation of microlesions, as in the case of

microaneurysms, demonstrated the difficulty of the models

used in identifying small objects in the fundus images because

these lesions have only a few pixels.

The work by Dai et al. [8] presented a system to classify

DR and detect fundus lesions. The study had some limitations:

1) was the exclusive use of a private DR dataset to perform

the training of the deep learning models, using the public DR

dataset Kaggle eyePACS only for the validation of the subnet

responsible for the classification of DR; and, 2) the subnet that

detects the lesions was tested only in the private dataset used

by the authors due to the absence of fundus lesion annotations

in the public dataset used in the experiments.

Shenavarmasouleh et al. [9] propose an architecture for

detecting fundus lesions. The proposed work was limited

to performing only the detection of exudates and microa-

neurysms. As future work, the authors intend to create an

architecture capable of performing the instance segmentation

of fundus lesions.

Although deep learning has the potential to solve tasks asso-

ciated with medical imaging, there are still open questions and

limitations in the results presented. To mitigate this limitations,

this work intends to present an method capable of performing

the segmentation of fundus lesions with the support of image

pre-processing techniques and data augmentation together with

a deep neural network implemented based on a Mask R-CNN

pre-trained to improve the accuracy of identification of retinal

lesions associated with DR.

III. MATERIALS AND METHODS

The method was developed based on the Mask R-CNN [10]

architecture, as illustrated in the block diagram shown in

Fig. 1. For the construction of the architecture, we used the

open-source library Detectron2 [1], [11], [12]. To carry out the

experiments, a microcomputer with a Core i7-10700F @16x

2.90 GHz processor, with 16 GB of RAM, and a 12 GB

NVIDIA RTX 3060 VRAM GPU was used.

The Mask R-CNN architecture is a model capable of

detecting and segmenting object instances. This model extends

the Faster R-CNN [10] object detection architecture, adding

a parallel framework to predict object segmentation masks.

Instance segmentation combines object detection tasks, where

the objective is to classify and locate objects individually

using a bounding box and also to locate each pixel of each

detected object in the image. This architecture works in two

stages. The first one consists of using a Region Proposal

Network (RPN) [13], [14] to select the bounding boxes (BBox)

of candidate objects. The second one aims to classify the

candidate boxes, refine the boxes and predict the masks of the

objects (Mask). Models that perform object detection, such

as Faster R-CNN [13], SSD [15] and YOLO [16], draw a

bounding box around detected objects, while Mask R-CNN

provides instances segmentation in pixels for each object

located in the image.

In the case of object detection, there is the possibility of

lesions having their bounding boxes detected overlapping,

making it difficult to visualize these lesions, and consequently

the diagnosis. With instance segmentation, it is possible to

detect the lesions and also to know the locations of the

pixels of each lesion (borders), and consequently, to verify the

exact size and extension of each detected lesion. In addition,

two-stage detectors are often more accurate in locating and

classifying objects than single-stage detectors in detecting

small objects [17], [18], especially when they appear clustered

in the image [19]. In two-stage detectors, there is a stage for

the identification of a subset of regions in an image that may

contain an object, and a second stage is used to perform the

classification of the object in each region.

With the proposed method for instance segmentation, it

was possible to perform a more accurate detection of fundus

lesions, as well as a more efficient way to provide the specialist

with better visualization of the exact extent of each detected

lesion and assist him in the diagnosis of the disease. Below,

we detail each part of the adopted methodology.

A. Dataset and Pre-Processing of Images

Two public datasets with fundus images were used to carry

out the experiments, among which the dataset DDR [7], which

has 757 images, and the dataset IDRiD [20], which has 81

images. Both datasets have Ground Truth for lesions MA,

HE, SE and EX at the pixel level. We use the MS COCO

annotation format, in which object annotations in the form

of bounding boxes and object polygons are stored in a file

in JavaScript Object Notation. The datasets have different

characteristics from each other, such as the quantity and

quality of the images, the annotation method and quantity of

lesion annotations and the availability of Ground Truth. To

perform the process of creating the annotations of the lesions

in the form of polygons, the image files together with the

binary masks of the lesions provided by the DDR dataset were

used to capture the contour of the lesions through the function

find_contours() from OpenCV. After identifying the

contour of the lesions, the annotations were created with the

help of the create_annotation_format() function.

Finally, these annotations are transformed for the standard

COCO JSON using the get_coco_json_format() func-

tion for training of the proposed method. Fig. 2 presents an

example of a fundus image of the DDR dataset in (a), and

the same image with the lesion annotations in the form of

bounding boxes and the generated annotations in polygon

format in (b).

As the works by Santos et al. [21] and Alyoubi et al. [22],

we performed a pre-processing step for partial cropping of the

black background of retinal images. To operate partial removal

of the black background, the Hough Transform (HT) [23]

was used. First, pre-processing was performed through the

application of the median filter technique to smooth the images
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Fig. 1. Block diagram of the proposed method for instance segmentation of lesions fundus. First, the images are passed to the Pre-processing block for partial
elimination of the black background of the images (Cropping) and the creation of sub-blocks of the images (Tilling). Then, the pre-processed images are
transferred to the Data Augmentation block and next for training the proposed method. But, before, a pre-training step is performed with the weights fitted
to the COCO dataset.

(a) (b)

Fig. 2. DDR dataset fundus image (a); and, (b) annotations in the format
of bounding boxes and polygons for training the deep neural network that
composes the proposed method. As in instance segmentation the classification
is performed at the pixel level, each instance of a lesion class was labeled
with a different color.

and eliminate irrelevant details for the detection of the retinal

circumference. Next, was necessary to threshold the images,

followed by the detection of edges using the Sobel filter. After

locating the retina, we transform its circumference into its

equivalent rectangle to partially remove the black background.

The last pre-processing step is to perform Tilling. In fundus

imaging, the detection of microlesions, as in the case of

microaneurysms, remains a challenge. If the lesion area is not

large enough, the signal propagated in the convolutional layers

will be small while the model training is performed, leading

to gradient dissipation. In addition, very small objects are

more susceptible to data labeling errors, where accurate lesion

identification can be impaired. As the work proposed by Santos

et al. [21], the solution we adopted was the implementation

of the Tilling method, in which the original images are cut

into blocks (tiles). We create tiles of size 2 × 2. Each sub-

image generated in this process remained with its respective

lesions and annotations (Ground Truth), with no loss of

information. After the application of Tilling, the resolution of

the lesions present in the sub-images became higher than the

non-partitioned images that had their resolutions reduced to

be used in the input layer of the neural network. To minimize

the risk of information loss from these lesions, we define an

overlap area, in which each block will have an overlap area

of 15% with its neighboring blocks. After the application of

Tilling, we verified an increase in the precision of the proposed

method due to better extraction of characteristics of fundus

lesions.

B. Data Augmentation

The limited amount of labeled lesions available in public

DR datasets restricts the amount of features extracted by the

deep neural network during the training stage. In addition,

microlesions often have gradient dissipation problems. Due to

these problems, on-the-fly data augmentation was performed,

in which the data loader applied the augmentation methods

Resize Shortest Edge and Random Flip of the Detectron2 in the

images of the public DR dataset used for training the model.

Resize Shortest Edge resizes the image while keeping the

aspect ratio unchanged, trying to scale the shortest edge to the

given short_edge_length (640, 672, 704, 736, 768, 800),

as long as that the longest border does not exceed the defined

max_size (1333). After performing the data augmentation,

we trained the proposed method to perform the detection and

segmentation of fundus lesions. Details about the architecture

of the deep neural network are presented below.

C. Deep Neural Network Architecture

The proposed method performs the detection and segmen-

tation at the pixel level of lesions present in fundus images.
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First, the proposed region of the images is verified and

classified. Then, bounding boxes and segmentation masks for

the identified lesions are generated. The process of creating

the mask of each lesion is performed using an additional

convolutional neural network over a feature map, in which

a matrix is generated and filled with 1 in all places where the

pixel belongs to the lesion, and 0 as output in other locations.

The architecture of the neural network that composes

the proposed method is basically constituted by three main

modules, being a Backbone, a Region Proposal Network
(RPN), and a Box Head (ROI Head). Backbone is a con-

ventional convolutional neural network, and its purpose is to

extract the characteristics of lesions in the fundus images.

In Detectron2 the resolution of the input image does not

need to be the same size as the input of the pre-trained

model. Therefore, a priori it is possible to use any image

resolution for Backbone input. However, due to limitations

associated with the hardware equipment used to perform

the experiments, we chose to use the standard Detectron2

resolution, which resizes the input images according to the

parameters INPUT.MIN_SIZE_TRAIN equal to 800 pixels,

and INPUT.MAX_SIZE_TRAIN equals 1333 pixels. As the

images in the DDR dataset are wider than the maximum

size defined above, Detectron2 resizes the fundus images to

the width of 1333 pixels, adjusting the image height size

proportionally to the width and according to the minimum

defined size of 800 pixels. It is important to note that the

images of the DDR set have variable sizes (height and width).

The Backbone of the architecture is composed of a

residual network with convolutional layers clustered called

ResNeXt [24]. In our experiments, the ResNeXt-101-32×8d-

FPN architecture obtained the best precision in lesion de-

tection and segmentation. ResNeXt consists of a structure

that contains multiple bottleneck blocks. The ResNeXt-101-

32 × 8d-FPN architecture is composed of 101 layers and

cardinality (grouping) of convolutions of 32 groups and group

width of 8 dimensions ( 88 million parameters). We adopted

ResNeXt-101-32 × 8d because this architecture implements

cardinality, which allowed us to improve the accuracy of lesion

classification without, however, increasing the computational

complexity of the architecture with the addition of parameters.

The Backbone structure is followed by a Feature Pyramid
Network (FPN) [25]. The FPN is used with the Neck of the

architecture, being an extension of the deep neural network

used in the Backbone, whose objective is to extract features

and better represent the lesions at different scales. The FPN

has five scales with outputs named P2, P3, P4, P5 and P6,

respectively, with channel size C = to 256 for all scales,

and stride size S =(4, 8, 16, 32, 64), respectively. Therefore,

if only an input image of size 1333 × 1333 pixels is used in

the input of Backbone, the sizes of the output feature maps

of layers P2, P3, P4, P5 and P6 will be 334 × 334 × 256,

166×166×256, 84×84×256, 40×40×256 and 20×20×256,

respectively. Thus, layers P2 and P3 are used for detecting

small objects, while layers P5 and P6 are responsible for

detecting larger objects. FPN extracts feature maps at various

scales with different receptive fields.

Next, the architecture has an RPN module, whose task

is to inspect the entire FPN of the Backbone from top to

bottom, to propose regions that may contain lesions in the

fundus images. In Detectron2 all computation performed by

the RPN is performed on the GPU. The RPN module uses

anchors which are a set of boxes with predefined locations,

where the anchors are sized according to the input images.

Individual anchors are assigned to classes and bounding boxes.

The RPN generates two outputs for each anchor: the anchor

class and the bounding box specification. It should be noted

that the RPN detects regions based on multi-scale features. By

default, approximately 1, 000 cash proposals are obtained with

confidence scores.

The last module of the architecture is the Box Head,

responsible for cutting and interpolating the feature maps

of the region proposals generated in the RPN. Only the

characteristics of FPN layers P2, P3, P4, and P5 are used

in Box Head. In addition, Box Head obtains the location

of fitted boxes and sorting results through fully connected

layers. This module has an ROI Pooling. According to [10],

the selected feature map regions are misaligned with the

proposed regions of the original image. As image segmentation

requires specificity at the pixel level, this problem can cause

inaccuracies during segmentation. To solve this problem a

function from the Detectron2 ROIAlignV2 is used [10] so

that the feature map is sampled at different points and then a

bilinear interpolation is applied to obtain the precise position

of the pixel.
After ROI Pooling, the cut features are used in the Head ar-

chitecture. In the case of Mask R-CNN, there are two types of

heads: Box Head and Mask Head. The calculation of the loss

function of the outputs during training is performed using two

functions: 1) localization loss (loss_box_reg), obtained

through the function Smooth L1 loss; and, 2) classification
loss (loss_cls), obtained through the cross entropy loss

function Softmax [11]. The results of these losses are added

to the losses calculated in the RPN (loss_rpn_cls and

loss_rpn_cls), and added to the total loss [11]. To make

the inferences of fundus lesions a post-processing step is

performed to filter the low-scoring bounding boxes. For this,

the technique of non-max suppression (NMS) is applied to

eliminate ROIs that are below a pre-defined score threshold.

D. Pre-training

We use transfer learning to pre-train the neural network

architecture. The pre-trained weights were imported into the

COCO [26] dataset to initialize the weights of the neural

network architecture used in the proposed method. We mod-

ified the output of the proposed model to suit the instance

segmentation of retinal lesions associated with DR, preserving

the weights of the upper layers. The training involve four main

steps namely: 1) The initial layers of the architecture are pre-

trained with the weights of the COCO dataset; 2) The last

layers are cut and replaced with new layers; 3) The new layers

added are adjusted in the DR dataset; and 4) After fine-tuning
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the final layers of the architecture, the entire neural network

is retrained, so that small adjustments are made to the weights

of the entire architecture.

E. Model Training and Adjustment

To carry out the training of the proposed method, images

from the public datasets DDR and IDRiD were used. To carry

out the experiments, we used the method of dividing the data

sets into Training, Validation, and Testing in a proportion

of 50:20:30, respectively. The fine-tuning of the proposed

method aimed to optimize the hyperparameters to achieve

more accurate results in the segmentation of instances of

fundus lesions. The best fit of hyperparameters is shown in

Table I.

TABLE I
ADJUSTED HYPERPARAMETERS OF THE PROPOSED METHOD IN THE

VALIDATION STEP USING THE DDR DATASET.

Hyperparameter Value
Number of Workers 4
Images per Batch 2
Anchor Sizes (8, 16, 32, 64, 128)
Anchor Aspect Ratios (0.5, 1.0, 2.0)
RPN Batch Size per Image 512
RPN Positive Fraction 0.5
ROI Heads Batch Size per Image 1,024
NMS Testing Threshold 0.25
Max Iterations 5,0000
Learning Rate 0.001
Momentum 0.937
Weight Decay 0.0005
Test Detections per Image 256
Optimizer SGD

IV. RESULTS AND DISCUSSIONS

The proposed method has a Mask R-CNN architecture

with a Backbone ResNeXt-101-32 × 8d-FPN built using the

open source library Detectron2 and pre-trained on the COCO

dataset. To carry out the experiments, we used the method

of dividing the dataset into training, validation, and testing

in a proportion of 50:20:30, respectively. To perform the

training and adjustment of the proposed method, the DDR

dataset was used. The IDRiD dataset was also used to assess

the generalizability of the proposed method. The evaluation

was performed both in the detection (BBox) and in the

segmentation (Mask) of fundus lesions being adopted the IoU
according to Equation 1:

IoU =
Overlap Area

Union Area
(1)

We compare the proposed method with different models that

use state-of-the-art dense neural networks. The following mod-

els were used in the experiments: 1) Mask R-CNN ResNet-

50 C4 [10], which uses a Backbone ResNet conv4 with a

conv5 head [13]; 2) Mask R-CNN ResNet-50 C5-dilated [10],

which uses Backbone ResNet conv5, with dilations in conv5

and standard heads Conv (convolutional layer) and FC (fully

Connected Layer) for mask and bounding box prediction, re-

spectively [27]; 3) Mask R-CNN ResNet-50 FPN [10], which

uses a Backbone ResNet×FPN with standard Conv and FC

heads for mask prediction and bounding box, respectively; 4)

Mask R-CNN ResNet-101 C4 [10]; 5) Mask R-CNN ResNet-

101 C5-dilated [10]; 6) Mask R-CNN ResNet-101 FPN [10];

and 6) Mask R-CNN ResNeXt-101-32×8d-FPN, as shown in

Tables II and III. Table II presents the results obtained with the

metric mAP for the limit of IoU of 0.5 with SGD optimizer.

The proposed method using the Backbone ResNeXt-101-FPN

achieved the best precision in the detection and segmentation

tasks in the experiments performed in the validation set of

the DDR dataset, as indicated in bold font, with a mAP of

0.2660.

TABLE II
RESULTS OBTAINED IN THE DETECTION AND SEGMENTATION TASKS OF

FUNDUS LESIONS WITH THE METRIC mAP FOR THE LIMIT OF IoU OF 0.5
IN THE VALIDATION SET OF THE DDR DATASET WITH SGD OPTIMIZER.

Models Backbone mAP
BBox Mask R-CNN ResNet-50 C4 0.1325

Mask R-CNN ResNet-50 C5-dilated 0.1368
Mask R-CNN ResNet-50 FPN 0.1737
Mask R-CNN ResNet-101 C4 0.1746
Mask R-CNN ResNet-101 C5-dilated 0.1678
Mask R-CNN ResNet-101 FPN 0.1909
Mask R-CNN ResNeXt-101 FPN 32x8d 0.2124
Proposed method ResNeXt-101 FPN 32x8d 0.2660

Mask Mask R-CNN ResNet-50 C4 0.1617
Mask R-CNN ResNet-50 C5-dilated 0.1328
Mask R-CNN ResNet-50 FPN 0.1795
Mask R-CNN ResNet-101 C4 0.1624
Mask R-CNN ResNet-101 C5-dilated 0.1603
Mask R-CNN ResNet-101 FPN 0.1848
Mask R-CNN ResNeXt-101 FPN 32x8d 0.2205
Proposed method ResNeXt-101 FPN 32x8d 0.2600

We also evaluated and compared the results obtained by

the proposed method on the IDRiD dataset, as presented in

Table III. The proposed method using the Backbone ResNeXt-

101-FPN obtained the best precision in the detection and

segmentation tasks in the experiments carried out in the

validation set of the IDRiD dataset using the SGD optimizer,

as indicated in bold font, with mAP of 0.3460.

Fig. 3 presents the loss and Average Precision graphs

obtained during the training and validation of the proposed

method with SGD optimizer. In Fig. 3(d) are presented the

results obtained with the detection of Bounding Boxes (BBox)

of fundus lesions for the limit of IoU 0.50:0.95 in the vali-

dation using the DDR dataset. It is possible to verify that the

proposed method reached greater precision in detecting Hard

Exudates and less precision in detecting Microaneurysms.

To evaluate the accuracy of the proposed method we also

calculated the AP and mAP with 10 IoU thresholds of IoU
of 0.50:0.95 in the validation step of the DDR dataset for each

lesion, as shown in Table IV. This metric rewards the detectors

with the best location. The values of AP@[0.5:0.95] in the

detection of retinal lesions were 0.0999, 0.1838, 0.0380, and
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(a) (b)

(c) (d)

Total loss curve in the training using DDR dataset with SGD optimizer

Iterations Iterations

AP of BBox for IoU of 0.5 in the validation set of the DDR dataset with 
SGD optimizer

Iterations

AP of Mask for IoU of 0.5 in the validation set of the DDR dataset with 
SGD optimizer

AP of BBox for IoU of 0.50:0.95 in the validation set of the DDR 
dataset with SGD optimizer

Hard Exudates Soft Exudates MicroaneurysmsHemorrhages

Fig. 3. Loss and Average Precision graphs obtained during training and
validation of the proposed method. (a) Total loss curve in the training using
DDR dataset with SGD optimizer. (b) AP of BBox for the limit of IoU of 0.5
in the validation set of the DDR dataset with SGD optimizer. (c) AP of Mask
for the limit of IoU of 0.5 in the validation set of the DDR dataset with SGD
optimizer. (d) AP of BBox for the limit of IoU of 0.50:0.95 in the validation
set of the DDR dataset with SGD optimizer.

TABLE III
RESULTS OBTAINED IN THE DETECTION AND SEGMENTATION TASKS OF

FUNDUS LESIONS WITH THE METRIC mAP FOR THE LIMIT OF IoU OF 0.5
IN THE VALIDATION SET OF THE IDRID DATASET WITH SGD OPTIMIZER.

Models Backbone mAP
BBox Mask R-CNN ResNet-50 C4 0.2254

Mask R-CNN ResNet-50 C5-dilated 0.1789
Mask R-CNN ResNet-50 FPN 0.2050
Mask R-CNN ResNet-101 C4 0.2120
Mask R-CNN ResNet-101 C5-dilated 0.2065
Mask R-CNN ResNet-101 FPN 0.1656
Mask R-CNN ResNeXt-101 FPN 32x8d 0.2188
Proposed method ResNeXt-101 FPN 32x8d 0.3460

Mask Mask R-CNN ResNet-50 C4 0.1921
Mask R-CNN ResNet-50 C5-dilated 0.1645
Mask R-CNN ResNet-50 FPN 0.2138
Mask R-CNN ResNet-101 C4 0.2161
Mask R-CNN ResNet-101 C5-dilated 0.1841
Mask R-CNN ResNet-101 FPN 0.1789
Mask R-CNN ResNeXt-101 FPN 32x8d 0.2050
Proposed method ResNeXt-101 FPN 32x8d 0.3210

0.1183, for EX, SE, MA and HE, respectively, as shown in

Table IV. To better understand the results obtained, we present

in Fig. 4 an example of instance segmentation performed by

the proposed method on a fundus image of the DDR dataset.

We used a NMS Testing Threshold value of 0.25. It

is possible to verify that the locations pixel to pixel of the

detected lesions were obtained, as well as the bounding boxes

of each lesion. This type of approach can more effectively

support the medical diagnosis, since it is possible to visualize

with greater clarity the extension and size of the lesion, as

opposed to just detecting and tracing a bounding box around

the lesion in the image.

TABLE IV
RESULTS OBTAINED WITH DETECTION (BBOX) AND SEGMENTATION

(MASK) BY THE PROPOSED METHOD WITH AP AND mAP WITH 10 IoU
THRESHOLDS OF 0.50:0.95 IN THE VALIDATION SET OF THE DDR

DATASET.

Model AP mAP
EX SE MA HE

Proposed method BBox 0.0999 0.1838 0.0380 0.1183 0.1100
Mask 0.0994 0.1893 0.0412 0.1072 0.1093

Fig. 4. Instance segmentation of fundus lesions performed by the proposed
method in the fundus image “007-3892-200.jpg” of the test set of the DDR
dataset. The classification of the lesions identified in the image was performed
at the pixel level, with the lesion label and the percentage of confidence
associated with the detected object being assigned. Each instance segmentation
has a different color regardless of the lesion class.

It is verified that the proposed method that the proposed

method obtained promising results in the instance segmenta-

tion of the investigated fundus lesions, even with the presence

of multiple lesions with variable sizes and shapes. Because the

Mask R-CNN model has an RPN module, it is possible to ex-

tract ROIs from the image that is more likely to contain fundus

lesions. Experimental results showed that the proposed method

presents greater precision in the detection of soft exudates

and less precision in the detection of Microaneurysms. The

difficulty in detecting microaneurysms is due to the small size

of this type of lesion. During model training, there is a more

accentuated gradient dissipation in the extraction of features

from very small objects, which ends up causing a deficient

precision of these objects due to the neural network confusing

the microlesion with the image background, generating in turn

high rates of false negatives, for example.

V. CONCLUSIONS

This article presented a two-stage detector-based method for

instance segmentation of DR-associated lesions. The neural

network architecture was built based on the Mask R-CNN

model using the open-source library Detectron2. For training

and evaluation of the proposed method, public datasets of
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DDR and IDRiD diabetic retinopathy were used. The datasets

were divided into training, validation, and test sets in a ratio

of 50:20:30, respectively. With the IoU threshold of 0.5,

the lesion instance targeting reached mAP of 0.2660 in the

validation step and mAP of 0.1600 in the test step.

The proposed method obtained AP@[0.5:0.95] of 0.0999
for Hard Exudates; 0.1838 for Soft Exudates; 0.0380 for

Microaneurysms; and 0.1183 for Hemorrhages. The results

obtained were promising, demonstrating that the instance

segmentation of fundus lesions performed through deep neural

networks can help in medical diagnosis. However, the results

presented in this work indicate that the segmentation of fundus

lesions is extremely difficult and represents a challenge for

future research.

In future work, we intend to develop solutions that combine

different contexts, such as the classification, detection, and

segmentation of lesions associated with DR to obtain more

accurate results. We also aim to improve the pre-processing

and data augmentation methods of retinal images, to provide

a more efficient feature extraction from microlesions.
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