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Abstract—Common tracking algorithms based on descrip-
tors usually use a bounding box containing a target for
extracting of its features. Disjoint background noise inside of
the box strongly affects target descriptors. We propose to com-
pute the histograms of oriented gradients in several circular
windows within the actual region of support of a target. Such
descriptors are background noise-free and rotation-invariant.
The suggested tracking algorithm additionally utilizes depth
information from a Kinect camera for better tracking when
partial occlusions of the target are faced. The performance
of the proposed algorithm is tested in terms of recognition
rate using the Princeton Tracking Benchmark scenarios and
compared with that of the state-of-the-art tracking algorithms.
Finally, in order to achieve high rate of processing, the
algorithm was implemented with GPU parallel processing
technologies.

Keywords-tracking; oriented gradient histograms; GPU im-
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I. INTRODUCTION

Tracking algorithms have gained increasing popularity
over the last decade. Nowadays, with development of depth
cameras, numerous innovative tracking algorithms robust
to environmental and technical interference were proposed.
One of the most popular depth sensors is the Microsoft
Kinect camera.

The state-of-the-art algorithms based on descriptors are
as follows: utilizing depth information such as RGBD Oc-
clusion+Optical Flow (RGBDOcc+OF) [1] and Occlusion
Aware Particle Filter (OAPF) [2]; without using depth in-
formation such as RGBD + Optical Flow (RGBD+OF) [1],
Tracking-Learning-Detection (TLD) [3] and Multiple In-
stance Learning (MIL) [4]. Classical tracking systems can
be classified as follows [5]: template trackers use histograms
and other data structures to describe objects; silhouette
trackers use shapes and edges of objects; feature trackers
extract interest points of targets.

In this paper we propose a tracking algorithm that takes
advantage of depth information for illumination invariance,
segmentation and occlusion handling. First, we extract a
data structure containing circular windows within the actual
region of support of a target. Then, we carry out in each
frame the following steps: preprocessing to remove additive
electronic noise and enhancing the contrast; localizing the

object area using prediction model and depth information
and reducing the search area to a fragment; extracting
iteratively the histograms of oriented gradients with one
pixel distance in the frame fragment; finally, matching the
histograms with those in the frame fragment to locate the
target in each frame of video sequence.

The paper is organized as follows. In section II, prepro-
cessing steps are described. In section III, important com-
ponents of the proposed tracking algorithm are discussed.
In section IV, we illustrate the performance of the tracking
with the help of the proposed and state-of-the-art algorithms.
Section V summarizes our conclusions.

II. NOISE REMOVAL AND ILLUMINATION CORRECTION

Captured video frames always contain additive sensors
noise and nonuniform illumination of the scene across the
image.

The first stage of image processing algorithms is to
remove the noise that can be caused by a sensor or environ-
ment conditions. Additive wide-band noise can be removed
by a Gaussian filter. However, it is necessary to estimate
the noise standard deviation to process the image correctly.
The autocorrelation function of white noise is the Kronecker
delta function. The variance of the noise can be calculated by
linearly extrapolating the values in the vicinity of the origin
of the autocorrelation in the noisy image to estimate the
sample variance of the ideal image, and the rest is considered
as the variance of white noise.

The estimated noise standard deviation (𝜎𝑛) is used to
quantize the histogram of oriented gradients (HOG) in order
to compensate errors introduced in the computed angles by
white noise. The number of quantized directions 𝑄 for the
histogram can be calculated as follows:

𝑄 = ⌈360
𝜎𝑛
⌉ . (1)

In addition, illumination changes across the image affect
the local contrast of details and fine structures of the
image. Therefore, without contrast correction of the image,
descriptors of the same object will be different across the
image depending on the target position in the scene. In
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Figure 1. a) Original image, b) gamma corrected image.

order to reduce the influence of illumination we use two
procedures. First, the gamma correction [6] is defined as

𝑉𝑂 = 𝑉 𝛾
𝐼 , (2)

where 𝑉𝑂 and 𝑉𝐼 are the output and input im-
ages, respectively, and the gamma factor ranges between
[1/2.2, 1/2.6] [7]. This method reduces the illumination
variation and local shadowing effects (see example in Fig. 1).
Second, supposing that illumination is approximately uni-
form in small areas, we perform the tracking in a frame
fragment instead of the entire frame. Therefore, searching
small areas instead of entire image is beneficial for illumi-
nation compensation.

III. TRACKING ALGORITHM

In this section we describe important components of the
proposed tracking algorithm.

A. Geometric structure

Let us define elements needed for object descriptors
computation; that is, a geometric structure of disks moving
across the image and the Histograms of Oriented Gradients
(HOG) [6].

Let 𝑊𝑖 be a set of closed 𝑀 disks, with distances between
disks 𝐷𝑖𝑗 and angles between every three adjacent centers
of the closed disks 𝜃𝑖 [8] (see Fig. 2). The histograms
of oriented gradients are calculated in circular areas and
further used for matching. It is interesting to note that at
any position of the structure each disk contains image area
that is unchangeable during rotation; therefore, the histogram
of oriented gradients computed in a circular window is also
invariant to rotation.

B. Histogram of oriented gradients

The proposed descriptor is based on histograms of ori-
ented gradients computed within closed disks. First, we
compute the gradients at each pixel with simple operators
of the form:

𝑔𝑥 =
[ −1 0 1

]
, 𝑔𝑦 =

⎡
⎣ −1

0
1

⎤
⎦ . (3)
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Figure 2. Circular disk structure defined inside the region of support of
the target.

The magnitude and orientation at each pixel can be
computed as

𝑚𝑎𝑔 (𝑥, 𝑦) =
√

𝑔𝑥2 + 𝑔𝑦2 , (4)

𝑜𝑟𝑖 (𝑥, 𝑦) = arctan (𝑔𝑦/𝑔𝑥) . (5)

The orientation is in the range of [0∘, 360∘]. We select a
number of bins 𝑄 according to the noise standard deviation
𝜎𝑛. The orientation at each pixel is quantized as [9]

𝜑 (𝑥, 𝑦) =

⌊
𝑄

360
𝑜𝑟𝑖 (𝑥, 𝑦) +

1

2

⌋
, (6)

where the factor 1
2 rotates the origin of the histogram in

counterclockwise, so the values at the beginning and end
of the histogram fit into the first bin. The orientation cyclic
condition is also fulfilled; that is, the gradient orientation
error can set the values closer to 0∘ near to 360∘ and vice
versa.

The HOG is computed by magnitude voting. Each magni-
tude is divided between the two closest bins of the histogram
proportionally to the corresponding orientation distance for
each bin.

Finally, we compute a centered and normalized histogram,
which possesses rotation invariance,

𝐻𝑂𝐺 (𝜑) =
𝐻𝑂𝐺 (𝜑)−𝑀𝑒𝑎𝑛√

𝑉 𝑎𝑟
, (7)

where 𝑀𝑒𝑎𝑛 and 𝑉 𝑎𝑟 are the sample mean and variance of
the histogram, respectively.

The histogram of oriented gradients is computed in the
defined circular window 𝑊𝑖 of the target running across the
frame fragment.

The first histogram within the frame fragment is calcu-
lated from a closed disk with the same radius as the disks
in the object structure; once this histogram is computed,
the closed disk advances trough the fragment pixel by pixel
updating the information within the histogram in a vertical
or horizontal direction as shown in Fig. 3. The iterative
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Figure 3. Recursive update of the histogram along columns.

computation of histograms allows fast processing in the
frame fragment because only 2𝜋𝑟 pixels in the circular
window are processed instead of 𝜋𝑟2 (total window pixels)
at each iteration.

C. Matching of descriptors

At any step 𝑘 of the iterative process we compute the
scene histogram. The matching can be performed by corre-
lating the histograms of the i𝑡ℎ circular window at position
𝑘 and the scene histogram using the Fourier transform [10],

𝐶𝑘
𝑖 (𝛼) = 𝐼𝐹𝑇 [𝐻𝑆𝑖𝑘 (𝜔)𝐻𝑂∗

𝑖 (𝜔)] , (8)

where 𝐻𝑆𝑖𝑘(𝜔) is the centered and normalized Fourier
Transforms of the histogram of oriented gradients inside of
the k𝑡ℎ circular window over the frame fragment correlated
to 𝐻𝑂𝑖(𝜔), that is the Fourier Transform of the HOG in
the i𝑡ℎ circular window in the target object; the (∗) denotes
complex conjugate. The correlation peak is a measure of
similarity of two histograms computed as follows:

𝑃 𝑘
𝑖 = max

𝛼

{
𝐶𝑘

𝑖 (𝛼)
}

. (9)

The correlation peaks are in the range of [−1, 1]. We
suggest a 𝑀 -pass procedure. First, to perform the matching
of the first circular window in the structure with the objective
to reject as much as possible points in the frame fragment by
applying a threshold 𝑇ℎ to the correlation peaks to conserve
the higher valued points and keep a low probability of miss
errors. Second, only accepted points are considered to carry
out the matching with the second circular window of the
structure, taking into account the threshold value and the
center to center distance 𝐷𝑖𝑗 to the first window. By rejecting
another set of points, at the third pass, it is possible to use
the angles between each three adjacent centers 𝜃𝑖 to quickly
locate the position of the next window; and so on, evaluating
the 𝑀 windows in the structure. The final decision about the
presence of the target object is taken considering the joint
distribution of the correlation peaks for all windows. In this
way, a trade-off between the probabilities of miss and false
alarm errors is achieved.

IV. PREDICTION OF TARGET LOCATION

In order to improve the processing rate, we crop a small
fragment containing a target from the entire frame. For
the first frame, if the starting position of the target is
unknown then we detect the object across the entire frame.
The geometric structure is always defined within the actual
region of support of a target. The size of frame fragments
is chosen larger 1.5 times than the size of the bounding
target box to provide the invariance to slight changes of the
distances, the angles, and target scaling. The prediction of
the target location for other frames is based on time series
by fitting the target movement in 𝑥 and 𝑦 directions to a
polynomial curve.

If occlusion occurs, the obstruct depth information will
appear first in the histogram, because the obstruct object
will be closer to the sensor. If the frame fragment obtained
in the prediction stage has no depth histogram of the target,
we correct the frame position to better locate the target
in subsequent frames. To maintain reliability, the depth
histogram is updated frame by frame depending on the
position of the target with respect to sensor. If the object
exists for while from the scene and enters, the search is
carried out in entire frames until the target is detected.

V. EXPERIMENTAL RESULTS

In this section we present and discuss the obtained ex-
perimental results. The experiments are carried out using
validation video sequences from the Princeton Tracking
Benchmark [1], which are composed of five video sequences
taken with the Microsoft Kinect with the number of frames
varied from 51 to 370. Each sequence contains RGBD
images of the size of 640 × 480 pixels and depth images
as well as ground truth information for validation. The
benchmark also provides comparative results of popular
tracking algorithms. We choose a subset of the algorithms
with the best results and consider them as the state-of-the-
art.

The parameters of the proposed algorithm are as follows:

𝑀 = 2, 𝑄 =

{
⌈360/𝜎𝑛⌉ , 1.5 < 𝜎𝑛 < 40

64 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑇ℎ = 0.8 and

𝑟 = 32. The algorithm was implemented in a standard PC
with Intel Core i7 processor with 3.2 GHz and 8 GB of
RAM, ATI RADEON HD 6450 using OpenCV to read the
image and compute other basic operations, and OpenCL for
parallelization. The implemented algorithm achieves real-
time processing with the rate of about 30 FPS.

First, the algorithms in terms of the success rate against
the overlap area threshold are tested. We measure the overlap
between the bounding box obtained with the algorithm and
the ground truth bounding box. The success rate measures
how many target bounding boxes overlap at any given rate
in the sequence, and the performance of the algorithm is
given by the area below the curve from a given threshold,
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Figure 4. Average success rate versus overlap area.

Figure 5. Performance in terms of errors of the target presence and overlap
of bounding boxes.

in this case the threshold is 50% of overlap. Fig. 4 shows
the success rate against the overlap area. The area under
the curve shows how well the algorithm performs. One can
be seen that the algorithms exploiting depth information per-
form better than those that do not use depth information. The
proposed algorithm competes with the OAFP [2], surpassing
it from 80% to 100% of overlapping and having similar
values below this threshold.

The second test is performed in terms of errors de-
fined [1]: as follows: Type I, when the target is visible but
the result bounding box does not overlap with the ground
truth bounding box; Type II, when the target is completely
occluded but the algorithm outputs the bounding box; Type
III, when the target is visible but the algorithm does not
output the bounding box. Fig. 5 shows that the performance
of the algorithms utilizing depth information is much better
than those that do not use depth information. The proposed
algorithm has the best performance in terms of the errors
even when the target is partially occluded.

VI. CONCLUSION

In this paper we presented a real-time rotation-invariant
tracking algorithm based on HOGs descriptor and depth
information. The proposed algorithm is robust to noise and
illumination variations, target occlusion as well as to slight
scale and camera point of view changes. In addition to
intensity data we use depth information to segment and
track a target with the help of the position prediction model.
According to our computer simulations with the Princeton
Tracking Benchmark, the proposed algorithm is competitive
with the state-of-the-art tracking algorithms. In future we
plan to further improve the performance of the tracking
algorithm with long-term fragments of video sequences
containing occluded objects.
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