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Abstract— Huntington’s disease is a genetically inherited 
disorder, causing progressive degeneration of the brain. The 
mutant protein in Huntington’s disease patients exhibits 
complex biophysical properties, and affects numerous cellular 
processes. Since numerous proteins interact with either the 
normal or, the mutant huntingtin protein, or both, to decipher 
the features that enable this discrimination is a complex 
problem. We trained a Gradient Boosting Machine (GBM) on 
several protein-structural features and graph-topological 
features of the normal and the diseased proteins. The GBM 
was able to achieve an AUC up to 0.88 in predicting interacting 
partners of the mutant Huntington’s disease protein in 10-fold 
cross-validation trials. 

Keywords— Machine Learning, GBM, Systems Biology, 
Huntington’s Disease 

I. INTRODUCTION  
Huntington’s disease (HD) is a progressive neuro-

degenerative disease that affects individuals having >36 
CAG repeats in at least one allele of the huntingtin (HTT) 
gene. HTT gene function is essential for embryogenesis [1], 
[2], and brain development [3]. Htt proteins with >36 
glutamine (Q, encoded by 5’CAG3’, hence a PolyQ disease, 
caused by highQ-Htt proteins) residues in the N-terminal 
stretch (exon 1) of Q repeats causes neurotoxicity, leading 
to memory loss, progressive paralysis, and premature death 
(Myers, 2004). People with 40 repeats develop the disease, 
with the age of onset inversely proportional to the number 
of repeats above 40 (r = -0.81) [4]. While the repeat number 
accounts for 50-70% variance in age of onset, additional 
genetic and environmental factors explain the remainder [5]. 

The expanded-Q Htt (mHtt) protein exerts its effects 
mostly through a toxic gain of function via the N-terminal 
segment of mHtt produced by proteolytic cleavage [6]. The 
cellular stress due to increasing levels of polyQ aggregates 
unleashes a sustained unfolded protein response (UPR) and 
eventual neuronal apoptosis [7]. The complexity of HD can 
be attributed to the tendency of mHtt to abnormally interact 
with many proteins that either do or do not interact with the 
wild-type (wt) Htt protein in normal conditions. This is 
compounded by the presence of the Htt protein at various 
subcellular locations where it is proposed to participate in 
various signaling pathways and/or associate with numerous 
other protein partners during its normal course of action [8]. 
Among the several molecular and cellular functions 

affected, some important ones include transcriptional 
activity, vesicle transport, synaptic transmission, 
mitochondrial functions and more recently chromatin 
condensation [8], [10]. 

Experimental approaches such as Y2H (yeast two-
hybrid) mass spectrometry (MS), Tandem Affinity 
Purification (TAP) and protein microarrays have been the 
most widely adopted method to identify protein-protein 
interactions (PPIs). While Y2H is sensitive to detection of 
potential protein partners, it cannot detect interactions 
involving more than two protein partners. Additionally, 
these interactions are detected by virtue of their occurrence 
in the Y2H system and do not affirm their interaction in a 
physiological state.  

The biological data generated using these experimental 
approaches though valuable, is subject to a high number of 
false positives. Machine learning approaches utilize the 
existing knowledge of protein interactors generated using 
these experimental approaches and help predict protein 
interactors. Computational methods that integrate various 
protein features into one predictor-classifier model have 
been able to make PPI predictions with higher accuracy 
[11], [12]  

In this study, we integrate various protein features such 
as motifs, domains and their topological properties in a PPI 
network, to predict protein interactors of mutant Htt (mHtt) 
protein. We propose a Gradient Boosting Modeling (GBM) 
based classifier that helps to predict Htt-interacting proteins. 
This classifier examines the relationships between the 
topological characteristics of proteins within a PPI network 
along with the structural and functional properties of the 
proteins to group them as interactors or non-interactors of 
mHtt protein. We examined the extent to which the 
information captured by structural and network topological 
features of proteins are able to discriminate between wt and 
mHtt interaction partners, and investigate by regression 
analysis the specific features of proteins that might be 
important for this discrimination. 

II. DATA AND FEATURES 
The machine learning model was built using a set of 

primary interactors of Htt protein experimentally detected in 
wild-type and BACHD mouse brains. This dataset is a 
spatiotemporal collection of 747 candidate proteins that 
form complexes with Htt in both wild-type and BACHD 
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mouse brains [13]. This dataset was divided into 3 separate, 
non-overlapping groups viz: Group 1 –proteins that interact 
with wt Htt protein only, Group 2 –proteins that interact 
with mHtt only and Group 3 –proteins that interact with 
both wt and mHtt proteins.  

Protein sequence motifs and structural domains 
corresponding to each of the three groups in the dataset 
were obtained from the Uniprot database [14] and used as 
features for the input data.  

Additionally, graph properties were computed for each 
protein in the dataset and used as feature inputs to the 
machine learning classifier. To compute these network 
properties, we used the protein-protein interactions in 
mouse, curated by the BIOGRID database [15]. The mouse 
PPI network obtained from BIOGRID consists of 8629 
proteins and 19828 interactions.  

The following graph properties were calculated for 
candidate proteins in the input set: 

a) Average Shortest Path Length: also, known as the 
characteristic path length. It measures the expected distance 
between two connected nodes in a network [16]. 

b) Betweenness Centrality: If σp,q is the number of 
shortest paths between proteins p and q, and σp,q(r) is the 
number of shortest paths between p and q that pass through 
protein r in a protein interaction network, then betweenness 
centrality of the protein r is defined as Σσp,q(r) /σp,q , where 
the sum is taken over all distinct pairs p and q. The 
betweenness value for each node r is normalized by dividing 
by the number of node pairs excluding r [17]. 

c) Closeness Centrality: it measures the extent to 
which a protein r is close to all the proteins in the network. 
If d(r, s) is the shortest distance between proteins r and s in a 
protein network, then the closeness centrality of protein r is 
defined as (n - 1)/ q d(r, s), where n is the total number of 
proteins in the network [18]. 

d) Clustering Coefficient: it is the fraction of the total 
possible interactions among direct neighbors of a protein in 
a protein interaction network. It is always a number between 
0 and 1 [19]. 

e) Degree: is the number of edges connected to a 
node. 

f) Eccentricity: it is the maximum length of a shortest 
path between r and another node in the network. r = 0, (if 
isolated node). 

g) Neighborhood Connectivity: The neighborhood 
connectivity of a node r is defined as the average 
connectivity of all neighbors of r [20]. 

h) Radiality: it is an index computed as follows: 
(Diameter of the connected component of node r) – 
(Average shortest path length of a node r) + 1. It is a number 
between 0 and 1. 

i) Stress Centrality: is the number of shortest paths 
passing through a node. 

j) Topological Coefficient: this is a measure 
attributed to those proteins in the network that are not 
necessarily directly connected to each other. The measure is 
given by TCp = average(J(p,j)/kp), where J(p, j) denotes the 
number of nodes to which both p and j are linked, plus 1 if 
there is a direct link between p and j and kp is the number of 
links of node p [21]. 

The graph properties of the proteins were calculated 
using the Network Analyzer application in Cytoscape [16], 
[22]. 

B. Dataset Formatting 
Variable names for motif and domain information were 

coded, with numerical identifiers for classifier models. 
Additionally, presence of motif or domain for a certain 
protein was denoted as ‘1’ while absence of a motif was 
denoted as ‘0’. The resultant master dataset had 554 proteins 
as rows/observations and motifs, domains and graphical 
properties (n=779) as columns/dimensions. Detailed 
characteristics of the master dataset are given in Fig.1. As the 
master dataset was sparsely populated with a higher number 
of variables than the number of observations a variable and 
dimension reduction method was used. (see later). 

C. Classification Target 
The ternary target variable with 3 levels (Group-1, -2, 

and -3) was transformed into a binary target as follows: (a) 
proteins that interact with wHtt only (n = 116) (group1) and 
(b) proteins that interact with mHtt (n = 438) (group 2 (n = 
108) + group 3 (n= 330)). This approach improved the 
model’s predictive power. 

III. METHODS 

A. Variable and Dimension Reduction 
The set of variables that best capture the relationship 

between the response variable and the predictor variables 
was determined by calculating the Information Value (IV) of 
the predictor variables [23]. Additionally, Principal 
Component Analysis (PCA) of motif and domain variables 
was used for dimension reduction [24]. The prcomp package 
in R was used for PCA. 

B. Gradient Boosting Machine (GBM) 
Gradient Boosting is a process that generates an 

ensemble of trees and uses the concept of ‘boosting’ to 
serially add new prediction models to the ensemble. A new 
weak, base-learner model is trained at every iteration based 
on the negative gradient of the loss function of the entire 
ensemble obtained till that point [25]. A ‘binomial’ 
distribution was used to calculate the loss of function 
gradient to account for the binary nature of our response 
variable. The model complexity is controlled by using a  
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Fig. 1. Characteristics of data fed to the classifiers. 

 

shrinkage factor that reduces the impact of each base-learner 
model added to the ensemble and improves accuracy. The 
gbm package in R was used for running the GBM model with 
the following parameters: 

• n.trees – the total number of trees to fit which is equal 
to the number of iterations.  

• cv.folds – number of cross-validations. 

• interaction depth – the maximum depth of variable 
interactions. 

• n.minobsinnode – minimum number of observations in 
the terminal nodes of the trees. 

• shrinkage – also known as learning rate or step-size 
reduction parameter. 

IV. RESULTS 
The master dataset was prepared by imputing the missing 

values. The missing values in the motif and domain predictor 
variables were replaced with “-1” while those in the 
topology/graphical predictor variables were imputed with the 
mean of their respective column data. The 769 predictor 
variables (motif, domain and graph-theoretic properties) in the 
master data, were reduced dimensionally using two approaches 
– (a) Information Value (IV) and (b) Principal Component 
Analysis (PCA). 

A. Variable and Dimension Reduction 
The IV of the motifs, domains, and graph-theoretic 

variables ranged from 0.2256 to 0.0108. An IV cutoff  0.056 
was chosen for variable reduction.  
Additionally, PCA on the motif and domain variables (n = 
769) revealed 554 principal components (PCs). The top three 
PCs capturing the most variance (33.5 %, 7.9 % and 5.3 %) 
were combined with 10 graph-theoretic variables to form a 
development dataset for further testing. Three configurations 
of input data were considered (Fig. 1): 

a) Experiment 1 – Raw input of master dataset with 
imputed missing values: 779 predictor variables. 

b) Experiment 2 – [Variable selection of motif and 
domain variables using an IV cutoff of  0.056]. + 
[Topology/Graphical predictors]:157 predictor variables. 

c) Experiment 3 – [Variable reduction of motif and 
domain variables using PCA] + [Topology/Graphical 
predictors]: 13 predictor variables. 

B. Gradient Boosting Machine (GBM) 
A GBM model was used to fit the input data for all the 

three experiments. The parameters used for initial experiments 
were ntrees = 5000, cvfolds = 10, interaction depth = 1, 
n.minobsinnode = 1 and shrinkage = 0.001. Initial 
implementation of the GBM algorithm on all the three 
experiments showed that the AUC ranged from 0.584 to 0.6, 
with experiment 2 obtaining the highest AUC (0.6) among the 
three experiments. Experiment 2 selected variables by using 
Information value  0.056 and was consistently found to be 
the best approach for variable reduction across all machine 
learning algorithms we tested. 
Hyper-parameter tuning experiments conducted on the 
Experiment 2 dataset showed that a shrinkage factor of 0.001 
and a n.minobsnode of 10 gave the highest AUC of 0.61 for 
experiment 2. The experimental design and the AUC values 
from 10-fold cross-validations are shown in Table I. 

C. GBM with Data Segmentation 
Encouraged by the prospect of better prediction accuracy 

using data segments, we adopted a segmentation approach 
with the GBM model and divided the master dataset into three 
segments as follows: 

a) Segment 1- Motif-Topology segment - containing 
proteins with only motif and topological properties (48 
proteins, 60 predictor variables). 

b) Segment 2- Domain-Topology segment – containing 
proteins with only domains and graphical properties (231 
proteins, 596 predictor variables) and 

c) Segment 3- Motifs and Domain-Topology segment- 
containing proteins with motifs, domains and graphical 
properties (35 proteins, 143 predictor variables). 
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TABLE I.  AREA UNDER CURVE FOR ALL EXPERIMENTS USING GBM 

GBM Experiments AUC  
(10-fold cv)  

Experiment 1 – Raw input of master dataset with imputed missing values 0.591 

Experiment 2 – [Variable selection with an IV cutoff >= 0.056] 0.6 

Experiment 3 - [Top 3-PCs on all motif/domain information without IV filtering] + [Topology/Graphical properties] 0.584 

GBM Segment Experiment 1 - [Variable selection of motif variables using PCA]. + [Topology/Graphical properties]: 0.88 

GBM Segment Experiment 2 - [Variable selection of domain variables using PCA]. + [Topology/Graphical properties]: 0.594 

GBM Segment Experiment 3 - [Variable selection of motif and domain variables using PCA]. + [Topology/Graphical properties]: 0.588 

 
Note that the number of input predictor variables vary 

for each segment since the set of proteins in each segment 
contains a different number of motifs and/or domains. 
Principal Component Analysis (PCA) was used for motif and 
domain variable reduction. Three configurations of input data 
were considered for analysis. 

a) GBM Segment Experiment 1 – [Variable selection of 
motif variables using PCA]. + [Topology/Graphical 
predictors]: 22 predictor variables. 

b) GBM Segment Experiment 2 – [Variable selection of 
domain variables using PCA]. + [Topology/Graphical 
predictors]: 95 predictor variables. 

c) GBM Segment Experiment 3 – [Variable reduction of 
motif and domain variables using PCA] + 
[Topology/Graphical predictors]: 23 predictor variables. 

The parameters used for GBM were: ntrees = 5000, 
cvfolds = 10, interaction depth = 1, n.minobsinnode = 1 and 
shrinkage = 0.001.  

The 10-fold cross-validated AUC values from these 
experiments are given in Table I.  

AUC values for all the three experiments range from 0.55 
to 0.88. 

Fig. 2. Receiver Operating Curves (ROC) for data segments of the master 
dataset using GBM model. 

GBM Segment Experiment 1 with motifs and topology as 
predictor variables revealed the best prediction accuracy 
(AUC = 0.88) for the proteins belonging to group 2 and group 
3 (n = 330) (Fig. 2). 

D. Important Predictor Variables 
Table II shows the top 5 important variables for GBM 

Segment Experiment 1 in predicting proteins that interact with 
mutant Htt protein. Among the graphical properties of 
proteins, degree, average shortest path length, betweenness 
centrality and neighborhood connectivity were found to be the 
most important predictor variables. This is indeed true as a 
protein with numerous interacting proteins is more likely to 
interact with Huntingtin protein. Next, we examined the motif 
variables that contributed to the PC4, PC6 and PC10. 
Important motifs in the list were found to encode for an amino 
acid sequence relating to nuclear localization signals in 
proteins (Table III). These specific proteins are encoded by 
genes such as RAB3D, RAB3A and RAB3B which are known 
to function in GTPase mediated signal transduction pathways 
and vesicle mediated transport. We also find the gene NPM1 
that encodes for a protein that is essential for ribosome 
biogenesis, centrosome duplication histone assembly and 
suppression of p53/TP53. Another set of proteins SLC25A4p 
and SLC25A5p are involved in chromosome segregation and 
in catalyzing exchange of ADP with mitochondrial ATP 
across the inner mitochondrial membrane. 

The above findings recapitulate the observations made in 
various animal and cell models of HD and therefore lend 
support to the results obtained by the GBM model. Results 
from this study are consistent with and support our recent 
review summarizing experimental evidence pointing to the 
importance of epigenetic mechanisms in Huntington’s disease 
[10].  

TABLE II.  TOP 5 VARIABLES PREDICTING PROTEIN INTERACTORS OF 
MUTANT HUNTINGTIN PROTEIN USING GBM MODEL. 

Predictor Variable Relative 
Influence 

Degree 12.17 

PC4 11.70 

Average Shortest Path Length 10.88 

PC10 9.16 

PC6 8.98 
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TABLE III.  GENES AND THEIR ENCODED PROTEINS CONTAINING MOTIFS OF IMPORTANCE FOR GBM SEGMENT EXPERIMENT 1. 

Motif Name 
Mouse 

Uniprot ID 
Human 

Ortholog 
Protein Function 

MOTIF 153 158 Nuclear localization signal 
MOTIF 686 690 DXDXT motif 
MOTIF 697 701 LXXIL motif 

Q99PI5 LPIN2 
nuclear transcriptional coactivator for PPARGC1A to modulate lipid 
metabolism, fatty acid metabolism. 

MOTIF 51 59 Effector region P35276 RAB3D GTPase mediated signal transduction, protein (vesicular) transport. 

MOTIF 51 59 Effector region 
P63011 
Q9CZT8 

RAB3A 
RAB3B 

exocytosis, regulation of synaptic vesicle fusion, neurotransmitter 
release. 
vesicular protein transport. 

MOTIF 55 65 HIGH region 
MOTIF 718 722 KMSKS region Q8BMJ2 LARS nucleotide binding and aminoacyl-tRNA editing activity. 

MOTIF 372 377 Selectivity filter 
MOTIF 493 495 PDZ-binding P16388 KCNA1 ion channel activity and potassium channel activity primarily in the 

brain. 
MOTIF 152 157 Nuclear localization signal 
MOTIF 190 196 Nuclear localization signal Q61937 NPM1 ribosome biogenesis, centrosome duplication, histone assembly, cell 

proliferation, and regulation of tumor suppressors p53/TP53. 

MOTIF 235 240 Substrate recognition P48962 
P51881 

SLC25A4 
SLC25A5  

chromosome segregation, exchange of cytoplasmic ADP with 
mitochondrial ATP across the mitochondrial inner membrane. 

 
Experiments in our lab demonstrated that mHtt inhibits the 

function of ribosomal protein L11p, condensin proteins 
Smc2p/Smc4p and other chromatin proteins which are 
responsible for ribosomal DNA (rDNA) condensation [26]. 
These abnormal interactions may lead to fragmentation of 
nuclear DNA and initiate a DNA damage response involving 
p53, leading to apoptosis. We therefore propose that 
epigenetic mechanisms related to mHtt occur either due to (a) 
a direct interaction of mHtt with epigenetic regulators, (b) an 
indirect interaction of mHtt with regulators of neuronal 
metabolism leading to DNA damage, and/or (c) direct 
interaction with proteins involved in chromosome 
condensation specifically at the ribosomal DNA [10]. While 
there is no direct evidence yet that mHtt-mediated apoptosis in 
human cells can be triggered by abnormal chromatin 
condensation, this is certainly an area of further research 
considering the proteins predicted in-silico by our GBM 
model (Table III).  

Overall our study lends support to our hypothesis that mHtt 
interferes with processes important for HD pathogenesis such 
as ribosomal DNA condensation and DNA repair processes 
leading to accumulation of DNA damage in neuronal cells and 
apoptosis [10]. 

V. CONCLUSION 
Our results demonstrate the informative value of motifs, 

domains of proteins in predicting interactors of mHtt. We 
show that graph theoretic properties of these protein 
interactors also help to determine a possible existence of 
interaction with Htt. We demonstrate that Information Value 
(IV) can be used for variable reduction in sparse datasets to 
provide better prediction accuracy. Additionally, a 
segmentation approach using the GBM model coupled with 
PCA for dimension reduction, enables us to reach a higher 

prediction accuracy. The protein motifs of relative importance 
detected using this approach are known to be affected in HD. 
Future testing of datasets with this model can be used to 
predict interactors of mHtt and can provide helpful molecular 
links in understanding the complex pathology of Huntington’s 
disease. 
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