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Abstract—Sprinkler is a key component for farms and gardens.
However, conventional sprinkler systems have limitations:
underwatering and overwatering under evolving weather, not
considering plant conditions, and burden of manual scheduling. We
developed Autonomous Sprinkler System to remedy the limitations.
We acquire environmental contexts with IoT sensors, cameras, and
actuators, and apply MAPE-K for autonomic control. We
implemented the Knowledge with a SVM classifier for inferring the
situations and a Fast R-CNN model for determining plant condition.
Our experiments show the system yields a considerable savings of
water consumption and promotes the plant health, all without
human users’ interventions.
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1. INTRODUCTION

Smart farm or garden is a systems approach to fostering
healthiness of plants and soil with an infrastructure to leverage
advanced technology: IoT sensors, actuator devices, sensor
fusion, data analytics, and actuation [1]. They together provide
the capability of tracking, monitoring, analyzing, and
automating farming or gardening operations [2].

A key component of smart farm/garden is Sprinkler, which
is a hardware device used to spray water on plants or grass. A
sprinkler system is an integrated set of devices and a software
controller to provide a cost-efficient watering capability as
shown in Fig. 1.
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Fig. 1. Elements of Sprinkler System

Meanwhile, autonomic computing is the system capability
that can manage itself without the intervention of human users
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through adaptive technologies. It is characterized by self-*
capability as specified in MAPE-K model, consisting of four
phases [3].

Monitor phase is to acquire environmental contexts using
sensors and IoT devices. 4Analyze phase is to determine the
environmental situation using acquired contexts. Plan phase is
to devise an effective remedy action plan for the determined
situation. Execution phase is to self-execute the devised action
plan, and then the environment would be changed. The core of
MAPE-K is the Knowledge that is used to govern the four
operations.

The goal of our research is to devise a software framework
that can autonomously manage Sprinkler operations for
maintaining healthier plants and soil, by using MAPE-K model
as shown in Fig. 2.
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Fig. 2. Underlying Paradigms applied to Autonomous Sprinkler System

For the design of the framework, we applied object-oriented
modeling, design patterns, architecture styles, machine learning
classification and deep learning models, and closed-loop design
for self-* controllability.

The key benefits of autonomous sprinkler system are (1)
healthier plants and soil, (2) reduced water consumption by
Sprinklers, (3) free of human users’ intervention.

In this paper, we present the design and implementation of
the Autonomous Sprinkler framework using machine learning
algorithms. And we present a series of experiments on a single-
family house in California for 12 months. We believe that the
presented framework provides a foundation for building various
types of smart farm and garden control systems.

II. RELATED WORKS

Most of works on MAPE-K are to present applications of the
autonomous model in some industry domain. A component-
based design approach was proposed by [4].

A number of works have been published on the vision of
smart farm and garden. Many of them address the motivation,
key elements, and features of smart farm including [5][6].
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Mubhtasim et al presents a realtime garden control system with
security features and handles the control of watering [7].

Seo et al presents a greenhouse control system using MAPE-
K model [8]. A number of works presents applications of
MAPE-K in some domain, and Feng et al presents autonomous
control on digital twin [9].

Our work is distinct from the related works on the scope and
the approach. Our work is focused on production-level design of
autonomous sprinkler system. Also, we apply two machine
learning models to realize the knowledge of MAPE-K.

III. AUTONOMOUS SPRINGKER SYSTEMS

A. Conventional Sprinkler System

A conventional sprinkler system is used to control the flow
of water from the meter to the sprinklers at end points. The
supply of water is programmed and controlled by a ‘Controller’
device. The water is distributed through a network that may
consist of pumps, valves, pipes, and sprinklers. Irrigation
sprinklers can be used for residential, industrial, or agricultural
usage. A water value then is used to open or close the water flow
to sprinklers. Different types of sprinklers are used for different
watering purposes as shown in Fig. 3

Fig. 3. Different Types of Sprinklers

There are limitations of conventional sprinkler systems in its
effectiveness of watering.

e Problems with Underwatering and Overwatering
The watering schedule set on a controller will
automatically shut off and on water values as scheduled
regardless of actual weather. Hence, it may lead to
underwatering on extremely hot day and overwatering on
expectedly low weather.

e Problems with not Reflecting Plant Conditions

Different types of plants require different levels and
frequencies of watering. However, the conventional
current sprinkler system does not aware of plant-specific
watering requirement and does not reflect the health
conditions of plants. A a single uniform watering schedule
is applied to all plants in a watering zone. It results in
uneven growths or unhealthy conditions of plants.

e Burden of setting Watering Schedule for occasions
To reflect the weather condition and forecast, the user has
to set the watering schedule accordingly. Also, the user
needs to reset the schedule for the current conditions of
plants.

B. Autonomous Sprinkler System

Autonomous Sprinkler System can effectively handle the
limitations of conventional Sprinkler systems. It acquires
environmental condition of farms/garden using sensors and
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cameras, determine the optimal watering schedule, and apply the
watering using loT actuating devices. In addition, it determines
the optimal level of watering for target plants and soils. It
optimizes the watering schedule by considering the weather
condition and forecasts.

More specifically, the system manages watering in an closed
loop with MAPE-K model.

e Step 1. Monitoring the Environmental Conditions

e Step 2. Analyzing the Contexts to Determine Situations
e Step 3. Planning Watering Actions

e Step 4. Executing the Plan

The system evaluates the result of executing the plans and
updates its knowledgebase accordingly. Due to the autonomous
control, Autonomous Sprinkler System brings the following
benefits.

e Healthier Plants and Soil
The system optimizes the watering schedule by
considering the weather and plant conditions. It eliminates
the issues of underwatering and overwatering. As the result,
the plants can stay healthy and higher harvest productivity
is achieved.

¢ Reduced Consumption of Water
By avoiding the overwatering and optimal watering
schedule for the environmental condition, there will no
excessive consumption of water.

¢ Free of Burden to set Watering Schedule
Due to the autonomic control loop for managing the whole
process of watering, users no longer set the watering
schedule manually.

C. Functional Requirements

The functionality of the system is classified into the
functional categories including the followings.

Hardware Device Registration: This functionality is to
register hardware devices including sprinkler controller, water
valves, sprinkler heads, sensors, cameras, and IoT type
actuators.

Registration of Layout and Managed Objects: This
functionality is to specify the layout of a target farm/ garden.
The layout information is utilized by the system in locating the
locations of watering zones, sprinkler heads, sensors, cameras,
and actuators. The plants to be managed are also registered. With
the information about type of plant, name of plant, location, and
characteristics.

Monitoring of the Environment:. This functionality is to
acquire contexts of the environment using sensors and cameras.
The acquisition of contexts enables the detailed monitoring of
the plants.

Analyzing the Situation through Contexts: This functionality
is to analyze the acquired contexts and determine the situation
of each managed object such as plants. The analytics on the
contexts can be performed in various ways, but advanced



analytic methods should be utilized to yield a high accuracy of
context analysis.

Planning the Watering Schedule: This functionality is to
devise a plan, i.e., watering schedule, that is the most appropriate
for the determined situation. An actuation plan consists of one
or more actions, and each action can be a watering action or a
sprinkler calibration action.

Executing the Watering Schedule: This functionality is to
execute the generated plan, i.e., performing watering according
to the generated schedule. As the result, plants and soils are
provided with an appropriate level of water.

Updating the Knowledge: This functionality is to manage the
knowledgebase of the autonomous sprinkler system. An initial
knowledge is defined with machine learning models.

IV. DESIGN OF THE FRAMEWORK

A. Skeleton Architecture

The target system can be well modeled with Client-Server
architecture style as shown in Fig. 4.
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Fig. 4. Client-Server Architecture for Target System

A.S. Controller, i.e., Autonomous Sprinkler Controller, is to
replace the conventional sprinkler controller. It provides
autonomous control capability, and it communicates with the
server for storing the acquired contexts and downloading the up-
to-date knowledge used in ASC.

A.S. Server is the back-end server which is to store the data
repository of the collected contexts and the applied schedules
and to perform advanced analytics on the system operations.
Based on the analytics results, the staffs on the server side may
develop and deploy an enhanced version of 4SC elements such
as the key knowledgebase.

We applied four architecture styles in devising the
architecture of the framework: Client-Server style, Layered
style, MVC, and Event-based architecture styles. The resulting
skeleton architecture is shown in Fig. 5.
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Fig. 5. Skeleton Architecture of the Framework

To make the system adaptable to various types of hardware,
we define three abstraction layers: Sensor, Camera, and
Actuator abstraction layers.

B. Functional Components

We model the system functionality in a use case diagram,
and define several software agent actors that run in background
as daemon process. This is to enable the autonomic control of
the system. Context Agent is to acquire environmental contexts
using sensors and cameras, Situation Agent is to determine the
situations of the plants and soil, Plan Agent is to generate a
watering plan, and Execution Agent is to run the watering
according to the schedule.

We derived the functional components from the use case
diagram. We cluster each set of relevant use cases into a
functional component for high cohesion. The functional
components for the controller tier are shown in Fig. 6
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Fig. 6. Functional Components for Autonomous Sprinkler Controller (ASC)

The top two layers host the functional components, and we
classify the components into ‘Invocation-driven component’
and ‘Event-driven component. The four components in the
“Event-driven Control Layer” run upon arrivals of events. A
common characteristic of the 4 components is the functionality
should be invoked only when an appropriate event is emitted by
some other thread and arrives.



We define three abstraction layers to provide high
interoperability with heterogeneous sensors, cameras, and
actuators.

C. Control Flow for the Controller

The behavior view design depicts the runtime control flow
of the whole system, and activity diagram can serve the purpose.
The control flow for the controller (ASC) tier is shown in Fig. 7.

As shown in the figure, the control flow consists of 6 parallel
threads. Only the first thread is to run the functionality with
explicit invocation by users. The next 4 threads are to run each
of M, A, P, and E operations of autonomous computing. The last
thread is to update the knowledge from the server.

The control flow in activity diagram is shown in two parts:
the leftmost 3 threads and the rightmost 3 threads as in the
figure.
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Fig. 7. Overall Control Flow of Autonomous Sprinkler Controller (ASC)

Note that all 4 threads run autonomously without users’
intervention: two threads run with a timer and the other two
threads run in event-driven invocation. This behavior is
consistent with the MAPE-K model as in Fig. 8.
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Fig. 8. Four Operations of MAPE-K Reference Model
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D. Detailed Design for Inferring the Situation

The functionality of ‘Inferring the Situation’ is a key to
enabling the autonomic control. Examples of situation can be
‘Plant x: Healthy’, ‘Plant y: Excessively Dried’, ‘Soil on zone
A: too wet’, and ‘Zone B: high heat and high moisture’.

The situation is inferred by analyzing sensor measurements,
captured images of plants, and weather forecast. We apply SVM
classification algorithm for the inference [10]. Hence, we first
define a set of valid classes for each type of managed object.

For the situation of plants, the valid classes are (Super
Healthy, Healthy, Mediocre, Unhealthy, Dead). The soil



situation is defined as a pair of (Template Level, Moisture
Level) where each element can be one of the 5 classes,
(Extremely High, High, Moderate, Low, Extremely Low).

For classification algorithms, we define the feature set on
which the training is performed. The features for classifying
plant situations are Weather Forecast, Air Temperature, Soil
Temperature, Air Moisture level, Soil Moisture level, and plant
condition which is inferred from captured camera images.

Using the classifiers, we devise the main algorithm for
situation inference as shown in List 1.

List 1. Main Algorithm for Interring Situations

Algorithm. Inferring Situations with Classifiers

Input: weatherForecast, airTemperature, airMoisturelyv, soilTemperature,
soilMoisturely, img

Output: airSituation, soilSitaution, plantSituation

inferSituations(..) :(...)
// Load Classification Models
airSituationClassifier := // To load trained Air Situation Classifier
soilSituationClassifier := // To load trained Soil Situation Classifier
plantSituationClassifier := // To load trained Plant Situation Classifier

// Preprocessing Data
weatherCat := categorizeWeatherForecast(weatherForecast);
// Categorize input weather Forecast
imgScaled := img/255; // Scale input image data
// scale numerical features
weatherCatScale := (maxWthCat - weatherCat) / (maxWthCat -
minWthCat);
airTempScale := (maxAirTemp-airTemperautre)/(maxAirTemp-
minAirTemp);
airMoilvScale:= (maxAirMoilv-airMoisturelv)/(maxAirMoilv-
minAirMoilv);
soilTempScale:=(maxsoilTemp-soilTemperautre)/(maxsoilTemp-
minsoilTemp);
soilMoilvScale:=(maxSoilMoilv-soilMoistureLv)/(maxSoilMoiLv-
minSoilMoilv);

dataAirSituation := [weatherCatScale, airTempScale, airMoilLvScale];

dataSoilSituation := [weatherCatScale, soilTempScale, soilMoilvScale];

dataPlantSituation := [weatherCatScale, airTempScale, airMoilLvScale,
soilTempScale, soilMoilvScale, img];

// To predict the Air Situation

airSituation := airSituationClassifier.predict(dataAirSituation);

// To predict template level and moisture level for Soil Situation
soilSituation := soilSituationClassifier.predict(dataSoilSituation);

// To predict template level and moisture level for Plant Situation
plantSituation := plantSituationClassifier.predict(dataPlantSituation);

return airSituation, soilSituation, plantSituation;

E. Training SVM & CNN Multioutput Classifers for Plant
Condition
Support Vector Machine (SVM) algorithm can be used to
read an input observation and to generate multiple output values.
In our design, it generates two types of output values.

The plant condition, i.e., the healthiness of plants can be
inferred by Convolutional Neural Network (CNN) model. We
trained a Fast R-CNN classifier with a configuration of
convolution layers, max pooling layers, and ResNet blocks. The

configurations of the model layers and relevant hyperparameters
are specified in Table I.

TABLE L. CNN LAYERS AND HYPERPARAMETERS

D Layer Input Size Output Size Ke.mel ” N Stride Activa?ion
Size | Filters Function

1 Input 512%512*3 512%512%3

2 Convolutional 512%512*3 510%510*3 (3,3) 3 1 RelLU

3 Max Pooling 510%510*3 255%255*3 (2,2)

4 Convolutional 255%255%3 127*%127% | (3,3) 6 2 RelLU

5 Max Pooling 127*127%6 63*63%6 (2,2)

6 Convolutional 63*63*6 21%21%9 (3,3) El 3 RelU

7 Max Pooling 21*21%9 10*10%*9 (2,2)

8 Flatten 10*10%*9 S00

9 Fully Connected 900 100 RelU

10 | Fully Connected 100 25 RelU

11 Fully Connected 25 5 Sigmoid

V. IMPLEMENTATION AND EXPERIMENTS

A. PoC Implementation

We implemented a Proof-of-Concept system in Python using
libraries of TensorFlow for Fast F-CNN model, and Scikit-learn
for SVM model. All the design of architecture, functional
components, and their behavior design have been implemented
by maintaining the high consistency with the design.

B. Experiment Site and Layout

The experiment environment was on a single-story
conventional house in Eastvale, California. The house has a yard
size of 8,276 square feet, and gardens are on all four sides of the
house: front yard, back yard, right side yard, and left side yard.
Accordingly, there are 4 watering zones as shown in Fig. 9

R

Fig. 9. Backyard Watering Zone of the House under Experiments

C. Hardware Configuration

We have installed a number of hardware devices for our
experiments:  water-proof  cameras, thermometers for
atmosphere and soil, Hygrometers for the humidity of
atmosphere and Soil. We also acquired cameras and sensors
with WIFI connectivity as shown in Fig. 10.
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Fig. 10. Cameras and Sensors with WIFI connectivity

All these devices provide device drivers for remote
controllability. We also installed watering actuators with WIFI-
connectivity: IoT Water Values and IoT Sprinklers. The
hardware configuration is shown in Table II.

TABLE IL NUMBERS OF HARDWARE DEVICES INSTALLED
Zone Plants Sensors Cameras Values Sprinklers
FrontY. 16 8 4 2 12
Back Y. 41 13 7 3 38
LeftS.Y. 7 3 2 1 8
Right S.Y 5 3 2 1 8

D. Experiment Scenarios and Results

The experiment has been conducted for 12 months period
from October 2021 to September 2022. The results of a year-
long experiments then were compared to those of the previous
year, October 2020 to September 2021. We conducted an
extensive set of experiments but presents some results of the
experiments.

Throughout a year-long experiments, we acquired an
average performance of was 93.5% for the SVM classifiers, and
an average Intersection of Union (IoU) performance of 86% for
the Fast R-CNN model.

Now, we define a metric for computing a compound plant
health as the following.

Plant Quality = Y,[—(Criterion.i * Weight.i) /n
for ‘n” comparison criteria and the sum of all weights is 1.

Then, the value range of the plant quality is 0..1.

The number of underwatering and overwatering occurrences
during the experiment period is shown in Fig. 11.

0 11 4
# of Overwatering

W # of Overwatering  ®# of Underwatering

Fig. 11. Frequency of Overwatering and Underwatering

It is about 75% reduction of the occurrences compared to the
previous year. The occurrence rate for the summer season is
shown to be higher than others, due to the extreme heats in the
region of the experiment house.
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VI. CONCLUDING REMAKRS

Sprinkler is a key element for farms and gardens. However,
conventional sprinkler systems have limitations: underwatering
and overwatering under evolving weather, not considering plant
conditions, and burden of manual scheduling.

We designed and implemented Autonomous Sprinkler
System to remedy the limitations of conventional sprinkler
systems. We collect a rich set of environmental contexts using
IoT sensors, cameras, and actuators. Then, we apply MAPE-K
for autonomic control.

We implemented the Knowledge with a SVM classifier for
inferring the situations and a Fast R-CNN for determining plant
condition. Our experiments show the system yields a
considerable savings of water consumption and promotes the
plant health, all without human users’ interventions. The system
has been effective in removing 75% of the occurrences of
overwatering and underwatering in the previous year.

Our future work is to provide the fault tolerance for various
malfunctions and failures of connected sensors and IoT devices.
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