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Abstract—The present study focuses on the development of an 
embedded smart camera network dedicated to track and count 
people in public spaces. In the network, each node is capable of 
sensing, tracking and counting people while communicating with 
the adjacent nodes of the network. Each node typically uses a 3D-
sensing camera positioned in a downward-view but the designed 
framework can accept other configurations. We present an 
estimation method for the relative position and orientation of the 
depth cameras. This system performs background modeling during 
the calibration process, using a fast and lightweight segmentation 
algorithm. 

Keywords—people tracking; embedded system; 3D-sensing; 
background modeling; scene analysis. 

I. INTRODUCTION  
Industrial security, robotics, urbanism and transportation use 

computer vision research results to detect, track and count people 
in private and public spaces. The smart camera concept and 
networked cameras increase the coverage area of the detection, 
counting and tracking applications. 

Human-sensing is defined by [1] as an assemble of methods 
to detect presence, to count, to localize, to track and to identify 
people. This can address a large variety of challenges, widely 
described in [1] and [2]. Our work uses the same approach, and 
tries to address several issues: occlusion generated by crow 
overlapping, person separation when people are close and/or in 
physical contact, sensing noise generated by sunlight, scale 
variation according to the distance from object to the camera, and 
finally, model deformation, when the person’s perspective shifts 
with respect to the sensor. 

Regarding to sensing and embedded technologies, new 
generations of low cost 3D cameras and boards are now available 
in the market which keep improving their specifications. Two 
approaches are evident in the field of people counting and 
tracking: using classic RGB cameras or smart depth sensors. 
Depth sensors are not sensitive to reflections or drastic 
illumination changes, and do not require costly background 
modeling. These advantages generated a trend in the research 
community to use 3D sensors to detect, track and count people. 
Depth sensors are mostly restricted to indoor applications, owing 
to sunlight interference. 

Our work is mainly inspired by two approaches of human 
detection, tracking and counting methods [3], [4]. The first is an 
embedded smart camera network that uses a motion histogram 
from frame differenced images to localize people in color 
images. The second is a robust 3D sensing system that uses a 
head–to-shoulders signature for pattern matching after 
background filtering. Our proposal takes the most relevant 
concepts from these approaches into the context of a 3D smart 
camera network, providing efficient algorithms, low energy 
consumption (resource-constrained) and a non-centralized 
network system. This allows us to design multi-camera and 
multi-target tracking systems, leading to a large number of 
applications, easy installation and scalable nodes. 

This paper is organized as follows: Section II describes 
related works. Section III describes our system design approach. 
Section IV details smart camera extrinsic calibration methods. 
People detection approach is found in section V. Section VI 
explain the tracking and counting process. Finally, the 
conclusions and future work are presented. 

II. RELATED WORK 
We introduce the most relevant statements from the literature 

on people detection, tracking and counting techniques. We focus 
on: the camera positioning, the detection approaches and the 
application scenarios. 

There is some debate concerning the different positions of the 
camera, such as downward-view or side-view. Earlier works [5]–
[8] argue the advantages of the downward-view camera 
positioning: people are observed from overhead [6], avoiding 
complete occlusion in crowds, notwithstanding there are still 
occlusion cases. On the other hand, studies like [4], [9] prefer to 
gather more information about the human body and to use 
complex methods to remove the background. These works seem 
to suggest that camera position depends on the usage. Taking this 
into account, we intend to maximize the coverage area and to 
minimize the occlusion. This will confirm our initial choice of 
the downward-view because it better fits our system needs. As a 
result, we use fewer devices and avoid complex computation to 
detect and separate people. 

The approaches to human detection can be mainly grouped 
into background modeling, object segmentation and pattern 
matching [1]. We can find several works that use one of these 
approaches or a combination of them. Background modeling, 
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using RGB cameras, implies complex algorithms and heavy 
computation time [10]. Most of these algorithms are interested in 
the image luminosity changes and avoid motionless people 
absorption into the background. On the other hand, the 3D 
sensing approach simplifies the foreground segmentation. In [7], 
a height threshold allows for fast segmentation, but does not take 
into account the scenario's irregularities. Contrariwise, Rauter et 
al. [8] use feature descriptors to avoid the background modeling. 
However, this requires a manual parameterization of the height of 
the cameras. 

As Teixeira et al. explain in [1], there are two opposed 
approaches in daily application scenarios: resource-constrained 
vs. performance-driven. Some works like [11], [12] are based 
on resource constraints; however, all of them use color cameras. 
In the most recent years, several approaches using depth sensors 
were proposed [7], [13], [14], [8] and [4]. These latter works are 
based on the performance driven approaches. 

In this sense, the advantages of our system approach are: low 
cost of the system (being more accessible to researchers and 
industry), low time processing for human detection (using 
background modeling and human segmentation), a scalable and 
easy-to-install system, and low energy consumption 
(environmental impact has become increasingly relevant). Our 
work intends to introduce the depth sensors mounted in a 
downward-view position in a resource-constrained scenario 
described in the following section. 

III. SMART CAMERA PLATFORM 
Our proposed system is composed of a network of smart 

cameras. Each node consists of a depth camera, an embedded 
computer and a network communication unit. Locally, the node 
detects tracks and counts people in its own scene or FOV (field 
of view). At the same time, the communication unit sends the 
tracking information to all its adjacent nodes in the network. This 
network is built in two architectural levels (graph based, Fig. 1): 
a communication graph mapped on LAN connections and a 
coverage graph defined by the geometrical adjacency between 
locals FOV. 

 
Figure 1.  Typical scene covered by 6 cameras: each black rectangle  represents 
a camera FOV and the lines represent the graphs (the coverage graph in black 
and the communication graph in green). 

A. Depth Camera 
We use 3D active sensing cameras (like the Asus Xtion Pro 

or Kinect). These cameras can operate at up to 60 fps (frames per 
second) delivering (through a USB link) depth images at VGA 

(640x480) or lower resolutions. Each 12-bit pixel represents the 
local stereo disparity and can be translated as the distance 
between the acquired objects and the camera. When there is no 
sensing information due to occlusion or interference problems, 
the depth pixel is equal to 0. Typical FOV angles are 58° 
horizontally and 45° vertically. 

Unfortunately, this kind of active sensor has a big 
disadvantage: sunlight interference restricts its use to only 
indoors scenarios. However, active 3D sensors can operate in 
complete darkness. Our system is also compatible with other new 
passive stereo cameras (like ZED from Stereolabs) but it needs 
more computing power (not recommended for low-end 
solutions). 

B. Computer Board and Communication Unit 
The computer board is made of a Raspberry Pi-2B and an 

auxiliary proprietary board. The Raspberry-Pi 2 has a Broadcom 
(BCM2836) quad-core processor (ARM Cortex-A7 MPCore) 
including a VideoCore IV dual-core GPU, 1GB of SDRAM, SD 
card class 10, Ethernet networking and a Linux Rasbian 
distribution OS. 

The auxiliary proprietary board, developed by Shopline R&D 
department, is mainly composed of a Power Over Ethernet (POE) 
connection and a RTCC (Real-Time Clock and Calendar) 
integrated circuit. The assembled board is intended to be as cheap 
as possible and to provide ease of power delivery. 

C. Counting Framework Software 
We designed a people tracking framework that provides 

functionality for different kinds of cameras and embedded 
computers. The cameras supported are RGB, IR and depth 
cameras. It supports embedded computers running Linux-based 
operating systems compatibles. The framework also provides 
remote configuration and communication services. We can setup: 
one region of interest (ROI), a filtering threshold for the height 
and counting boundaries (one or more user-defined shapes 
partitioning the current ROI, in order to count people). During 
normal operation, the framework acquires depth images, 
computes person separation, tracks and counts people, and sends 
all relevant information periodically over the network. This 
framework uses common imaging frameworks (OpenCV, Qt, 
Open NI) to facilitate data exchange and human computer 
interaction, but we designed our own optimized image processing 
routines. 

D. Resource-constrained Scenario 
Our system was designed taking into account the following 

constrains: 
• A real-time counting system: The smart camera must be 

able to count and track the people in real time. It must be 
able to simultaneously send all information to a supervisor 
system or the adjacent nodes. 

• FOV versus installation height: the optimal value of the 
vertical height of the camera is between 2.5 and 3.5 
meters. 
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• Minimal frame rate acceptance: considering the average 
human walking speed (1.33m/s) [15] and the mean length 
of the track for a person in the camera FOV (about 3 
meters) the minimum required frame rate is higher than 6 
fps. 

• The failure-proof functionality: when one node fails, 
neighbor nodes must take into account the failure and 
manage the loss of the node remapping the 
communication graph. 

IV. SMART CAMERA EXTRINSIC CALIBRATION 
The camera calibration variables are divided into intrinsic and 

extrinsic parameters. As most of the smart cameras have the 
intrinsic parameters calibrated (focal length, principal point, skew 
coefficient and distortion), we focus our work on the extrinsic 
calibration. The extrinsic calibration process consists of robust 
estimation of the floor plane position giving access to the camera 
installation height, camera orientation, and the background 
modeling. As the floor plane and all cameras are fixed, and since 
the background does not change during short periods of time, the 
extrinsic calibration process is only used at the initialization stage 
of the system. Additionally, this operation is too heavy to be done 
for each new frame. Before starting the computation, each depth 
pixel G(x, y) is converted to a 3D point pi=[xi, yi, zi]. 

A. Camera Self Positioning 
In the self-positioning step we extract the floor plane equation 

by minimizing the square distance between the 3D points cloud 
and the plane (Fig. 2). In order to accelerate this computation 
step, we compute the depth histogram and use the range around ( 
± d0 ) the most significant bin Bmax (assuming that the floor is 
quasi-horizontal and represents the largest region of the scene; 
this is true only for the downward-view). 

 
Figure 2.  Geometry of the floor plane using a coordinate system with camera 
CamI as the origin (lateral view from y axis). 
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If coefficients a and b are too big, the floor plane is not quasi-
horizontal and we must reiterate the estimation procedure with a 
new depth histogram with respect to the normal of the last 
estimated floor plane. 

Finally, this gives us the estimated distance p to the floor (the 
camera installation height) and the angle Φ between the camera 
X axis and the floor plane. 

B. Floor Classification 
The floor points region RF is determined as a connected set of 

depth pixels closer than d0 to the floor plane PF. The value of d0 
depends on the installation height and the signal to noise ratio of 
the depth signal, typically between 10 and 15 centimeters. 

Fig. 3 shows the floor plane classification using the 
associated histogram, in two opposite cases: a scene (a) with a 
simple background, without dynamic objects and another scene 
(b) with a complex background and some dynamic objects. A 
simple background can be a floor with very few objects. A 
complex background has many objects, like tables, chairs, walls, 
doors, stairs or ramps, etc. 

 

 
Figure 3.  Floor plane classification with the corresponding depth histogram and 
the bin Bmax marked in red. Cloud points are acquired from a downward-view but 
are presented here in a lateral view. a) Simple background. b) Complex 
background. 

C. Non-floor objects Classification 
The rest of the depth pixels are classified in one or more 

connected regions Ri topologically defined by the floor region 
and the image borders. We consider only the large regions 
connected to the floor. Furthermore, we make the assumption 
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that most out-of-floor objects can be roughly modeled as plane 
surfaces. For each region Ri we estimate the local plane Pri 
parameters (ai, bi, ci). 

 { }01: =+++= zcybxa iiiiPr  (3) 

If the region normal is quasi-parallel to the floor plane, this 
region is identified as a wall or a door. 

For the rest of the significant regions, we calculate the 
relative angle ( ϕ i ) to the floor plane. If this angle is bigger than 
the building standards maximal angle (�) [16], we classify them 
as furniture; otherwise, it becomes a trackable sloped region Ri. 
Regions quasi-parallel to the floor plane can be classified as 
different floor regions. 

Future work will focus on identifying mobile objects with 
which the humans can interact (trolleys, mobile chairs...). 

D. Background modeling 
Our system is focused on person tracking and counting in 

public spaces like shopping malls or supermarkets. A common 
restriction in this scenario is the large number of objects with 
which people can interact, such as trolleys. These undesired 
objects must be discarded from the counting estimation using 
background modeling. This approach uses the different identified 
regions to create a virtual filtering surface that takes into account 
the scenario's irregularities. This virtual surface Bg(x, y) is a 
background threshold helping to distinguish whether a depth 
pixel belongs to the objects of interest or to the background. 

Let L be the set of regions that belong to the scene but are not 
part of the floor. Let Lt ⊆ L be the set of trackable regions. Let Ri 
be a trackable region iff Ri ∈ Lt, Ri is connected with RF and | ϕ i | 
≤ ω. 

The filtering surface is a patchwork composed of local 
filtering planes Pt

i for each trackable region Ri. Local planes are 
obtained by raising the estimated plane Pi of local region by a 
threshold of height td as in [7]. 
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Where Ir(x, y) is a labeling function that returns for each depth 
pixel G(x, y), the index i of Ri∈Lt in order to get the plane 
estimated values (at

i, bt
i, ct

i) or 0 otherwise. The Fig. 4 explains 
the raising procedure viewed from the y axis. 

 
Figure 4.  Geometric Representation of the background model,where the green 
line represents Pt

i and the blue line represents Pr
i (lateral view from y axis). 

V. PERSON-DETECTION APPROACH 
The people detection process is divided into 3 steps executed 

for each new depth image (Fig. 5). First, a fast detection of 
objects of interest using the foreground blob detection method; 
where we filter and label the blobs. Second is the blob 
segmentation, where we analyze each blob in detail. Third, graph 
structure creation where we characterize the people. 

 
Figure 5.  Row depth image with several obstacles and two people in contact. 

A. Foreground Blobs detection 
For the image filtering we use the proposed filtering method 

in [7], changing the filtering threshold for the background 
modeling explained in section (IV.D) in order to obtain the 
foreground image Fi: 
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After finding our pixels of interest we continue labeling the 
connected pixels using the method proposed in [17]. We use an 
auxiliary table of components [18] for each object where we save 
important information further use, like barycenter, number of 
pixels, maximum (MaxVal) and minimum (MinVal) height from 
the floor, average height and the bounding box. This requires just 
a single run, saving calculation time. For computation time 
purposes, we only apply the next step to blobs bigger than 150% 
of the human mean size and discard the blobs smaller than ≈3% 
(depending on the installation height the percentage vary between 
2.3 and 3.5). 
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Figure 6.  Foreground blobs detected and labeled. 

B. Blobs segmentation 
The blobs segmentation process consists into two steps. The 

first one is called level segmentation where each blob is divided 
in horizontal slices with constant thickness tc, grouping the pixels 
in a top-down order. It starts at the maximum value of the blob, 
MaxVal, up to MinVal. In consequence, the different pixels are 
grouped in levels (slices), allowing us to differentiate the head 
from the shoulders. Now that the pixels are segmented by height, 
the second step uses the same labeling method than the one 
described above, to obtain the labeling table. In Fig. 7 we can see 
the input blob (7a) and the result of the level segmentation (7b). 

  
Figure 7.  Two people in contact: a) Depth image filtered and labeled. b) Blobs 
segmented by levels. 

C. Graph structure creation 
The graph structure is a bi-directional graph called the search 

graph (SG) where every node represents a region and every edge 
represents a connection between two regions. We reused the 
labels table of the blob segmentation and we added a 4-connected 
property: if one of the pixels in the 4-connectivity does not 
belong to the same label; we create a new edge in the graph. An 

edge has a positive value when the connected node is in a lower 
level, otherwise it is negative. As a result we have a hierarchical 
graph with respect to the height. 

The advantage of representing a human target as a graph is 
that it gives us the ability to use powerful data representation for 
use in graph search methods. For simplicity we only take into 
account 4 layers down from the top. The SG is represented by a 
matrix of size card(Lt). The matrix values are calculated with the 
function SG(r1,r2)=level(r1)-level(r2). In order to find the heads, 
we look for the nodes with only positive connection values. In 
other words, only have lower children nodes like the nodes 3 and 
6 in the Fig. 8.  

Table I shows the resulting connection matrix of the SG of 
Fig. 8b using SG(r1,r2). To find the heads, it suffices to find the 
nodes where all the children are at least one level under. Rows 3 
and 6 are these types of nodes in the example table I. 

VI. TRACKING AND COUNTING 
In order to have a better time-spatial relation of the tracked 

objects through the frame sequence, we use the model update [2]. 
Every time an object is tracked, in the next frame the SG is 
updated with the current frame information. This model update 
also serves to solve tracking correlation problems when the 
algorithm has more than one option to choose. 

For the counting algorithm, the system was configured with 
the simplest counting boundary: two segments modeling an entry 
and an exit, respectively. These divide the scene into 3 different 
parts. Instead of calculating whether the full trajectory crosses 
both lines, we mark the entry zone in the object and we only 
increase the counters if the actual position of the object is the 
opposite of the marked initial zone. 

 

 
Figure 8.   The SG structure representation, where a) the blob is segmented with 
the top levels nodes of the SG and b) the resulting SG of the segmentation. 
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TABLE I.  SEARCH GRAPH Connections 

Node 1 2 3 4 5 6 7 
1 0 0 -1 0 0 0 0 
2 0 0 -2 0 0 0 0 
3 1 2 0 0 1 0 0 
4 0 0 0 0 -1 -2 0 
5 0 0 -1 1 0 -1 1 
6 0 0 0 2 1 0 2 
7 0 0 0 0 -1 -2 0 

a. This table describes the connections between the nodes. Rows 3 and 6 in bold and italic are the nodes that 
have only connected regions in lower levels; therefore their values are all positives. 

VII. CONCLUSIONS AND FUTURE WORK 
We created a distributed system for people tracking and 

counting that uses embedded nodes with a smart depth camera in 
a resource-constrained scenario. 

In our approach, the use of a depth sensor allows us to reduce 
sensing noise. Installing the system in a downward-view 
minimize occlusion and maximize the coverage. The background 
model saves calculation time and takes into account irregular 
trackable surfaces. The head-to-shoulders signature represented 
in a search graph introduces a lightweight structure to separate 
people, to send the SG to adjacent nodes and to manage the 
model deformation and scale variation. The results are: the 
installation height estimation has ± 2 cm of error in comparison 
to the ground truth (even in the complex scenario Fig. 3b).The 
process runs at 30 fps at VGA resolution in a x64 processor vs 10 
fps in the ARM processor, and 30 fps at resolution of 320 x 280 
pixels in both architectures (working in lower resolutions 
decrease the accuracy). Finally the process has an accuracy 
around 95%. This system is currently industrialized and sold by 
Shopline Electronic. 

This kind of approach can be implemented on low-end 
embedded systems working in real-time with smart 3D cameras. 
The whole system is highly reliable, remote-configurable and 
easy to set up. 

Our future research will follow three directions: we will 
propose new networked camera functionality like the multi-
camera network protocol implementation, multi-camera 
calibration and a fail-proof model. The second direction concerns 
deeper human characterization by exploring the search graph 
structures related to the human body morphology, in order to get 
interesting information like the age and the sex. Finally, the third 
direction concerns improvements to the tracking algorithm in 
certain particular cases caused by occlusion, where it is not 
possible to segment two or more humans. In these cases the 
algorithm might be able to merge/separate multiple person 
trajectories as proposed in [4], using the spatio-temporal tracking 
data. 
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