
Effects of Selection Bias on Online Adversarial
Aware SVM When Facing an Evasion Attack

Victor Barboza Morais
Program of Computer Science

Louisiana Tech University
Ruston, LA, USA

victorbarbozamo@gmail.com

Pradeep Chowriappa
Program of Computer Science

Louisiana Tech University
Ruston, LA, USA

pradeep@latech.edu

Abstract—In evasion attacks, the success of machine learning
(ML) depends on its ability to detect an attack in an adversarial
setting. It is important that these ML models are trained regularly
to keep abreast with evolving evasion attacks. We present an
investigation of the effects of selection bias and class imbalance
in training an Adversary-Aware Online SVM (AAOSVM). We
show that incorrect samples can compromise the model’s ability
to detect attacks. Comparison results showed better True Posi-
tive Rates (TPR) performance than the Online Support Vector
Machine (OSVM), and that AAOSVM was sensitive to selection
bias but not to class imbalance.

Index Terms—Adversary-Aware, Machine Learning, Support
Vector Machine, Bias, Phishing

I. INTRODUCTION

A successful phishing attack leads to significant losses as

the leak of sensitive information can have long-term ramifi-

cations [1]. Due to this, machine learning (ML) models and

frameworks have been used to varied degrees of success [2],

[3]. Many related works use ML algorithms in conjunction

with data filtering techniques to create adaptive ML algorithms

that boost algorithm performance [4]. However, there is limited

research in this space to determine the effectiveness, evalua-

tion, and impact of selection bias when considering the use

of ML for defense against phishing attacks. Adversary-Aware

Machine Learning (AAML) models take into consideration

an attacker (simulated or not) when doing the training. The

attacker’s objective is to make the classifier performance

decrease, either in general or for some specific samples. This

is one of the countermeasures taken against the attacker.

As is evident in areas of privacy, security, and ethics [2], the

hindrance to the research is the lack of validated real-world

data. This is especially problematic in the academic setting

because there are not many datasets publicly available. Even

when you create your own dataset, it is impossible to capture

the dynamic changes in the data. We would benefit from data

that was collected from a real-world phishing attack and solely

verified that it is what indeed it was supposed to be. Due

to the sparsity of the data, we employ data from Adversarial

Sampling Techniques (AST) to simulate a phishing attack. The

generated data is used to test and analyze the vulnerability of

the AAOSVM [3]. AST randomly chooses a data sample from

the input dataset and modifies the data sample with the intent

of causing an ML to misclassify the sample.

The attacker – a person trying to phish someone through a

website – is modeled as the AST. We believe that the attacker’s

goal is categorized as violating integrity – for not being

detected by the classifier, targeted, and specific, as we will try

to bias the classifier with sets of adversarial generated samples

(each set of samples will try to mimic a certain type). We

also need to try to compensate for the misclassification in the

classifier. For this, we implemented a modified version of the

Adversary-Aware Online SVM (AAOSVM) [5]. It can change

the sample scores during training and takes into account the

adversarial nature of the data. This paper is an investigation

into the bias of AST against the AAOSVM in the context of

phishing attacks.

II. BACKGROUND

A. Extracting Information from the Dataset

Many companies use ML tools to extract information from

a vast amount of data. These tools are especially useful when

dealing with problems such as phishing [6]. There are several

issues to consider when using supervised learning [7], [8]. The

prediction error of a learned classifier is related directly to the

sum of the bias and variance of a learning algorithm. When

it comes to phishing, many works focus on either defining

features that will improve the performance of the ML models

or enhancing the existing ML models [3], [9].

A good example would be the work of Shirazi et al. who

tried to determine the most important features that would

distinguish a phishing website from a legitimate one [1]. They

tried to avoid anything that was convoluted, like DNS routing,

or that could be compromised later – at least from an academic

point of view, like third-party services. An example of focus

on a feature that was compromised is [10]. They based their

work on the URL and the reasoning that phishing websites’

URLs can be identified by a trained person with a certain ease

[10]. This is because now URL shortening services are widely

available.

Jiang et al. developed a Convolutional Neural Network

(CNN) that automatically extracts features from the URL

[11]. It combines deep neural network with natural language

processing and threat intelligence to do so. That could po-

tentially be robust against an adversarial attack, especially

because it uses incremental updates, but it did not explore that

100

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00100

possibility [11]. Pereira et al. distinguished legitimate from

phishing domains with precision and accuracy with the use

of graphs [12]. Domain Generation Algorithms (DGA) were

used to simulate an attacker. Although good classification was

obtained in an adversarial environment, only the domain part

of the website was used. From making graphs of domains

from DGAs, one can see that there are some trends [12]. A

few more considerations noted by Shirazi et al. [3] attackers

have full control over the URL, except the Second Domain

Level (SDL); therefore, any solution that does not account for

or does not have room for considering the website content

would be disregarded in the real world.

B. Selection Bias in SVM

Selection bias is the bias introduced by the selection of

individuals, groups, or data for analysis in such a way that

proper randomization is not achieved, thereby ensuring that

the sample obtained is not representative of the population

intended to be analyzed [13], [14]. In our case, this could be

what websites were captured to be in the dataset or which

features are chosen to represent a website. This is known as

selection bias.

We believe that the choice of which instances will be kept

away from the training can bias how the model behaves. Take

Figure 1 as an example. It assists in describing selection bias

in the context of the classification boundary. If we had to

select four instances to keep away from training, the ones

that have been circled are good candidates. They are good

candidates because two of them represent the class and two

of them represent the ones that most likely will cause some

trouble for the classifiers, as represented by the hyperplane in

red.

Fig. 1: Desired instance selection.

By changing the dataset by removing samples or generating

more samples from selected samples of the dataset, we have

another “side” of selection bias, where the dataset could

already represent a good generalization of the problem, but by

introducing or removing samples, the dataset becomes skewed

towards one or more classes. Selection bias within a training

set could have downstream effects on machine learning models

and it could be related to anomaly detection in a large network.

Support vector machines (SVMs) are a type of supervised

learning method. Our choice for using an SVM is because

we wanted to use the support vectors to induce a selection

bias.

III. METHODOLOGY

We will try to answer the following three questions in this

paper.

Research Question 1: If support vectors are used as AST

seed samples, will it cause more misclassification?

Research Question 2: Is there a class imbalance in the

generated data by AST and does it negatively affect the

classification algorithm?

Research Question 3: How does the AAOSVM behave in

the worst-case scenario, with changing scores?

Our investigation on the effect of bias at the data prepro-

cessing level works on the premise that the AST will be used

to mimic an attacker and the AAOSVM as a model of the

end user. We devised three types of experiments to test and

show how an attack from an AST would influence each type

of classifiers as follows:

Experiment 1: Evaluation of an Online SVM classifier.

Experiment 2: Evaluation of the AAOSVM on 200 ran-

domly selected samples and investigate the effects of generated

labels by clustering on generated data bias metrics.

Experiment 3: Evaluation of the AAOSVM on 200 samples

selected based on support vectors from a previous experiment

and investigate the effects of: (a) False Positives (FP) and

Class Imbalance (CI) of generated labels by clustering on

generated data. (b) Changing the scores of each sample with

each training iteration.

A. Proposed Framework

All experiments presented in this work adopt the same

framework. Each experiment was repeated ten times and the

results reported are an average across ten iterations. To better

compare the results, the same 200 samples were removed from

all classifiers. Every time an experiment was repeated, 200

random samples were chosen. From the remainder of each

dataset, a five-fold cross-validation was performed and the

performance metrics were measured. The only classifier that

was scored on the adversarial samples was the AAOSVM and

it was only scored on bias metrics. We tried to minimize any

source of bias as best as we could so we could analyze only

the effects of selection bias.

Some classifiers need a seed to initialize. This is given by

the “random state” attribute. If no seed is given, every iteration

(run) of every dataset could lead to a different performance that

has nothing to do with the input data. The reason for them

to have a fixed initial random state is that we do not want

to introduce a potential bias to the experiments. Whenever an

experiment does not follow these settings, it will be mentioned.

B. Datasets

Five datasets that are publicly available on the Internet

(Mendeley data and UCI repositories) are used. Binary features

are the ones that have only two values in the dataset. Similarly,

trinary features are the ones that have only three values in the

dataset.

101

TABLE I: Summary of the objective features in each dataset.

Data shape (#) Instances Features
Dataset Size Features Legitimate Phishing URL based # binary # trinary

DS1a (DS1) [15] 58,645 111 27,998 30,647 96 9 0
DS2 [16], [17] 11055 30 6157 4898 8 20 10
DS3 [18], [19] 1353 9 651 702 5 2 7
DS4 [20]–[22] 10000 48 5000 5000 27 23 6
DS1b (DS5) [15] 88,647 111 58,000 30,647 96 9 0

C. Adversarial Sampling Technique (AST)

For the AST, we used the algorithm from Shirazi et al. [3]

with the difference that it takes the whole training dataset to

generate new samples. For a given instance and some selected

features, it will go over the dataset looking for all the unique

values in those features of the given type. With all these unique

values, it will create all the possible combinations and each

combination will be a new sample. The idea is that if a value

was found in a phishing instance, for example, then it could

be used in another slightly different one.

For example, a dataset is made of instances of four features,

each with binary values. For a given sample and a list of

selected features – the second and third one, the algorithm

generates more instances from the unique values of all the

instances that have the same “Y” value as the “x” instance. It

creates all possible combinations of those values and replaces

them in the selected features, repeating the other values in the

other features as well as the label.

To test how the class imbalance brought by new samples

would change and possibly affect the model’s performance —

should it be used as a training sample — the labels were also

generated in two other ways. One way is to invert the original

labels and the other one is to cluster them into two groups.

Because of the nature of the features in some datasets such

as DS1, the feature selection could not be done up to four

features as it was in [3]. For perspective, each instance could

- depending on the selected features - be generating more than

half a million samples when three features were manipulated.

Shirazi et al. [3] implied that 200 samples and four features

would be enough to generate sufficient instances to make most

trained models useless. Shirazi et al. [3] did not say how

they reserved the 200 samples for the AST. We assume it

is randomly selected. That could lead to selection bias. We

tried one more way of selecting the sample seeds to see how it

affects the models’ predictions. The other way of selecting the

sample seeds is by using the support vectors from the previous

experiment with the AAOSVM. This resulted in lists that had

various lengths. We kept it standardized at 200 samples to be

used in the AST. If the number of support vectors is less than

200, it uses the minimal distance from the support vectors to

other samples to complete the selection of 200 samples.

To measure the skew (imbalance) of class labels after the

AST we used Class Imbalance (CI) as shown in Eq. (1).

CI =
np − nl
np + nl

(1)

where np is the number of phishing instances and nl is the

number of legitimate instances. The value of CI ranges from -1

to 1, where -1 signifies that there is only legitimate instances, 0

signifies that there is a perfect balance of labels, and 1 signifies

that there is only phishing instances. Performance metrics are

employed to determine the classifier’s performance. The classi-

fiers were measured and compared performances in Accuracy

(ACC), True Positive Rate (TPR), and F1-score (F1).

D. Adversarial Classification

In this work, we base our implementation of the SVM algo-

rithm on Sequential Minimal Optimization (SMO) inspired by

Charest implementation [23], [24]. From that implementation,

we created our version of an AAOSVM based on [5]. We

thought it could be improved using a strategy of changing

scores. We assume that the classifier’s actions did not affect

the behavior of the adversary. We describe the AAOSVM using

the following definitions.

Definition 1. The training criteria: trains the classifier

whenever samples that are considered poorly classified, as

expressed in Eq. (2).

yi × (�wi−1 · �xi + bi−1) < ε (2)

where �wi−1 and bi−1 are the weight and bias terms from the

previous training iterations.

The variable ε has the value of 0.6 which was the adopted

value on [25]. This threshold sets the scaling of �w and could

have been any positive number [26].

Definition 2. Cluster Type (z): z is the cluster of which

an instance can belong to. An instance can belong to any

of three clusters, namely z1, z2, and z3; the union of these

clusters make Z. The intuition is that there are malicious fraud-

ulent (true phishing), legitimate fraudulent (fake phishing for

training purposes), and legitimate non-fraudulent (common)

websites.

Definition 3. Probability p(z): this function computes the

probability of type z. It is calculated by counting all the

instances of type z and dividing by the number of instances

in the window.

Definition 4. Probability p(M, z): this function computes

the probability of type z and y = 1. This represents the

malicious type in cluster z. It is calculated by counting all

the messages of type z that also have y = 1 divided by the

number of messages in the window.

102

Definition 5. Transform probability φ(M |z): this function

computes the probability of instance �xj to be malicious, given

z, and is computed as Eq. (3) [27]:

φ(M |z) = p(M, z)

p(z)
(3)

Definition 6. Belief μ((y, z)|�xj): is the consistent belief

represented in Eq. (4).

μ((y, z)|�xj) =

⎧⎪⎨
⎪⎩

p(zj)φ(M |zj)
P (R)+p(M)φ(M |z) , if y =M

p(zj)
P (R)+p(M)φ(M |z) , if y = R

0, if y = R and zj ∼= z

(4)

where zj is the predicted cluster of �xj , p(R) is the probability

of an instance to be regular, given the instances in the window,

and p(M) is the probability of an instance to be malicious,

given the instances in the window.

Definition 7. Scores: The scores are one of two types:

utility (ε) or cost (γ). Each type of score will be further divided

to keep the score of malicious and legitimate samples.

Definition 8. Helper function ψ(�xj): the function holds

the prior knowledge that is based on probabilities and scores.

It is defined in Eq. (5). It is updated every fixed number of

samples, as stated in [5]:

ψ(�xj) =

∑
z∈Z μ((M, z)|�xj) · (εM + γM)∑
z∈Z μ((R, z)|�xj) · (εR + γR)

(5)

Definition 9. Knowledge function Ψ(�xj): the function that

is defined in Eq. (6). Adds prior knowledge to the training

criteria (Eq. (2)):

Ψ(�xj) =
1 + ψ(�xj)

wT e+ 2b
(6)

Now that Ψ(�xj) is defined, it is incorporated to Definition
1. The criteria that decides if the SVM needs to be trained

again is based on the intuition from Eq. (2):

yŷΨ(�x) < v (7)

where y ∈ {+1,−1} is the label of the instance �x, ŷ ∈
{+1,−1} is its predicted label, and v ∈ (0, 1] is a threshold

value. From that, we can say that the only two ways of making

the equation correct are to misclassify the sample or to have

Ψ(�x) < v (or a poorly classified sample).

Definition 10. Update parameter (u): a parameter that will

tell the AAOSVM if it should change the scores or not.

Definition 11. Difference of errors (Δerror): when training,

if the training criteria is true, the AAOSVM will save the errors

prior to training and compare them with the new errors. This

comparison is used as part of the conditions to decide which

score should be updated, if u == True.
From Eq. (5) and Eq. (4), it is proven that the algorithm

will be biased towards malicious messages. The more a type

appears, the bigger the belief will be about that type. The

bigger the belief that a message is malicious, the bigger Ψ(�x)
will be; on the other hand, the bigger the belief that a message

is regular, the smaller Ψ(�x) will be.

The AAOSVM was implemented with a sliding window

with the size of 100 samples, i.e., the maximum number of

samples that the model knows is 100. The window slides one

sample at a time, i.e., with each new sample, and if the window

is full, the last one is discarded. Although the model is trained

on a sliding window, it keeps its “knowledge” (values of w
and b).

To update the utility of a malicious sample, we de-

creased each sample’s respective utility by itself, scaled by

tanh(Δerror), as shown in Eq. (8), if the error decreased as

well. The intuition is that it will increase the utility of the

malicious sample as the error goes down:

εM− = εM × tanh(Δerror) (8)

The same happens for a regular sample. In a similar way,

we update the costs as shown in Eq. (9). Now, the costs go

up as the error goes up:

γ+ = γ × tanh(Δerror) (9)

The intuition is that the score can double or zero its value

if the Δerror is too great or have a change that is proportional

to the error difference. We expect the scores to either settle

at zero or at around some value, as the error fluctuate and

gradually goes to a minimum.

IV. RESULTS AND DISCUSSION

Experiments one and two aimed at creating a baseline of

OSVM and AAOSVM. As shown in Figure 2, we see how an

OSVM performs on a moving window and establish a baseline

for OSVMs (Figure 2). We observe that OSVM performed

poorly on DS1, DS4, and DS5 based on TPR. It indicates that

datasets that have many features that are numerical will be

problematic for SVM.

TABLE II: Performance metrics of AAOSVM changing

scores, running one time each dataset without 200 random

samples on a holdout validation.

Dataset ACC(%) TPR(%) F1(%)

DS1 11.09 19.34 13.85
DS2 17.18 17.04 16.77
DS3 16.45 17.98 16.26
DS4 9.43 19.08 12.67
DS5 12.86 0.35 0.64

We can see from Figure 2 and Table II that changing the

scores had a great impact on the AAOSVM; ACC dropped

significantly on all datasets. In addition, it was even more

critical on DS5, with TPR and F1 near zero, which means

that it predicted almost every instance as being legitimate.

Experiment three was done with just one run and on holdout

instead of five-fold cross-validation. In experiment three, we

103

Fig. 2: Performance metrics of OSVM (solid line) and AAOSVM (dashed line with circle).

evaluate the AAOSVM under an AST attack. Each time the

AST used a random combination of features, up to two

features, to expand the reserved 200 samples manyfold.

To analyze the changes in the scores, we picked DS4 and

DS5. DS4 for being a balanced dataset on both class labels

and feature types, and DS5 for being the biggest and the most

imbalanced of them all. Because of the disparity of the number

of samples needed for a score to reach zero, the scores were

analyzed based on the first 200 manipulated instances.

The costs on DS4 and DS5 went to zero with less than 120

samples. As shown on Figure 3, the utility of regular samples

on DS4 went to zero with less than 160 samples, which means

that for DS4 the scoring had no effect on Ψ(�xi) after only

around 1% of the samples. Both the utilities on DS5 and the

utility of malicious samples on DS4 have stabilized at some

number other than zero, which was the desired behavior. It

was already foreseen that once a score reaches zero, it has no

way of coming back, i.e., it will stay at zero until the classifier

is reset. We thought that using tanh as the update function, the

scores would go up and down, and either settle at zero or at

around some value, as the error fluctuates and gradually goes

to a minimum.

We did not foresee the number of samples that were needed

for each score to reach zero nor that it would happen with the

error still high. It is worth noting that once both scores for a

class reach zero, Ψ(�xi) will be redefined to not have ψ(�xi) in

it and it no longer depends on the sample nor the scores.

TABLE III: Average percentage of FP using different seeds

on the AST for different numbers of manipulated features.

Average of FP (%)
of features support vector random

0 40.90 ± 35.30 20.40 ± 26.77
1 42.10 ± 35.48 23.60 ± 26.06
2 49.60 ± 38.54 38.60 ± 37.75

TABLE IV: Comparative of Class Imbalance and Percentage

of FP on each dataset for each type of sample seed.

Average of Class Imbalance vs Average of FP (%)

Support vectors as seed
Dataset Class Imbalance False Positives

DS1 4.48 ± 0.19 8.00 ± 0.00
DS2 -11.17 ± 0.96 62.33 ± 3.70
DS3 3.88 ± 6.12 53.67 ± 15.55
DS4 1.39 ± 20.40 0.00 ± 0.00
DS5 -30.86 ± 0.12 97.00 ± 0.00

Random instances as seed
Dataset Class Imbalance False Positives

DS1 4.47 ± 0.19 73.00 ± 0.00
DS2 -11.20 ± 0.93 18.33 ± 2.87
DS3 4.04 ± 6.19 41.83 ± 36.92
DS4 1.59 ± 20.38 0.00 ± 0.00
DS5 -30.85 ± 0.12 4.50 ± 0.00

V. CONCLUSIONS

We had three research questions. The first one was con-

firmed, as shown in Table III. If support vectors are used as

AST seed samples, then the percentage of false positives can

go up at least 10% in absolute number, or 25% relative to the

randomly selected samples, and up to 20% in absolute number

or 100% relative to the randomly selected samples. The second

one was dismissed as there is no correlation between the class

imbalance and the percentage of false positives as shown in

Table IV. In all datasets that had false positives with the

exception of DS3, the class imbalance was almost constant,

with the standard variation less than 1%. The class imbalance

in DS3 varied more because of its size. Although the class

imbalance had some variations, it did not change with the

selected samples’ type but the dataset. The FP percentage

varied according to the dataset and selected samples’ type as

shown in Table IV.

104

Fig. 3: Score metrics on DS4, for the first 200 samples.

As for the last question: on one hand, small perturbations

on some features can bypass the AAOSVM and bring down

the accuracy; on the other hand, even in the worst case, where

the AAOSVM had a terrible performance during training and

was facing generated samples designed to fool the classifier,

the average percentage of false positives did not go over 50%,

as shown on Table III. When it comes to online classifiers,

adversarial attacks have an even bigger impact as they can

bias the classifier towards one class or the other. When the

AAOSVM is changing scores during training, its performance

decreases, but the decrease in performance in training is not

linearly correlated with its bias metrics values. We say this

because while clearly the choice of the seed matters, as shown

in Table III, the change in FP occurs in a similar way but with

different proportions, except for DS3, in Table IV.

In this work, we have shown that selection bias has an

impact on the AAOSVM, while class imbalance does not

have an impact on the AAOSVM. Now more experiments

are needed to determine if that impact is extended to other

classifiers and initial parameters. If support vectors are used as

AST seed samples, it will cause more misclassification. There

is a class imbalance in the generated data by AST, but it does

not affect the classification algorithm. When the AAOSVM

is changing scores during training, its performance decreases,

but the decrease in performance in training is not correlated

linearly with its bias metrics values.

REFERENCES

[1] H. Shirazi, B. Bezawada, and I. Ray, “”Kn0w Thy Doma1n Name”:
Unbiased Phishing Detection Using Domain Name Based Features,” in
Proceedings of the 23nd ACM on Symposium on Access Control Models
and Technologies. New York, NY, USA: ACM, jun 2018, pp. 69–75.
[Online]. Available: https://dl.acm.org/doi/10.1145/3205977.3205992

[2] T. Benzel, “Cybersecurity research for the future,” Communications of
the ACM, vol. 64, no. 1, pp. 26–28, jan 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3436241

[3] H. Shirazi, C. Anderson, B. Bezawada, I. Ray, and
C. Anderson, “Adversarial Sampling Attacks Against Phish-
ing Detection,” pp. 83–101, 2019. [Online]. Available:
https://www.researchgate.net/publication/334213370

[4] A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, S. Strobel,
F. Iais, S. A. Germany, K. U. Leuven, and H. Belgium, “New Filtering
Approaches for Phishing Email,” Tech. Rep.

[5] N. Figueroa, G. L’Huillier, and R. Weber, “Adversarial classification
using signaling games with an application to phishing detection,” Data
Mining and Knowledge Discovery, vol. 31, no. 1, pp. 92–133, 2017.

[6] Y. Zhou, M. Kantarcioglu, and B. Xi, “A survey of game theoretic
approach for adversarial machine learning,” WIREs Data Mining and
Knowledge Discovery, vol. 9, no. 3, may 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/widm.1259

[7] D. H. Wolpert, “The Lack of A Priori Distinctions Between Learning
Algorithms,” Neural Computation, vol. 8, no. 7, pp. 1341–1390, oct
1996. [Online]. Available: https://direct.mit.edu/neco/article/8/7/1341-
1390/6016

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the
Bias/Variance Dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58,
jan 1992. [Online]. Available: https://direct.mit.edu/neco/article/4/1/1-
58/5624

[9] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson, “Directed adversarial
sampling attacks on phishing detection,” Journal of Computer Security,
no. 1, pp. 1–23, feb.

[10] R. Verma and K. Dyer, “On the Character of Phishing URLs: Accurate
and Robust Statistical Learning Classifiers,” in Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy. San
Antonio, TX, USA: ACM, mar 2015, pp. 111–122. [Online]. Available:
https://dl.acm.org/doi/10.1145/2699026.2699115

[11] J. Jiang, J. Chen, K.-K. R. Choo, C. Liu, K. Liu, M. Yu, and
Y. Wang, “A Deep Learning Based Online Malicious URL and
DNS Detection Scheme,” 2018, pp. 438–448. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-78813-5 22

[12] M. Pereira, S. Coleman, B. Yu, M. DeCock, and A. Nascimento,
“Dictionary Extraction and Detection of Algorithmically Generated
Domain Names in Passive DNS Traffic,” 2018, pp. 295–314. [Online].
Available: http://link.springer.com/10.1007/978-3-030-00470-5 14

[13] F. Vella, “Estimating Models with Sample Selection Bias: A
Survey,” The Journal of Human Resources, vol. 33, no. 1,
p. 127, 1998. [Online]. Available: https://about.jstor.org/terms
https://www.jstor.org/stable/146317?origin=crossref

[14] J. J. Heckman, “Selection Bias and Self-selection,” in Econometrics.

105

London: Palgrave Macmillan UK, 1990, pp. 201–224. [Online].
Available: http://link.springer.com/10.1007/978-1-349-20570-7 29

[15] G. Vrbančič, “Phishing Websites Dataset,” 2020.
[16] R. M. Mohammad, F. Thabtah, and L. McCluskey, “An Assessment of

Features Related to Phishing Websites using an Automated Technique,”
in 2012 International Conference for Internet Technology and Secured
Transactions, 2012, pp. 492–497.

[17] R. M. A. Mohammad, L. McCluskey, and F. Thabtah, “Phishing
Websites Data Set,” Irvine, CA, 2015. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites

[18] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based
Associative Classification data mining,” Expert Systems with Applica-
tions, vol. 41, no. 13, pp. 5948–5959, oct 2014. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0957417414001481

[19] N. Abdelhamid, “Website Phishing Data Set,” Irvine, CA, 2016. [On-
line]. Available: https://archive.ics.uci.edu/ml/datasets/Website+Phishing

[20] C. L. Tan, K. L. Chiew, N. Musa, and D. H. A. Ibrahim, “Identifying the
Most Effective Feature Category in Machine Learning-based Phishing
Website Detection,” International Journal of Engineering Technology,
vol. 7, no. 4.31, pp. 1–6, 2018.

[21] C. L. Tan, “Phishing Dataset for Machine Learning: Feature Evaluation,”
2018.

[22] K. L. Chiew, C. L. Tan, K. Wong, K. S. Yong, and W. K.
Tiong, “A new hybrid ensemble feature selection framework for
machine learning-based phishing detection system,” Information
Sciences, vol. 484, pp. 153–166, may 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0020025519300763

[23] J. Charest, “SVM,” 2019. [Online]. Available:
https://jonchar.net/notebooks/SVM/Dual-form

[24] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines,” Microsoft, Tech.
Rep., 1998. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/sequential-minimal-optimization-a-fast-
algorithm-for-training-support-vector-machines/

[25] G. L’Huillier, R. Weber, and N. Figueroa, “Online phishing
classification using adversarial data mining and signaling games,”
in Proceedings of the ACM SIGKDD Workshop on CyberSecurity
and Intelligence Informatics - CSI-KDD ’09. New York, New
York, USA: ACM Press, 2009, pp. 33–42. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1599272.1599279

[26] B. Schölkopf and A. J. Smola, Learning with kernels support vector
machines, regularization, optimization, and beyond, 2002.

[27] R. S. Gibbons, Game Theory for Applied Economists.
Princeton University Press, jul 1992. [Online]. Available:
https://www.degruyter.com/document/doi/10.1515/9781400835881/html

106

