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Abstract—Air pollution is the fourth-largest threat to human
health. The harmful effects of air pollutants have costed the
global economy nearly $3 trillion. It is imperative that a solution
for mitigating the harmful effects of the most pervasive ground-
level air pollutants – Carbon Monoxide (CO), Nitric Oxide
(NO), Nitrogen Dioxide (NO2), Ozone (O3), and particulate
matter 2.5 (PM2.5) – is implemented, especially in urban areas.
Recent advances in deep learning such as the Convolutional
Long Short Term Memory (ConvLSTM) architecture are capable
of learning complex spatiotemporal patterns with multisource
data. We propose a novel sequential encoder-decoder ConvLSTM
architecture capable of predicting hourly CO,NO,NO2, O3,
and PM2.5 spatially continuously over Los Angeles. Our model
utilizes multisource satellite imagery collected from the ESA Tro-
pospheric Monitoring Instrument (TROPOMI), remote-sensing
data collected by the NASA Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument onboard the NASA
Terra+Aqua satellites, and site-monitoring sensor observations
of atmospheric and ground-level air pollution, meteorological
data, and wildfire data. Our results show that our MeteoGCN-
ConvLSTM model is competitive with state-of-the-art approaches
across all predicted air pollutants. Moreover, our results show the
versatility of our model when provided with solely atmospheric
satellite imagery and remote-sensing data as input.

Index Terms—spatiotemporal prediction, air pollution predic-
tion, graph convolutional network, convolutional long short term
memory, ground-level air pollution data, site monitoring stations

I. INTRODUCTION

The harmful effects of air pollution on mankind are very

well documented. According to Ritchie and Roser (2017),

11.65% of deaths or at least 1 in 10 people die from air pollu-

tion related causes. Air pollution can generally be categorized

into traffic-related air pollution, ozone, noxious gases, and

particulate matter. The most detrimental air pollutants to hu-

man health include particulate matters under 2.5 micrometers

in diameter (PM2.5), carbon monoxide (CO), nitric oxides

(NO), nitrogen dioxide (NO2), and Ozone (O3).

In order to tackle the issue of air pollution, we must un-

derstand the sources, similarities, and effects amongst various

types of air pollution. This paper delves into our understanding

of air pollutants and our ability to predict them through deep

learning. In the last decade, deep learning has revolutionized

various fields and has proven to be particularly valuable for air

pollution prediction (Bellinger et al., 2017). When developing

these deep learning models, we must consider both spatial

and temporal features due to the spatiotemporal nature of air

pollution. Concentrations of pollutants are are strongly cor-

related to pollutants in neighboring areas (spatial correlation)

and earlier or later concentrations (temporal correlation). Many

methods applying deep learning for air pollution prediction

focus on either capturing spatial or temporal patterns in data,

but considerably more complexity and development is requisite

for a model capable of capturing both (Abrahamsen et al.,

2018; Grover et al., 2015; Narejo and Pasero, 2017; Weyn

et al., 2020).

To learn spatiotemporal patterns in multisource remote-

sensing data, ground-level observations, and satellite imagery,

we apply a two-stage model called MeteoGCN-ConvLSTM.

The first stage applies a Graph Convolutional Network (GCN)

for learning high-level patterns within complex ground-level

meteorological features. GCNs are a powerful deep learning

architecture which applies convolution to graph structures, an

abstraction well suited for meteorological and air pollution

data collected at sparse site monitoring stations. he goal

of the Graph Convolutional Network is to learn the feature

embeddings and patterns of nodes and edges in a graph. The

GCN learns the features of an input graph G(V,E) typically

expressed with an adjacency matrix A as well as a feature

vector xi for every node i in the graph expressed in a matrix of

size V ×D where V is the number of vertices in the graph and

D is the number of input features for each vertex. The output

of the GCN is an V × F matrix where F is the number of

output features for each vertex. We can then construct a deep

neural network with an initial layer embedding of h0
v = xi

to perform convolution neighborhoods of nodes, similar to a

Convolutional Neural Network (CNN). Then, the k-th layer of

the neural network’s embedding on vertices hk
v is

hk
v = σ

(
Wk

∑
u∈N(v)∪v

hk−1
v√|N(u)||N(v)|

)
, ∀k > 0,

where σ is some non-linear activation function, hk−1
v is the

previous layer embedding of v, Wk is a transformation matrix

for self and neighbor embeddings, and
∑

u∈N(v)
hk−1
u

|N(v)| is

the average of a neighbor’s previous layer embeddings. The
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neural network can be trained efficiently through sparse batch

operations on a layer wise propagation rule

H(k+1) = σ(D−
1
2 ÃD−

1
2H(k)Wk),

where I is the identity matrix, Ã = A + I , and D is the

diagonal node degree matrix defined as Dii =
∑

j Ai,j (Kipf

and Welling, 2016). In this way, the GCN can train a neural

network to output a graph with feature vectors for each node

in the graph.

The second stage of our model applies the Convolutional

Long Short-Term Memory (ConvLSTM) architecture to sets

of time-indexed sequences of gridded data. The ConvLSTM

model is a variant of the traditional Long Short-Term Memory

(LSTM) model capable of performing convolution within the

cells of the LSTM to allow for multidimensional video-like

inputs and outputs. This is done by replacing the Hadamard

products used to define the key equations for the FC-LSTM

with the convolution operation. The key equations for the

ConvLSTM are

it = σ(Wixt +Wiht−1 +Wi ∗ ct−1 + bi)

ft = σ(Wfxt +Wfht−1 +Wf ∗ ct−1 + bf )

ct = ft ∗ ct−1 + it ∗ tanh (Wxxt +Whht−1 + bc)

ot = σ(Wxxt +Whxh−1 +Wc ∗ ct + bo)

ht = ot ∗ tanh (ct),
where ∗ denotes the convolution operation (Shi et al., 2015).

Prior works on applying the ConvLSTM structure for air

pollution prediction utilized air pollutant and meteorological

information for prediction of a single air pollutant, typically

PM2.5 or NO2 (Muthukumar et al., 2020a,b). Further work

has looked into applying wildfire and smoke data as input

features for prediction (Muthukumar et al., 2021a,b, 2022).

However, current research in this field has not shown an

effective architecture for general-purpose multi pollutant pre-

diction. Moreover, many prior models apply solely ground-

level air pollution information or solely atmospheric data, but

seldom do we see a model utilizing both (Cocom et al., 2020;

Muthukumar et al., 2020c; Nagrecha et al., 2020). It is also

not clear how effective satellite imagery and remote-sensing

data is compared to ground-level observations for pollution

forecasting with deep learning.

II. METHODS

In this section, we describe our methodology for developing

a two-stage prediction model for forecasting spatiotemporal

carbon monoxide, nitric oxide, nitrogen dioxide, ozone, and

PM2.5. One key consideration when developing our architec-

ture is the variety of formats in our input data sources. The

goal of our predictive algorithm is to perform spatiotemporal

forecasting on time-indexed series of images. For satellite

imagery and remote-sensing data, the format of input samples

fits this constraint. However, for sparse ground-based site

monitoring stations, we must apply additional preprocessing

to generate time-series input images for the ConvLSTM ar-

chitecture.

We make the following contributions to the field of deep

learning for spatiotemporal air pollution prediction: (1) we

develop a versatile two-stage MeteoGCN-ConvLSTM deep

learning architecture effective for multi pollutant prediction,

(2) we utilize a unique combination of remote-sensing, satellite

imagery, and ground-level pollution, wildfire and meteorologi-

cal data, and (3) we investigate the significance of ground-level

site monitoring data in spatiotemporal air pollution forecasting.

A. Data

We collect input data from six major sources: ground-level

pollution data, remote-sensing atmospheric pollution data,

atmospheric pollution satellite imagery, ground-level meteoro-

logical data, remote-sensing meteorological data, and remote-

sensing wildfire data. For all data, we define a bounding

box geographical region within the bounds of −118.75◦W to

−117.5◦W and 33.5◦−34.5◦. For all data sources, we collect

hourly historical data from January 1 2019 to September 1

2022, corresponding to 1340 days worth of data or 32160
hourly timesteps.

a) Ground-Level Pollution Data: The goal of our model

is to predict hourly ground-level air pollution over Los Angeles

in the future. We utilize ground-level pollution data collected

from site monitoring stations as both input to our deep

learning model and as ground truth information for model

evaluation purposes. In our architecture, we use historical

ground-level pollution data as an input feature to predict

spatially continuous air pollution and evaluate against held

out samples of ground level pollution data in the future. For

all experiments, we collect hourly ground-level pollution data

of Carbon Monoxide (CO), Nitric Oxide (NO), Nitrogen

Dioxide (NO2), Ozone (O3), and PM2.5. Ground-level site

monitoring stations for air pollution measurement typically

are either low-cost community maintained or highly-regulated

government maintained. To ensure we introduce the least

amount of bias during prediction, we utilize solely government

maintained site monitoring stations for ground-level pollution

data, as we can ensure a low data collection error under

uncertainty.

We seek to predict spatiotemporal air pollution spatially

continously over Los Angeles in the form of forecasted images

in the future. As a result, we must transform these sparse

ground-based site monitoring station measurements into an

image bounded by the geographical bounds we define for

Los Angeles. To achieve this, we apply a simple spatioteporal

interpolation of Inverse Distance Weighting (IDW) assuming

a linear relationship between the similarity of sensor readings

and physical distance between sensors. Figure 1 displays an

example ground-truth frame for the PM2.5 measurements

collected from the 7 EPA AirNow site monitoring stations

as well as the result of applying IDW interpolation to these

measurements. Both are overlayed on the terrain map of the

geographical bounds we define for Los Angeles.

Within the geographic bounding area we define for Los An-

geles, there are two providers of government-maintained site

monitoring data. First, we utilize the California Air Resources
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Fig. 1: January 1 2019 Hour 0 PM2.5 Ground-truth Data:

Uninterpolated EPA AirNow Sites vs IDW-Interpolated EPA

AirNow Sites

Board AQMIS2 tool to collect ground-level measurements

from 7 site monitoring stations managed by the EPA AirNow

program (White et al., 2004). For all air pollutants, there

are seven quality assured, validated sites providing hourly

measurements at the following locations: Lancaster, Santa

Clarita, Reseda, Glendora, Los Angeles – North Main Street,

Long Beach, and South Long Beach. Note that for Ozone and

Carbon Monoxide, the South Long Beach site was unavailable

and instead replaced with an equivalent site in Azusa.

We also utilize government-maintained data of hourly

PM2.5, CO,NO,NO2, and O3 from the Port of Los Angeles

site monitoring stations (POLA). The Port of Los Angeles

provides ground-level air pollution measurements at four loca-

tions within the Los Angeles Harbor: Wilmington Community

Station, San Pedro Community Station, Coastal Boundary

Station, and the Source-Dominated Station.

In total, we collect hourly samples of

PM2.5, CO,NO,NO2 and O3 from 11 government-

maintained site monitoring stations within Los Angeles

from both the EPA AirNow and Port of Los Angeles.

Figure 2 displays a sample ground-truth frame for PM2.5

measurements collected from the 11 EPA AirNow and Port

of Los Angeles sites as well as the result of applying IDW

interpolation.

b) Remote-Sensing Atmospheric Pollution Data: When

constructing our model, we seek to include an unique com-

bination of varied data sources for air pollution prediction.

Particularly, we focused on providing our architecture with

input data describing both ground-level and atmospheric air

pollution patterns. Data on atmospheric aerosols are typically

collected as remote-sensing data through precise instruments

onboard low earth orbiting satellites.

We collect remote-sensing satellite imagery from the NASA

Multi-Angle Implementation of Atmospheric Correction (MA-

IAC) algorithm (Lyapustin et al., 2018). The MAIAC algo-

rithm is a data preprocessing algorithm applied on measure-

ments collected by the NASA Moderate Resolution Imaging

Spectroradiometer (MODIS) instrument onboard the NASA

Terra and Aqua satellites that converts raw measurements

to analytics-ready samples by atmospheric aerosol and air
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Fig. 2: January 1 2019 Hour 0 PM2.5 Ground-truth Data: Un-

interpolated EPA AirNow + POLA Sites vs IDW-Interpolated

EPA AirNow + POLA Sites

pollutant data from MODIS images, normalizing pixel values,

interpolating daily data for hourly use, and removing cloud

cover masks (Justice et al., 2002). The Terra and Aqua satel-

lites provide remote-sensing measurements over 36 spectral

bands using the MODIS instrument.

We collect data from one of these spectral bands measuring

blue-band Aerosol Optical Depth at a central wavelength of

0.47 μm. AOD or Aerosol Optical Depth is a measure of

the direct amount of sunlight being blocked by atmospheric

aerosols and air pollutants. AOD is perhaps the most compre-

hensive measure of ambient air pollution and years of research

has shown a strong correlation between AOD readings and

pollutant concentrations in both atmospheric and ground-level

settings (Li et al., 2015). To integrate AOD data with our

model, we select the data within our geographic gounds and

apply a downsampling layer to reduce the resoltion to a 40

pixel by 40 pixel image, which is the standard resolution we

utilize for all data source inputs to our model.

c) Atmospheric Pollution Satellite Imagery: In addition

to remote-sensing data, we include satellite imagery of various

air pollutants as input to our model. Research in atmospheric

sciences shows that there exists positive correlations between

pairs of differing air pollutants (Elsom, 1978). We collect

satellite imagery of various air pollutants from the TROPO-

spheric Monitoring Instrument (TROPOMI) onboard the ESA

Sentinel-5P satellite (Veefkind et al., 2012). TROPOMI is

a spectrometer capable of sensing ultraviolet (UV), visible

(VIS), near (NIR) and short-wavelength infrared (SWIR) light

and provides high-resolution global hourly data of atmospheric

ozone, methane, formaldehyde, aerosol, carbon monoxide,

nitrogen dioxide, and sulfur dioxide. For our models, we

utilize hourly imagery of methane (CH4), nitrogen dioxide

(NO2), and carbon monoxide (CO) due to its product’s

provided spatial resolution and correlation to the five target

air pollutants. Similarly to the remote-sensing atmospheric

data, we crop the imagery to our geographic bounds and

apply downsampling to generate hourly 40 pixel by 40 pixel

samples. We choose this standard resolution across all input

features because 1 pixel corresponds to roughly a 1 kilometer

by 1 kilometer square area of real-world geography within our
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defined bounds.

d) Ground-level Meteorological Data: We collect

ground-level meteorological data from the Iowa State

University MesoNet database (Herzmann et al., 2004).

The Environmental Mesonet database collects and records

hourly Meteorological Aerodrome (METAR) Reports from

Automated Surface Observing Systems (ASOS) located

near various airports and municipal airstrips within the

continental United States. The ASOS data are primarily used

by airlines and air traffic controllers to monitor meteorological

features near and around airport runways. The METAR data

provides comprehensive hourly reports of 17 ground-level

meteorological features including wind speed, wind direction,

relative humidity, dew point, precipitation, Air Quality

Index (AQI), air pressure, and air temperature. Within our

geographic boundaries, there are 24 ASOS sensors providing

hourly validated meteorological feature readings. Due to

the heterogeneity between stationary (e.g. AQI, temperature,

humidity) and non-stationary features (e.g. wind speed, wind

direction), we found that applying an IDW interpolation

to generate images out of sparse data did not work well

for meteorological features. Instead, we developed a novel

Graph Convolutional Network (GCN) architecture to perform

spatiotemporal kriging on the meteorological data that we

represent as weighted directed graphs for each hour.

e) Remote-Sensing Meteorological Data: In addition to

ground-level meteorological data, we utilize remote-sensing

data of gridded climate features from the GridMET dataset.

GridMET applies an assimilation algorithm on top of tem-

porally rich data from the North American Land Data As-

similation System Phase 2 remote-sensing dataset (Mitchell

et al., 2004) and spatially rich data from the Parameter-

elevation Regressions on Independent Slopes Model (Cosgrove

et al., 2003). GridMET provides hourly high-resolution grid-

ded remote-sensing data of various meteorological features, of

which we utilize precipitation, wind speed, wind direction, and

maximum relative humidity for our predictive model. For pre-

processing, we crop raw data to within our geographic bounds

and downsample each frame. A visualization of GridMET data

for a particular sample for these meteorological features for

both the contiguous US and LA county is shown in Figures

3, 4, 5, 6.

f) Remote-sensing Wildfire Data: The geographic loca-

tion of our study area poses unique challenges in terms of

air pollution prediction. Wildfires in Los Angeles county have

been increasingly common, and research in the field shows

that the smoke/heat generated from a wildfire while it is

burning is the largest contributor to ambient air pollution

(Liu et al., 2016). We collect remote-sensing wildfire data

from two sources: NASA MODIS data and NASA MERRA-

2 data (Gelaro et al., 2017; Savtchenko et al., 2004). From

the NASA MODIS instrument, we collect remote-sensing data

on Fire Radiative Power (FRP). Fire Radiative Power (FRP)

is a measure of the radiant heat output from a fire. The

main contributors to increased levels of FRP include smoke

from wildfires and emissions from the burning of carbon-

Fig. 3: Remote-Sensing Data of Precipitation (mm) for 1-1-

2019 Hour 0: Contigouous US vs LA County

Fig. 4: Remote-Sensing Data of Relative Humidity (%) for 1-

1-2019 Hour 0: Contigouous US vs LA County

Fig. 5: Remote-Sensing Data of Wind Speed (m/s) for 1-1-

2019 Hour 0: Contigouous US vs LA County

Fig. 6: Remote-Sensing Data of Wind Direction (◦ from North)

for 1-1-2019 Hour 0: Contigouous US vs LA County

based fuel, such as carbon monoxide CO and carbon dioxide

CO2 emissions. There is a strong positive correlation between

wildfires and FRP readings as well as a weaker positive

correlation between carbon emissions (CO2, CO) and FRP

readings. We also use wildfire and heat data from the NASA

MERRA-2 data source. The Modern Era Retrospective analy-

sis for Research and Applications, version 2 (MERRA-2) is a

global atmospheric reanalysis produced by the NASA Global

Modeling and Assimilation Office (GMAO). The data format

of the MERRA-2 features we use in our predictive model are

time-indexed series of gridded remote-sensing data. We use

MERRA-2 imagery of three wildfire/heat features: Planetary

Boundary Layer (PBL) height, surface air temperature, and

surface exchange coefficient for heat. For all wildfire remote-

sensing data, we similarly crop and downsample each hourly

29



sample to a 40 px by 40 px frame.

B. Model Architecture and Implementation

Our model utilizes a two-stage architecture to achieve the

following: (1) interpolate sparse ground-level meteorological

features to denser time-indexed series of gridded data and

(2) apply a spatiotemporal predictive model on various time-

indexed series of gridded data features. Of the data sources

described earlier, all but the ground-level meteorological fea-

tures are in the format of hourly sequential gridded data. We

refer to the first stage of our architecture as the MeteoGCN and

the second stage as the ConvLSTM. We apply the Graph Con-

volutional Network (GCN) architecture on the sparse ground

level meterological data. The GCN architecture is primarily

effective in producing high-quality interpolation, allowing us

to convert sparse graph inputs to denser, more connected

graphs. We adapt the architecture proposed by Wu et al. (2021)

for spatiotemporal kriging with GCNs. First, we represent the

raw meteorological features for a particular hour as a weighted

directed graph. We construct this weighted directed graph

by defining the set of vertices V for each graph to be the

meteorological monitoring station. The vertex attributes are

the stationary features recorded by a particular station, while

the edge attributes are the non-stationary features. Here, we

refer to stationary features as those which can be defined as

bound to the physical location of the monitoring site, such

as temperature, relative humidity, precipitation. Non-stationary

features include wind speed, wind direction, and wind gust.

The meteorological graph creation process is described in

Algorithm 1.

The GCN is then trained by hiding a set of nodes and

vertices along with their corresponding attribute vectors and

instructing the GCN to interpolate for these missing structures

using ground truth data from the neighboring set of nodes and

edges. At the end of training, GCN is capable of interpolating

a sparse meteorological graph into a dense graph.

An intermediate step between the MeteoGCN and ConvL-

STM is to decode the dense meteorological graph into image-

like gridded data. We apply an unsupervised learning graph

representation learning algorithm included within the Stellar-

Graph Python library to perform this embedding extraction.

Additionally, we ensure that the outputted embedding image

is geographically bounded within our defined bounds, as to

maintain homogeneity with other input features.

Finally, we apply the ConvLSTM architecture on the pre-

processed input features and output of the MeteoGCN. The

ConvLSTM architecture learns on data in the format of a 5D

tensor with the following dimensions: (samples, frames, rows,

columns, channels). Each input data source can be represented

as a channel with rows = 40 and columns = 40. Each

sample contains 24 frames corresponding to 24 hours. In

total, our historical dataset contains 1340 days worth of data

corresponding to 1340 samples with 24 frames of 40 by 40
image bundles with 10 channels. The 10 channels is derived

as 1 channel from the AQMIS ground-level pollutant grid,

1 channel from the output of the MeteoGCN, 1 channel from

Algorithm 1 Meteorological Graph Construction

Input: Meteorological site features fi ∈ F , where each

fi contains site coordinates xi, yi and a set of site-specific

stationary si ∈ S and non-stationary ni ∈ N feature values.

Boundary latitude values latmax, latmin. Boundary longitude

values longmax, longmin.

Initialize 40 × 40 array grid A.

Initialize weighted directed graph G = (V,E)
for fi ∈ F do

gridx, gridy =
⌊

xi·40
longmax−longmin

⌋
,
⌊

yi·40
latmax−latmin

⌋
A[gridx][gridy] = vector of site-specific stationary values

si
Set A[gridx][gridy] as vertex of G

end for
for fi ∈ F do

for ni ∈ N do
Let startx, starty be the starting coordinates of a

weighted directed edge in G
startx, starty = gridx, gridy

Recover endx, endy from site-specific non-stationary

value ni.

Create weighted directed edge in G starting from

vertex located at (startx, starty) and ending at vertex

located at (endx, endy) with weight of |ni|.
end for

end for
Output: Geographically bound graph feature matrix grid A,

Weighted Directed Graph G

MODIS AOD, 3 channels from TROPOMI imagery, 1 channel

from MODIS FRP, and 3 channels from MERRA-2 features.

A breakdown of the input dataset is displayed in Figure 7.
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Fig. 7: ConvLSTM Input 5-Dimensional Tensor Breakdown

We use an 80-10-10 training-validation-testing split cor-

responding to 1072 samples for training, 134 samples for

validation and 134 samples for testing. We generate labels for

our model by adding a 1-hour time-lag to our input frames

in each sample, which implies our model does hour-by-hour

prediction for 24 hours in the future given the last 24 hours of

data. For example, an input frame in our model would include

data for frames (hours) 1 through 24, while the label would

include data from frames 25 through 48. We can then compare

our model’s predicted results for frames 25-48 and evaluate
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against the label’s frames 25-48 to evaluate performance. Since

the architecture of an LSTM dictates that the forecast horizon

depends on the number of samples passed as input, we can

extend our prediction for further than 24 hours given additional

historical data (i.e. using 48 hours in the past to predict 48

hours in the future, hour-by-hour).

We also study the impact of ground-level features on air

pollution prediction, so we additionally perform an ablation

study where we train a ConvLSTM model with solely satellite

imagery and remote-sensing data. The 5D input tensor for this

satellite only model contains 8 channels, as we do not utilize

ground-level meteorological or air pollution features as input.

The label for this model remains as the IDW-interpolated

ground-level air pollution data collected from the 11 site

monitoring stations.

III. RESULTS

Our model predicts spatiotemporal PM2.5 in terms micro-

grams per cubic meter ( μg
m3 ) and NO2, NO,CO,O3 in terms

of parts per million (ppm) spatially continously over Los

Angeles county hourly. Our model utilizes 24 hours of data

in the past to make hour-by-hour predictions for these five air

pollutants 24 hours in the future. To evaluate the accuracy of

our model, we can consider two scenarios. Firstly, if we want

to perform spatially continuous predictions over Los Angeles

county in the future, then our predicted samples will be in the

form of time-indexed series of images. The ground truth labels

would then be the IDW-interpolated ground-level air pollution

data from the 7 EPA AirNow site monitoring stations. To

evaluate this model, we could utilize a per-pixel Root Mean

Square Error (RMSE) or similar metrics and average these

values to get a composite error value. However, computing

per-pixel error is not entirely representative of the underlying

shared structures between the predicted image and ground

truth. Additionally, apart from the 7 pixels corresponding

within a 1 km by 1km physical distance of the ground truth

site monitoring stations, the remaining pixels of the 40 px by

40 px ground truth image is generated via IDW-interpolation.

Thus, the alternative scenario is to predict air pollution in the

future as time-indexed series of images spatially continuously

but evaluate model performance against solely the 7 ground-

based site monitoring stations by extracting the 7 pixels within

the predicted image that lie within a 1 km2 area of the 7 ground

truth monitoring sites.

We evaluate the performance of our model using the Root

Mean Square Error (RMSE) metric. For possible compar-

isons against baselines and future research, we also compute

the Normalized Root Mean Square Error (NRMSE), which

normalizes RMSE scores by the mean of the ground truth

samples. Table I displays the RMSE and NRMSE error values

calculated over all 24-hour predictions in the testing set (134

days from April 20 2022 to September 1 2022) at the 7 EPA

AirNow ground-truth site locations for all air pollutant targets.

The best performing site location per pollutant is italicized

in each target pollutant section and the best performing site

location across all target pollutants is bolded.

TABLE I: RMSE and NRMSE Error Values over Testing Set

at each AirNow Sensor Location for all Target Air Pollutants

Target Sensor Location Testing Set Metrics
RMSE NRMSE

PM2.5

Lancaster 1.0341 0.0523
Glendora 1.1494 0.0557
Santa Clarita 1.0691 0.0503
Reseda 1.2834 0.0579
LA—Main St 1.5725 0.0621
Long Beach 1.4451 0.0598
South Long Beach 1.4528 0.0610

Nitrogen Dioxide

Lancaster 0.0015 0.0535
Glendora 0.0017 0.0593
Santa Clarita 0.0016 0.0562
Reseda 0.0016 0.0566
LA—Main St 0.0023 0.0661
Long Beach 0.0019 0.0602
South Long Beach 0.0018 0.0593

Carbon Monoxide

Lancaster 0.5461 0.0456
Glendora 0.5582 0.0475
Santa Clarita 0.5847 0.0495
Reseda 0.5696 0.0483
LA—Main St 0.6961 0.0590
Long Beach 0.6353 0.0568
Azusa 0.5681 0.0481

Nitric Oxide

Lancaster 0.0009 0.0518
Glendora 0.0012 0.0535
Santa Clarita 0.0014 0.0581
Reseda 0.0013 0.0575
LA—Main St 0.0023 0.0689
Long Beach 0.0021 0.0641
South Long Beach 0.0019 0.0623

Ozone

Lancaster 0.0045 0.0596
Glendora 0.0041 0.0569
Santa Clarita 0.0039 0.0517
Reseda 0.0048 0.0605
LA—Main St 0.0053 0.0649
Long Beach 0.0055 0.0628
Asuza 0.0041 0.0591

We also evaluate the error of a model trained with eight

input channels not including ground-level meteorological or air

pollution data to understand the impact of satellite imagery for

PM2.5 prediction. The RMSE scores calculated on 7 ground-

truth EPA AirNow sensors for 24-hour prediction averaged

over the testing set for PM2.5 prediction for a satelite data

only and full MeteoGCN-ConvLSTM model is described in

Table II.

TABLE II: RMSE Error Values over Testing Set at each

AirNow Sensor Location for PM2.5 Prediction: Satellite Data

Only MeteoGCN-ConvLSTM vs Full MeteoGCN-ConvLSTM

Target Sensor Location Testing Set RMSE
Satellite Only Full

PM2.5

Lancaster 1.8276 1.0341
Glendora 3.1834 1.1494
Santa Clarita 1.8496 1.0691
Reseda 2.4263 1.2834
LA—Main St 3.1145 1.5725
Long Beach 1.9805 1.4451
South Long Beach 2.3314 1.4528

Additionally, in Figure 8 we provide visualizations of the
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(a) Santa Clarita (b) Reseda (c) Los Angeles - Main St

(d) Long Beach (e) South Long Beach (f) Glendora

Fig. 8: PM2.5 Predicted vs Actual Plots of Ground-truth Site Locations for Satellite Data Only MeteoGCN-ConvLSTM

remote-sensing data and satellite imagery only MeteoGCN-

ConvLSTM model for PM2.5 prediction from January 1 2022

to September 1 2022 comparing predicted PM2.5 against

ground truth values.

IV. CONCLUSION

In this paper, we apply a complex two-stage deep learning

architecture for spatiotemporal ground-level air pollution pre-

diction. We developed the novel MeteoGCN-ConvLSTM ar-

chitecture for hourly ground-level prediction of various air pol-

lutants including nitric oxide (NO), nitrogen dioxide (NO2),

carbon monoxide (CO), ozone (O3), and PM2.5 spatially

continuously over Los Angeles county. Our model applies

ground-level pollution data, remote-sensing atmospheric pollu-

tion data, atmospheric pollution satellite imagery, ground-level

meteorological data, remote-sensing meteorological data, and

remote-sensing wildfire data for spatiotemporal air pollution

prediction. We evaluated our predictions through RMSE and

NRMSE error metrics against ground-truth EPA AirNow site

monitoring stations.

Our results show that the MeteoGCN-ConvLSTM model

performs the best in predicting carbon monoxide spatially

continuously in Los Angeles county. The average NRMSE

score across all site locations for carbon monoxide prediction

showed a 10.12% decrease in error compared to the second

best performing pollution target of PM2.5 and a 20.73%

decrease in error compared to the worst performing pollutant

target of nitric oxide. We theorize that carbon monoxide

is the best predicted target for our model due to MODIS

Fire Radiative Power (FRP) remote-sensing input data. Since

FRP is strongly correlated to wildfire emissions and weakly

correlated to carbon emissions such as carbon monoxide and

carbon dioxide, the model has more historical information to

utilize in prediction for carbon monoxide over other pollutant

targets.

Further, we can see that across all pollutant targets,

the RMSE and NRMSE scores show that the MeteoGCN-

ConvLSTM model performs the best at either the Lancaster

or Santa Clarita sites. Geographically, this could be explained

due to the site monitoring stations’ proximity to the Angeles

National Forest, which MERRA-2 and MODIS FRP provide

particularly valuable information about during wildfire season,

as this location is a hotspot for potential wildfires. Also, these

sites are the furthest from the metropolitan hub of downtown

Los Angeles, so they may experience less variability in sensor

readings compared to other sites.

Finally, we can see that ground-level meteorological and

pollutant data is crucial for air pollution prediction, as the

full MeteoGCN-ConvLSTM outperforms the satellite imagery

and remote-sensing data only model with a 36.35% decrease

in average RMSE testing set error over all site locations for

PM2.5 prediction. From Figure 8, we can visually identify

significantly more variability in predicted PM2.5 during the

later months of 2022 (i.e. August through September 2022),

coinciding with the start of wildfire season in Los Angeles.

V. FUTURE WORK

In the future, we hope to include low-cost community main-

tained air pollution site readings as input to our model. We also

hope to understand and account for the data measurement error

for ground-based site readings. Additionally, we can increase

the spatial resolution of our input grid data and thus our

predictions for finer-grained air pollution forecasting. Finally,

we hope to extend our predictive results for understanding

the health effects and impacts of forecasted air pollutants on

residents in the area, such as risk scores for developing asthma,

emphysema, and cardiovascular illnesses.
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