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Abstract—This paper presents the analysis of the weather
routing scenario in a multi-criteria setup. The set of 3 con-
flicting criteria is: added navigation resistance (caused by wind
and waves), navigation risk and travel time. To this aim the
International Maritime Organization (IMO) safety guidelines are
exploited for the design of navigation risk criterion as function of
the METeorological and OCeanographic (METOC) and sailing
conditions. This is directly integrated in the multi-criteria setup.
The proposed methodology is tested in an operational scenario
in the Mediterranean Sea showing the different alternatives to
the decision-makers.

Index Terms—Weather routing, Decision support, Maritime
risk assessment, Maritime safety, Pareto front

I. INTRODUCTION

In the last years, weather routing has gained attention within

the naval operations aiming to reduce the Greenhouse Gas

(GHG) emissions, increase the safety at sea and operational

endurance [1]. As highlighted in [2] a proper operational plan-

ning and decision-making methodology can achieve 2 − 4%
reduction on the GHG emissions and savings in fuel consump-

tion.

Through the weather routing systems, the route toward a

destination is optimized as function of the METOC forecasts

and the derived sailing conditions based on the vessel type and

its current operation (surge, heading, loading conditions, etc.).

Due to the nature of the problem, the weather routing problem

is usually modelled through the multi-criteria optimization

perspective in order to include conflicting criteria for a com-

plete assessment of the available routes. Several approaches

were developed to model the weather routing problem ranging

from constrained graph problems [3], constrained nonlinear

optimization problem [4] to a combination of both. In contrast

to the existing systems [3], [5], in which the navigation safety

criteria are used for the declaration of navigation constraints

defining the areas where the navigation is allowed and not

allowed, in our paper the focus is on the translation of the

navigation risk into a new metric to be minimized within a

multi-criteria optimization setup. This design choice is based

on the fact that, navigation risk and safety of a route is usually

determined by the vessel operator experience at the decision

stage. For this reason, we consider a conservative and limiting

approach to remove from the solution space the areas where

the navigation may be too risky based on ad-hoc constraints.

For the above mentioned considerations, the paper proposes a

weather routing system, where the navigation safety represents

a criterion to be minimized together with other additional

criteria such as the travel time and the added resistance caused

by the interaction of the ship with winds and/or waves. The

proposed weather routing system is tested in the operational

planning of the route from the port of Tunisi (TN) to the port

of Genova (ITA) in the Mediterranean Sea.

The paper is organized as follows: the architecture of the

proposed weather routing system is presented in Section II, in-

cluding details about the proposed implementation. Section III

presents the scenario and the results for the determination of

the best trade-off route between the selected locations. Finally,

the summary of the main findings and future work are given

in Section IV.

II. MULTI-CRITERIA WEATHER ROUTING OPTIMIZATION

FRAMEWORK

Weather routing systems are characterized by a common

architecture composed of 4 main components, as depicted in

Figure 1. The Environmental layer collects the data available

from the Area of Interest (AOI) and selected time-frame.

Through this component the future METOC conditions (fore-

casts) are provided. The Ship properties component describes

the static and dynamic behavior of the selected ship in order to

model navigation status. These data are used at the Planning
layer to compute the set of possible routes between the

selected start and end locations through the solution of an

optimization problem. Finally, the solutions provided by the

Planning layer are analyzed at the Decision layer to select the

solution representing the best trade-off among the available

solutions. In the following subsections, each component of this

weather routing system is briefly detailed for completeness.

A. Environmental layer

The Environmental layer is the system component in charge

of managing the access to the data available for the given

AOI with data coming from field measurements (e.g. satellites,

sensor buoys, etc.) and from METOC forecast providers. The

availability of these data allows users and routing systems to
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Fig. 1: Architecture of the proposed ship weather routing

system.

estimate the evolution of the environment in the selected AOI,

both in time and space. Considering the particular application

of weather routing, the selected variables/parameters are the

ones that have direct impact on the navigation safety of a ship

[6], [7]. These parameters are the ones able to fully specify

the sea waves (HS [m]), wave period (T [s]), wave length (λ
[m]) and wave direction (α ° respect to North direction). They

also include the mean wind direction (φ ° respect to North

direction) and wind intensity/speed (U10 [ms−1] measured at

10 m above the sea-surface). Finally, the bathymetry or depth

profile over the AOI is required to identify the areas where the

navigation is allowed and where the maneuverability is limited

(due to the shallow water [8]).

B. Ship properties

The Ship properties is the system component providing

the inputs to the navigation model to estimate the navigation

behavior of the selected ship. It consists of a set of static

and dynamic parameters. The static parameters are the ones

characterizing the shape of the ship and its hull, such as length

(m), draft (m) or beam (m). The dynamic parameters are

current surge U (kn), heading ψ (° respect to the North direc-

tion) and sea waves conditions. All this determines the sailing
conditions. As an example, the wave period experienced by

the ship, known as wave encounter period, Te, is determined

as function of the encounter angle χ, the vessel surge U and

the wave celerity c = λ/T as reported in Equation (1) [9].

Te =
λ

c+ U cos(χ)
(1)

Due to the adverse METOC conditions and/or the current

course, the ship may face dangerous situations [6] that must

be modelled in the definition of a weather routing tool. In this

implementation, the Ship properties component collects the

following parameters: ship length (m), draft (m), beam (m),

metacenter height (m), maximum surge (kn).

C. Planning layer

The Planning layer represents the computational core of the

weather routing system. At this level the waypoints character-

izing a route are computed based on the METOC forecasts and

the derived sailing conditions. To this aim, in this paper the

weather routing problem is addressed and solved as a multi-

criteria path finding problem through the Martins labelling

algorithm [10].

At this level, the graph spatial grid G(N,A) with N =
{1, . . . , n} the finite set of location nodes, and A ⊆ N × N
the finite set of linking edges is computed based on the

specified departure and arrival geographical locations [11].

Starting from the nominal route [12] from origin to destination,

a perpendicular to the route multistage grid is defined. The

start and the end locations represent one node each and along

the route new nodes are added to each stage. The graph spatial

grid is composed by a finite number of stages where each node

of one stage is connected to all the nodes in the next. Finally,

the resulting graph spatial grid is then cleaned of the edges

and nodes where the navigation is not allowed (e.g. depth too

low, edge crossing land, etc.). In contrast to existing systems

[3], [5] in which the navigation safety criteria are used for the

definition of navigation constraints to limit the areas where

the navigation is allowed and not allowed (by removing the

edges involved), in this paper all the available waterways are

kept in the graph spatial grid, and the safety/risk criteria are

included as discussed below.

In order to compute the optimal path between the source

and destination locations, it is necessary to associate to each

edge a cost. In this implementation we are concerned with

the multi-criteria path finding problem, therefore each edge is

characterized by a set of 3 costs defining the cost for sailing

through the selected edge. The 3 criteria used in this setup are

the following:

• Travel time: Computation of travel time for traversing

the edge based on the current sailing conditions [13].

• Added ship resistance: Estimate of the added resistance

caused by waves and winds. This criterion enables the

user to investigate the relation between the fuel consump-

tion and the various sea states and directions that the ship

may encounter during the voyage [14].

• Navigation risk: Estimate of the navigation risk based

on the sailing conditions as function of the METOC

conditions and ship properties and configuration. This is

executed based on the guidelines for navigators defined

in [6], [7] for the detection of dangerous and risky

conditions, such as surf-riding/broaching-to, successive
high-wave attack, etc.

D. Decision layer

The Decision layer represents the component of the weather

routing system where the decision maker interacts with the

system to shape the trajectory that represents the best trade-off

among the available candidate routes. To this aim, the Pareto

front is analysed and visualized through the Hyper Radial

Visualization (HRV) [15]. The analysis that we propose is

to group the Pareto solutions based on the navigation risk:

this design choice allows a better understanding/comparing

process of the available solutions as discussed in the following

Section III.
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Fig. 2: Nominal route between Tunisi (TN) and Genova

(ITA) provided by the web-service searoutes.com [12]

surrounded by the multistage graph spatial grid with nodes

plotted as black markers.

III. SCENARIO AND RESULTS

The proposed methodology is tested in the scenario of

planning the route from Tunisi (TN) to Genova (ITA). The

limits of the AOI and the selected Estimated Time of Departure

(ETD) are:

• AOI Longitude range: from 6.0◦ E to 14.0◦ E.

• AOI Latitude range: from 34.0◦ N to 46.0◦ N.

• ETD 12nd June 2018 06:00 UTC.

The nominal route (provided by searoute.com [12]) is

used for the generation of the multistage graph spatial grid

as depicted in Figure 2. The route is plotted in blue colour

and the nodes composing the graph spatial grid as black

markers. In this simulation scenario, the graph spatial grid is

composed by a set of 390 nodes and 6325 edges. The nominal

route represents the shortest waterway connecting the starting

location with the selected destination.

Recalling the architecture of the proposed weather routing

system, the Environmental layer provides the METOC data

within the AOI. In this setup, the METOC data are provided

by DICCA-MeteOcean [16], [17]. The forecasts are generated

through the Wavewatch III model [18]. The forecasts are

provided with a 10 km spatial resolution and 1 h temporal res-

olution. The forecast covers a temporal window of 120 h and

they are computed daily at 00:00 UTC. The bathymetry/depth

profiles are provided by the EMODNet Network [19] to

identify the available routes and the areas where the navigation

is not possible. In this operational setup, the scenario considers

a ship with the properties specified in Table I.

TABLE I: Ship general properties.

Ship static properties Value

Length (m) 134.0
Beam (m) 16.0

Draught (m) 5.0
Max. Surge (kn) 20.0

Metacenter (m) 1.6

As highlighted in the METOC snapshots depicted in Fig-

ure 3, for the temporal window of 30 h from the ETD

(nominal travel time to transit from Tunisi (TN) to Genova

(ITA) in nominal navigation conditions), the AOI is crossed by

a storm (high HS , with HS > 3 m). This presents dangerous

navigation conditions within the AOI according to IMO [6].

Once run the proposed weather routing system, Figure 4

shows the set of Pareto efficient routes connecting the start and

destination ports. Each candidate route represents a different

trade-off among the criteria selected in the simulation scenario.

The usage of the Martins algorithm [10] (at the Planning layer)

allows the computation of the complete set of Pareto solutions

and not a subset of the Pareto routes as done in other solving

methods(e.g. genetic algorithms [20]). Furthermore, the design

choice of including the navigation risk in the multi-criteria

setup allows the estimation of the total risk associated to each

Pareto optimal route.

Despite the availability of possible routes/solutions crossing

the west side of Sardinia and Corsica, as highlighted by the

presence of graph nodes in that area in Figure 2, no one route

represents a good candidate in the Pareto sense. This is due to

the approaching storm coming from the west Mediterranean

sea (Figure 3). Figure 5 allows a deeper analysis of the

set of Pareto solutions as a 4-dimensional plot, where each

axis represents a different minimization criterion (x axis -

travel time, y axis - navigation added resistance and z axis

- navigation risk). To simplify the analysis, the navigation risk

is also associated with a color map: the solutions in purple

and blue colors are associated with the routes characterized

by low risk; the solutions in lighter colors (green, yellow)

are characterized by risk from medium to high. As can be

observed, the solutions characterized by low travel-time are the

ones characterized high navigation added resistance (therefore

travel cost). The medium-high navigation risk routes are more

concentrated in the group of the routes with low travel-time;

instead the low risk routes span most of the Pareto frontier on

the x− y plane (travel time and navigation added resistance).

The integration of the navigation risk in the multi-criteria

setup allows to identify the routes characterized by the high

navigation risk maneuvers. As matter of fact, the routes can be

ranked/grouped in different parallel x−y planes with different

z navigation risk values, as depicted in Figure 5.

In order to identify the route representing the best trade-off

solutions, the HRV [15] methodology is exploited. Figure 6

presents the Pareto solution set in a 3-dimension space:

where the x axis is travel time; the y axis is the navigation
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(a) June 12th, 2018 at 06:00 UTC (b) June 12th, 2018 at 18:00 UTC (c) June 13th, 2018 at 06:00 UTC (d) June 13th, 2018 at 12:00 UTC

Fig. 3: Evolution of the significant wave height (HS) in the AOI during the temporal window of the selected scenario.

Fig. 4: Set of Pareto efficient routes generated through the

weather routing process in the selected scenario.

added resistance and the color domain identifies the routes

by risk. In this representation the resulting objectives values

are normalized so that the visualization is associated with

the values in the range [0, 1]. The most desirable solution(s)

from amongst the Pareto set is/are identified by evaluating the

distance of each solution from the Utopia point (point (0, 0, 0)
the hypothetical point that corresponds to the minimum value

of each individual criteria [21] ). This allows the navigator to

have a clear and intuitive reference-point during the decision-

making process. The route representing the best trade-off (as

Fig. 5: Set of Pareto efficient solutions generated through the

weather routing process in the selected scenario. Each axis

represents a different criterion: x axis - travel time, y axis

- navigation added resistance and z axis - navigation risk.

The solutions are also grouped by color, with dark (purple,

blue) and light (green, yellow) colors for low and high risk,

respectively.

the closest solution to the Utopia point) is depicted with red

triangular marker in Figure 6.

Figure 7 presents the set of routes in the neighborhood of the

best trade-off solutions by comparing them with the nominal

route. The proposed routes by the weather-routing system are

pushed to the western coastline of Italy in order to avoid the

storm coming from the west Mediterranean sea and sailing in

safe navigation conditions in the last part of the routes close

to the destination (Genova - ITA).
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Fig. 6: Set of Pareto efficient solutions generated through the

weather routing process in the selected scenario. The solutions

are plotted in the 3-dimension space: x axis - travel time, y axis

- navigation added resistance and the color domain to identify

the routes by risk. The red triangular marker identifies the

route representing the best trade-off solution.

Fig. 7: Set of Pareto routes in the neighborhood of the best

trade-off solution plotted with the nominal route provided

through the web-service searoutes.com [12].

IV. CONCLUSION AND FUTURE WORK

In this paper the weather routing problem has been modelled

through a multi-criteria optimization setup characterized by

a set of 3 conflicting criteria (travel time, ship navigation

resistance and risk).

The proposed scenario demonstrates how the developed

weather routing system is able to identify the waterways char-

acterized by safer METOC conditions from a navigation point

of view avoiding therefore dangerous navigation situations.

Furthermore, the exploitation of the IMO guidelines [6] in the

form of optimization criterion allows to estimate average risk

associated to each route.

Future developments could be focused on the increase of the

computational performance of the weather routing process by

introducing novel spatial grid graph based on the partitioning

the AOI in convex sections, characterized by uniform weather

and risk conditions. This allows the reduction of the size of the

spatial grid and therefore an improvement of the computing

performance.
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