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Abstract— In this paper, Convolution Neural Network
(CNN) and a special variant of Recurrent Neural Network
(RNN) named Long Short-Term Memory Model (LSTM) with
peep hole connection is developed for optical character recog-
nition (OCR). Data-set of mathematical equations known as
Image to Latex 100K is retrieved from OPEN-AI and used for
testing the model. First, the mathematical equations from the
images are converted to Latex texts. Then this Latex text is used
to render the mathematical equations. The proposed method
uses the tokenized data, which is sequentially given to the deep
learning network.

The sequential process helps the algorithms to keep track
of the processed data and yield high accuracy. A new vari-
ant of LSTM called “LSTM with peephole connections” and
Stochastic “Hard” Attention model was used. The performance
of the proposed deep learning neural network is compared
with INFTY (which uses no RNN) and WYGIWYS (which uses
RNN). The proposed algorithm gives a better accuracy of 76%
as compared to 74% achieved by WYGIWYS.

— Convolutional Neural Network, Recurrent
Neural Network, Long Short-Term Memory (LSTM) with
peephole connections. IMAGE2LATEX 100K.

I. INTRODUCTION

In modern times, printed paper data records, consisting

of passport documents, invoices, bank statements, printouts

of static-data, or any appropriate documentation are being

stored in the form of digital copies. It is a common practice

to digitize printed texts so that it can be electronically edited,

searched and stored, and can be used for text mining. Optical

Character Recognition (ORC) can be used to convert printed

texts into a digital representation. In the 1900s, an early

form of optical character recognition (OCR) was used in

the technologies such as telegraphy and reading device for

blind people. In 1914, Emanuel Goldberg invented a device

that could read characters and translate them into standard

telegraphic code [1]. In general, OCR is used to identify

and read a natural language from an image and convert

it into standard representation. In 1967, the research work

of Anderson R.H, there has been a surge in interest for

extracting patterns from images for representing them in

markup form, which is a correct semantic representation of

the images [2].

In the early 2000s, Andrew Kae and Erick Miller ad-

dressed the OCR problem in an efficient w ay w ith the

computational power that existed during that time [3]. How-

ever, with the advancement in computational power both in

hardware and software, a great deal of research interest has

emerged in OCR. The availability of graphical processing

units (GPUs) in hardware and the development of pattern

recognition algorithms based on deep learning have given

a thrust to the new algorithms of OCR based on convolu-

tional neural networks (CNNs) and recurrent neural networks

(RNNs) etc. [4].

In 2003, Fukuda and Tamari invent a system that takes

in handwritten mathematical expression and converts it into

TeX format [5]. However, the focus of this paper is to use

an optical character recognition mechanism for an image of

mathematical formulas, including Greek symbols, superscript

and subscript conversion in markup form [5]. The effective-

ness of this system can be measured by the combination

of segmented characters with grammars of the underlying

mathematical layout language.

In this paper, we have used a data-set obtained from

OPENAI website, which contains an image of mathematical

formulas. In this experiment, the deep learning techniques

named CNN and LSTM with peephole connections have

been used to convert the mathematical formulas into Latex

representation. In this paper, a new variant of LSTM unit

called LSTM with peephole connections and a Stochastic

Hard Attention mechanism based encoder- decoder model

for Image-to-Latex 100K data set [5] [6]. At present, this is

the best machine translation system we have. This model

comprises of multi-layered convolution neural network to

obtain the features of an image with the attention-based

recurrent neural network. In our case, we introduce one more

layer of the multi-row recurrent neural network called LSTM

with peephole connection in front of attention model, so that

it should addresses the OCR problem. Image2Latex 100K

Data-set.

II. IMAGE2LATEX 100K DATA-SET

Image-to-latex-100k data set contains 127,652 different

mathematical equations along with their rendered pictures in

PNG format. The mathematical formulas have been extracted

from the Latex sources of papers available on the arXiv web-

site (https://arxiv.org/). These latex sources of papers were

parsed through the regular expressions in python to obtain

the mathematical formulas. In this research, the size of the
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formulas is restricted in between 35 to 1024 characters. The

regular expression generated 963,890 different latex formulas

from the latex sources. Amongst these 900K, formulas only

300K formulas were chosen to pass through the KaTeX API

to render the PDF files and only 100K formulas were used

to compare the proposed model with the existing models like

WYGIWYS. These PDFs were converted into PNG format

and the size of each rendered image was 1654 2339 pixels.

To improve the results, rendered images were cropped to

360 60 pixels. Once these images were cropped, they were

divided into tokens to train the model and all the large size

images with more than 175 tokens have been discarded. The

Training batch size is set to 35 tokens because of the size

limit of GPU memory.

III. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNNs) fall under the

purview of deep learning. They are specifically used for

high dimensional data processing such as colored images,

videos etc. CNNs are multilayer feedforward networks. Each

neuron in the convolution layers performs a dot product of

image pixels with a filter. Each convolution layer is followed

by Rectified Linear Unit (ReLu) layer and pooling layer.

ReLu is a nonlinear activation function, which is used to

perform a transformation on the images. The dimensionality

of the image is reduced as the computation moves forward

in successive layers and it is achieved by pooling layer.

The output of the pooling layer becomes the input for the

next convolution layer. Figure 1 shows an illustration of

Convolutional Neural Network [26].

For example, in Figure 1 an image of 32*32 size with 20

filters each of size 5*5 are used to extract features, which

will produce 20 activation feature maps and it is forwarded

to pooling layer. Then with a filter size of 5*5 in pooling

layer and a stride of 1 pixel, the image reduces to 28*28.

This reduced image is then forwarded to the convolution

layer and pooling which will reduce the image to 14*14 and

so on, until the image is reduced to dimension 1*1. CNN

architectures are completely relied on four hyper-parameters

such as Filters, Pooling, Stride, and Padding to give the

optimal results.

A. Layers in a CNN

1) Convolutional Layer: A convolutional layer consists of

set of filters. Filters are small spatially; however, it covers

the depth of an input volume (for example, if filter size is

5*5*3 i.e. 5-pixel width and height and 3 is the depth of the

image because of color channel). Filters are used to extract

features from an image. In feature extracting process, filters

are moved across the image with given strides and perform

dot products with the entries of the filter and the input at

any position. As the filter is moved across the input volume,

it produces a 2-dimensional activation feature map for that

filter. For instance, if there are 20 filters of size 3*3, then

there will be 20 activation feature maps for each filter and

each feature map shows the responses of the respective filters

at every spatial position. So, the input to the next layer would

be these activation feature maps (for example, in Figure 2 the

size of the activation feature map is 4*4 and if there are 20

such activation feature maps, then the input to the next layer

would be 4*4*20). In Figure 2, the image size is 5*5, filter

size is 2*2, and stride of 1 pixel and the activation feature

map is 4*4. The activation feature can be calculated with a

formula i.e. (W-F)/S+1 where W is the size of the image, F

is the filter size and S is the stride size. Calculation for a

resulting activation feature map in Figure 2 is given by:

= (W − F )/S + 1

= (5− 2)/1 + 1

= (3)/1 + 1

= 3 + 1

= 4

Now, we repeat this process for every location on the input

volume. Every unique location on the input volume produces

a number. After sliding the filter over all the locations, we

are left with a two-dimensional array, which is called an

activation map, or feature map.

Calculation of first convolution is computed by moving a

filter with given stride across the image pixels and perform

the dot product to get the activation feature map (for exam-

ple, first pixel of image is multiplied to the first pixel of the

filter (0*1)). Calculation of first convolution as follows [14].

= (0 ∗ 1) + (1 ∗ −1) + (0 ∗ 1) + (1 ∗ 1)
= 0

2) Rectified Linear Unit (ReLU): ReLU is a non-linear

activation function, which is used to apply elementwise non-

linearity. ReLU layer applies an activation function to each

element, such as the max (0, x) thresholding to zero. ReLU is

by far the most successful activation function in deep neural

network. Figure 3 shows the behavior of ReLU function.

ReLU finds the negative values out of input and threshold it

to zero.

3) Pooling Layer: CNN uses pooling layers for down-

sampling. Pooling layers are interleaved in-between succes-

sive convolutional layers. It is used to reduce the size of

the image so that the number of parameters get reduced and

helps to control overfitting. The Pooling layer works on every

activation feature maps independently and resizes it spatially,

using MAX operation. For example, in Figure 4 a pooling

layer with filter size 2*2 and stride 2 will reduce the image

of size 4* 4 to 2*2 i.e. 50% less than the previous size. The

max operation is used to find the largest number amongst

the numbers that fall into a given filters window [14].

For example, in Figure 4 if the filter size is, 2*2 then it will

cover the first rows and two columns and it will apply max

operation as shown below. In Figure 4, the final reduced size

of an output is shown, i.e. 2*2.

= max(2, 1, 0, 3)
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Fig. 1. Convolutional Neural Network[26].

Fig. 2. The process of convolution on 5*5 image with 2*2 filter produce
4*4 Activation feature map[14].

Fig. 3. Rectified Linear Unit.

Fig. 4. Pooling Layer.

= 3

4) Fully Connected Layer: Fully connected layer is the

last layer of the CNNs. This layer takes an input from

preceding layer (i.e. convolutional layer or pooling layer or

relu layer) and outputs an N dimensional vector, where N

is the number of classes that algorithm must choose from.

For example, in digit classification problem, N would be

10 because there are 10 digits (from 0-9) in our number

system. Each number in this N dimensional vector specifies

the probability of a certain class. For example, if the outcome

of a digit classification problem is [0 .05 .05 .65 .1 .1 0 0

.05 0] vector, which means that there is probability of digit

1 is 0%, digit 2 is 5%, digit 3 is 5%, digit 4 is 65%, digit 5

is 10%, digit 6 is 10%, digit 7 is 0%, digit 8 is 0%, digit 9

is 10% and digit 10 is 0%. Therefore, this vector represents

that the given image is 4 because of high probability of the

corresponding number in the vector. FC layer performs a dot

product with the output of the previous layer and the filters

and produce the N-dimensional vector, which contains the

probabilities for the different classes.

IV. RECURRENT NEURAL NETWORK

Figure 5 shows the RNN architecture, where each ver-

tical rectangular box is a hidden layer and each layer

contains several neurons. RNN comprises of the input lay-

ers (Xt−1, Xt, Xt+1), hidden layers (ht−1, ht, ht+1), output

layers (yt−1, yt, yt+1) and weight matrices (W,U, V ). RNN

takes one input at each time step (for example, at time t, the

first input Xt is given to the network) and then it is passed to

the hidden layer to predict the output. The hidden layers are

the important part of the RNN, because they keep the track
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Fig. 5. RNN Architecture.

of the previous work. The hidden layers take inputs from its

input unit and from its previous hidden layer to predict its

output. The weight matrix of the hidden layer (i.e., W as

shown in Figure 5) has to be squared, because it helps to

keep the same number of inputs, as there are outputs. The

input layer matrix (i.e. U ) and output layer matrix (i.e V )

need not be squared, because it can connect to any random

number of inputs to any random number of hidden units.

In the beginning, all the weight matrices (i.e W,U, V ) are

randomly initialized.

The first hidden layer is initialized by the dot product of

its current input Xt−1 at time t − 1 and weight matrix U .

This dot product is passed through the activation function

(sigmoid function) to generate the values for the first hidden

layer. In general, to process the data, RNN takes an input

Xt at time t, multiply it with weight matrix U and pass it

to hidden layer ht, an output of the previous hidden layer

ht−1 parameterized with weight matrix W is given to the

current hidden layer ht to predict the output yt. The output

yt is obtained by taking a dot product of the present hidden

layer ht and weight matrix V . This process keeps on going

until it covers all the layers and predict the final output.

A. Long Short-Term Memory (LSTM)

In this paper a special case of RNN called Long-Short-

Term Memory (LSTM) with a peep hole connection is

used.The main unit of an LSTM network [12] is the memory

unit. This memory unit comprises of a cell state and a pair

of gate layers as shown in Figure 6.An LSTM unit consists

of three main states called cell state (Ct−1, Ct,), input state

(Xtandht−1) and output state (ht−1) and have four gates

called forget gate (ft), input gate (it), new memory gate (Ct),

and output gate (Ot) to perform the internal operation [6].

The cell state (Ct−1, Ct,) is a crucial part of the LSTM (also

called a memory unit) that runs through all the LSTM units

in the network to transfer the information. This information is

modified with the help of gate layers (a systematic work-flow

of the four gates is shown in Figure 6). These gates are used

to regulate the information and help LSTM to decide what

information must be removed and what must be retained.

Each LSTM unit has four gates that protect and control the

flow of the information of cell state Ct−1. These gates are

Fig. 6. Block diagram of LSTM.

a way to allow correct information flow through one LSTM

unit to another. Each LSTM unit takes three inputs Xt, ht−1,

and Ct−1 and generates one output ht and a new cell state Ct.

The input Xt given to LSTM can be a character, a word, or a

speech, input ht−1 which is an input from the previous unit

helps to control the flow of the information. If the current

unit is the first unit of the LSTM then there is no previous

input. In that case, a randomly generated value for ht−1 is

given to the first unit to compute the functional blocks of

sigmoid and tanh. Once these inputs are processed through

the internal gates, then they are used to update the cell state

Ct−1 to Ct and help to predict the output ht of the current

LSTM unit.LSTM unit consists of four neural network layers

and three of them are using sigmoid activation function and

one is using tanh activation function as shown in Figure 6.

Figure 7 shows the peephole model of LSTM model. The

proposed method uses a Convolutional Neural Network, a

new variant of LSTM called LSTM with peephole connection

.Peephole LSTM uses a weighted peephole connections from

the cell state unit (Ct−1) to all the gates in the same memory

unit as shown in Figure 7 [9]. The peephole connections

allow every gate to assess the current cell state even though

the output gate is closed and this peephole connections

helped the proposed model to surpass the accuracy of the

model called Update patterns in peephole LSTM along

with the Stochastic “Hard Attention Model”. Each cell state

component must be updated based on the most current

activation’s of peep connection. The peephole connections

need two-phase update scheme. In the first phase, when the

recurrent connections are made with the gates, the following

gates will be activated.

1) Input gate

2) Forget gate

3) Cell state

In Second phase, the output gate and the output of the LSTM

unit will be activated [9].

V. PROPOSED METHOD

A. Convolutional Neural Network (CNN) Features extrac-
tion.

The proposed model takes a raw image and generates

a Latex representation yencoded as a sequence of 1-of-K
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Fig. 7. LSTM with “peephole connection”.

encoded latex word [25].

y = y1, ..., yc, yiR
K

Where K is the size of the Latex vocabulary and C is the

length of the Latex representation. In the proposed model,

a convolutional neural network is used to extract a set of

feature vectors, which is referred as an annotation vectors.

The length of the generated annotation vector is L, each of

which represents a D-dimensionality corresponding to a part

of the image.

a = a1, ..., aL, aiR
D

In this research, the features were obtained from the lower

level of the CNN to get the close correspondence between the

feature vectors and portions of the 2-D image, which allows

the decoder (LSTM) to effectively emphasis on certain parts

of an image by selecting a subset of all the feature vectors.

In basic terms, at time t, the relevant part of an image is

dynamically represented by context vector zt‘. The mech-

anism Φ that calculate zt‘ from the annotation vectors

ai, i = 1, ..., L represents the features that were extracts from

different image locations. At each location i the attention

mechanism calculates a positive weight αi which can be

recognized as the probability of that location i which then

can be used by attention mechanism to focus for generating

the next word in the sequence. This process is called hard

but stochastic attention mechanism or a relative recognition

can be given to ith location in the ais together. The positive

weight αi of every annotation vector ai is generated by a

hard attention model fatt and to compute that, a multilayer

perceptron is conditioned on the hidden state ht−1. The

soft attention mechanism was introduced by Bahdanau et al.

(2014).

In general, the hidden states of the RNN network changes

as the output advances to the next level in the sequence

however the next move of the network will rely on the

previously generated words in the sequence.

eti = f(att)(ai, h(t−1))

αti =
e((eti))

(
L∑

(k=1)

e((eti)))

Once the weights (which sum to one) are computed, the

context vector zt‘ is computed by,

zt‘ = Φ(ai, αi)

Once the annotation vector and positive weights are gen-

erated, the Φ function returns a single vector to calculate

the output. We has used the hard attention mechanism to

generate the output [25].

The entire proposed model is shown in Figure 8. It shows

the six layer of CNN and LSTM part along with the attention

model. A latex representation can be seen at the output of

the model.

VI. RESULTS

The experimental results are summarized in Table 1.

The proposed method is compared with the previous two

methods called INFTY and WYGIWYS on the bases of

BLEU (Bilingual evaluation understudy) metric and Exact

Match [10]. BLEU is a metric to evaluate the quality for the

predicted Latex markup representation of the image. Exact

Match is the metric which represents the percentage of the

images classified correctly. The accuracy of the proposed

model is 75.87% which is the highest in this research area.

Previously, the highest result was around 73% achieved by

WYGIWYS (What You Get Is What You See) model [21]. A

Figure 9 shows an original image given to the model, Figure

10 shows the latex representation of the original image as

an output, and Figure 11 shows the rendered image that is

used to check how relevant is the latex representation to the

original image.

TABLE I

EXPERIMENT RESULTS ON IMAGE-TO-LATEX DATA-SET.

Model Preprocessing BLEU Exact Match
INFTY – 51.20 15.60

WYGIWYS Tokenize 73.71 74.46
PROPOSED MODEL Tokenize 75.08 75.87

VII. CONCLUSIONS

In this research, a new variant of LSTM called LSTM with

peephole connections and Stochastic hard Attention model is

used to address the problem of OCR. In this experiment, the

dataset called Image2latex-100K is used. However, I also

have generated 200K Images of the mathematical equations

to train and test my model. In this research, it is show that

a new variant of the LSTM has outperformed the previous

work based on traditional LSTM. This work will encourage

other researchers to try the new variant of LSTM for ORC

or sequence to sequence related work. For possible future

work, this research can be scaled from printed mathematical

formulas images to the hand written mathematical formulas
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Fig. 8. The proposed model with CNN, LSTM, and Hard Attention.

Fig. 9. Original image given to CNN.

Fig. 10. Final Output of the model with latex representation .

Fig. 11. Rendered Image to check the relevance with the original image.

images. To recognize the hand written mathematical formu-

las, one can implement the bidirectional LSTM with CNN

[18]. It can also be used to generate an API for latex code.
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