
Introductory Game Development Course: A Mix of Programming and Art

Chao Peng

Department of Computer Science
University of Alabama in Huntsville

Huntsville, AL, USA
chao.peng@uah.edu

Abstract—Video games have grown to a major industry.
Many universities have started new programs concentrating
on game development. This paper describes an introductory
course for video game development, which is used for initiatives
to develop a gaming minor in the undergraduate Computer
Science curriculum. This course is designed to teach students
all aspects in a game production cycle. We anticipate this course
will engage students in computing and bring collaborative
opportunities between art and computer science students.

Keywords-game development; interdisciplinary education;
computer science course

I. INTRODUCTION

Video games are a successful application of computer

technology enjoyed by players of all ages. Video games have

expanded beyond being simply an entertainment medium, to

a medium that many researchers and educators believe can

help people engage with, learn, and retain content that they

otherwise might struggle with.

Game development courses are accepted into the

academia. Many college-level institutions offer game devel-

opment bachelor’s degree or minor. Game software as an

artistic content has brought collaborations between software

engineers and artists. Software engineers write low-level

codes to solve technical issues. They rarely design games.

Artists are visionary of games and promote how a game

should play, but they usually have little experience in coding

or any sort of programming. Students interested in the game

development program are expected to learn both areas and

able to become gameplay programmers who make the design

into a reality by writing codes directly for gaming experi-

ence. Many existing game curriculums contain programming

and art courses but does not have a course for students to

combine the two areas in their junior year.

Game curriculums can be categorized based on two

different types of concentration: (1) design concentration

and (2) programming concentration. A design concentrated

curriculum exposes students to story-telling, media and

game element organization intensively in their early years.

General programming courses may be required for freemen

but not oriented by gaming. Junior students may select studio

courses but they are not required to be fluent with pro-

gramming languages. They are introduced to software tools

and create games in a drag-drop manner. A programming

concentrated curriculum exposes students to technical topics,

such as object-oriented programming, data structure, theory

of computer graphics and artificial intelligence, prior to the

assignments of game implementation. Neither approaches

represent games as a mix of art and programming. In the

early years of study, students should take courses that allow

them to use both programming and artistic skills, so that

they gain a greater understanding about games as a cross-

disciplinary subject.

Novelty. In this paper, we present an introductory game

development course for junior college students. This course

is a part of Computer Science curriculum and it is also

listed in the curriculum of digital art program for art students

who are interested in game production. This course intends

to allow students to touch on every aspects in a game

production cycle so that they can obtain an understanding

of art-programming interdisciplinary concept. This paper

discusses the challenges we encountered, the decisions we

made for course specifications and actual experience.

II. BACKGROUND

Pioneering instructors created game development courses

in late 1990s. Jones [1] presented an upper-division com-

puter science course for game implementationIt was for

students to have an environment where they integrated a

broad of computing knowledge to create an interactive

product. Game development is more than a programming

endeavor [2]. It is a mixture of multidisciplinary interactions

and the result of team efforts.

Before designing a game, students need to critique a game

similar to what they want to design. The methods of game

critique were proposed in [3], [4], [5]. Aarseth [6] addressed

the purpose of such a critique is “a methodology for the

aesthetic study of games”. Games are not necessarily to

be overly technical. Students should learn why an existing

game attracts people to investigate their time to play [7].

Guimaraes et al. [8] and Baytak and Land [9] claimed that

students are more engaged in game development courses

than traditional programming courses. They found that some

students even continued working on the game projects after

the conclusion of the course.

To help students fast prototype games, scripts lan-

guages have been commonly used in game development

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.152

272

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.152

271

courses [10], [11]. Daniel Webster College introduced game

development to freshman Computer Science majors [12]

using scripting languages, with a focus on small, team-based

and innovative projects. Spronck et al. [13] used “dynamic

scripting” to generate rules for game AI on the fly.

III. CHALLENGES AND SOLUTIONS

The artistic and programming topics are often offered

in separate courses, ranging in focus from game engine

programming ([14], [15]) to asset creation [16] to story

narrative ([17], [18]). The course we developed intends to

engage students to experience the entire workflow of a video

game production. In this section, we describe the challenges

we had at the time to propose the course and the suggestions

to solve those challenges.

A. Parent and Student Concerns

People may think developing games is not a serious learn-

ing process. One misconception is that game development

is equivalent to game design, which is to narrate a story and

draw concept art, and then ask other people (e.g., software

engineers) make the games. When talking to prospective stu-

dents and their parents, we clarify the difference between de-
velopment and design. Game development requires students

to learn a great deal of programming and many aspects

of computing technologies. Students interested in becoming

game developers also have other options after completing the

game development degree. They will be qualified to work in

data visualization, modeling and simulation, or be software

engineers in general.

B. Game Engines

Students majored in Computer Science are usually profi-

cient in programming prior to making their first games. This

course intends to teach those students to write codes that

directly touch on gameplay mechanics. They are required

to use scripting languages within a game engine so that

their efforts will be spent on creating game behaviors and

character actions without diving into the low-level codebase.

Scripting languages support fast prototyping. Scripts are

interpreted by the script interpreter component of the game

engine for script-to-codebase communications [19]. It is a

challenging task to identify the appropriate game engine for

our course: some game engines require a basic understanding

of programming (e.g., Unreal, Unity), while others do not

even ask you to write a single statement (e.g., GameMaker,

Stencyl). The question of which game engine to use is

difficult to answer because there is no best or right answer.

None of them are perfect. They all have strengths as well as

problems. Some are fast for development, some are easy to

distribute the finished games, some may have performance

issues, and some come with developer-friendly interface. We

evaluated a few popular game engines shown in Table I.

We decide to adopt Unity 3D since it provides a unified

asset pipeline and great tweaking support. Unity 3D can

publish games to a variety of platforms. It has a free

version and a powerful scripting feature with good and

helpful documentations. Scripting in Unity 3D can be done

in Javascript, C#, or Boo. Game behaviors can be easily

extended by adding new scripts. Adding a script is trivial,

and Unity 3D comes with useful examples.

C. Depth of Course Materials

Video games are an example of interactive computer

applications [20], which is for players to inhabit. We do

not lay out the set of comprehensive aesthetic approaches to

develop interactive systems. Students are expected to define

simple play rules that sufficiently guide them to identify

implementation goals. The prerequisite is a programming

language course, which should cover the knowledge of

syntaxes, variables and flow of controls.

Art assets are necessary for games. In the class, students

obtain hands-on experience of asset creation but not really go

into depth. Students are allowed to borrow art assets from

publicly available resources and use them in their games

under end-user notices.

Students are required to develop a design document for

each of game development assignments . The design docu-

ment should cover game stories, level designs and gameplay

mechanics. They re also required to develop an art list

clarifying the number of characters, types of animations

and environmental game objects needed for their games.

Students are also challenged and conduced to solve the

problems related to graphics, AI, user interfaces, character

controls and gaming physics. Techniques such as 3D trans-

formation, path-finding algorithms, geometry rendering, etc.

are also exposed to the students.

IV. COURSE DESIGN

The course description in the syllabus is shown as the

follows:

“ In the process of game production, gameplay program-
mers create extensions for game applications that directly
touching on gaming experience. They support game de-
sign needs. This includes game logic, character behaviors,
motion systems, camera logic, collision systems, rendering,
particle effects, etc. Many game studios rely upon scripting
languages to enable gameplay programmers to create appli-
cation extensions and build game prototypes. In this course,
students will acquire theoretical as well as applied aspects of
extensible application architectures. Existing and emerging
scripting languages are discussed extensively. Students will
explore and utilize current applications and must create
extensions to these applications by programming in scripting
languages.”

The experience of being as part of a team is important

to the students, not only working with other programmers

273272

Table I
Evaluations of game development tools.

Engine Game Development Programming Features
Name Type Environment Required?

CraftStudio 2D and 3D Windows, Mac and Linux No In a collaborative way, good for online game development
Construct 2 2D Windows No Drag-and-drop actions, exporting in HTML5

Game Maker 2D Windows No With drag-and-drop actions, OK performance
Stencyl 2D Winodws, Mac and Linux No flash-based nature, no built-in gamepad support
Torque 2D and 3D Windows Yes TorqueScript, a big group of users, steep learning curve
Unity 2D and 3D Windows and Mac Yes Multiple scripting Languages, graphically not as good as Unreal
Unreal 2D and 3D Windows and Mac Yes Not well supporting mobile developers, very good for 3D, not so good for 2D
XNA 2D and 3D Windows Yes No interface, used to be popular, but now killed off by Microsoft.

but also knowledgable to nontechnical subjects. Students are

given an option to form a team with up to two personnel. For

the students working in a team, their projects must contain

a document explaining the contributions of personnel. The

grade of a team member is upon the overall quality of the

project and the amount of individual contributions.

A. Textbook

Although online tutorials are available for students to

learn game development tools, textbooks are still the

workhorse of education. As beginners with passion, students

are ambitious, and often, they bite off more than they can

chew. They might already play triple-A video games and are

eager to develop a game with similar quality and complexity.

But they should understand that they need to start with

the development of simple games. Thus, we would like to

choose a textbook emphasizing on small and simple gaming

ideas. One difficulty is that many game development books

give intensive theories and algorithms that do not engage

students to practical workflows. To serve our intro-level

course, the book should discuss a wide variety of concepts

and demonstrate crucial functioning elements that students

can adopt in their implementation. The textbook we chose

is “Game development with Unity” [21], published in 2012.

This book guides students to work in Unity well and empha-

sizes on the object-oriented design with example codes. We

also employed a second textbook entitled “Introduction to
Game Development” [22]. It covers the overall subject and

explains the whole of the game industry and development

process from a high viewpoint.

B. Course Schedule, Assignments and Grading

Lectures are prepared to guide students through the phases

of design and implementation in a 16-week semester. Ta-

ble II shows the details of the course schedule.

Four projects are assigned to students. The first project

requires students to design and implement a 2D game.

Students first critique an existing 2D game (any platform)

focusing on the uniqueness of the game that makes the game

fun to play. Students then develop a design document to

illustrate their own games. The second and third projects

require students to create a 3D model, rig it (bind it with

Table II
Course Schedule

Topics

1
Course Introduction: syllabus, textbook, grading

Video Game History: 1950s-now

2
Game Critique: what features of a game do attract you?
Design Elements: story, goal, play challenges, prototypes

Game Engine: focusing on scripting

3

Sprite: image and color system
Coordinate System: world, object and screen systems

2D Transformation: translation, 1-axis rotation and scale
Text: how to draw text on screen

4
2D Physics: gravity, force

Sprite Sheet: 2D Animation and motion graph

5
Interaction: collision detection and events
User Input: mouse, keyboard and joystick

6
Scene Management: multi-scenes and camera panning

Game Publishing: gaming platform

7
3D Fundamentals: 3D coordinate systems and assets

GUI Development: inventory implementation
8 3D Modeling: vertices, triangles and normals

9
Texture: UV coordinates

Material: phong, blinn and reflection shaders
Lighting: light sources and self-glowing

10
Skeleton: bone hierarchy, binding pose and skin weights

3D animation: key framing and motion data format

11
3D Math: vector, matrix and ray-surface intersection

3D Character Control with scripts

12
First Person Camera: mouse look, launcher and scope

Third Person Camera: auto Camera
13 Sound effects: audio signal and blending
14 Particle Effects: water, fire and cloud
15 AI: random, A-star algorithm and AI for NPC

16
Ragdoll Physics: death motion

Destructible and Trigger Zone: collapsing walls

a skeleton) and animate it. Students learn the process of

3D asset creation and are able to use it in the game.

The last project is creating a 3D game. Students critique

a 3D game and develop the design document prior to the

implementation.

A design document is a word file with texts, images,

concept arts or other medium that help to narrate the game

design. The exact formatting is up to students, though it must

274273

contain a title and sections with headings. As an example,

the following shows the requirement of 2D game design:

• Concept statements: This should be the first section of

the document describing the core vision of the game.

It should include the game story, what the player could

do and could not do.

• Design goals: This should include an explanation of

what experience the player could have through the

playing. For example, students could write in the design

document like, “I would want the player to experience
how gravity works” or “I would want the player feel
slipping sensation while the character is walking on
the ice.”, rather than just saying “I would like make the
game very interactive? or “I would make the game fun
and challenging.”. The document should also address

the target audience of the game (e.g., kids, teenagers,

dog lovers, hunting fans, etc.). The length of the game

(time) should also be included.

• Gameplay and decision-making: This should include

the key gameplay features. In the design document, stu-

dents should make connections between the gameplay

of their game design and that in the game they critiqued.

The types of character actions should be specified in

the document. Students should also describe the victory

and loss conditions. An gameplay strategy is required

to explain how to promote the player to make decisions.

Students should detail how each decision advances the

player towards either the victory or the loss.

• Game environments: Students should illustrate the

look of virtual world of the game. They could itemize

any game objects or sprite assets that they would need

to construct the world. Students should describe the

level design with images as appropriate.

• Presentation: Students are required to prepare a 10-

minute presentation. Video clips showing the physical

prototype of the game are not mandatory but are

recommended to be included in the presentation to help

us better understand your game!

The requirement of 2D game implementation is shown as

the following:

• Player: Students should create at least one player

character that contains at least two types of sprite

animations: walking and jumping. The character should

be controlled by keyboard or joystick. Students could

earn extra credits if the character could fire bullets or

similar actions as attacking.

• Gaming environment and Camera Setting: Students

should create a virtual world that allows the player

to explore. The world should have foreground ob-

jects (those colliding/interacting with the character)

and background objects (those the character can move

through freely such as trees, walls, clouds, etc), and

they should be appropriately placed in the world to

Table III
Grading Assessments

Attendance 3%
Quizzes (2) 6% (3% each)

Midterm Exam 12%

Project 1 (2D game)
16% (6% critique+design,

10% implementation)
Project 2 (3D Modeling) 9%
Project 3 (3D Animation) 9%

Project 4 (3D game)
23% (6% critique+design,

17% implementation)
Final Exam 22%

serve the gameplay. The game should also have a

camera, either moving to follow the player, or fixed

but allowing the player to move between multiple

scenes/locations.

• Items/Game Objects: Students should create at least

2 items that the player could interact with (e.g., pick-

ing/dropping items, moving items, etc.)

• NPCs: Students should create at least one NPC (Non-

Player Character). The player should be able to interact

with the NPC (e.g., talking to, accepting quests from,

turning in quests, learning information, etc.) Anima-

tions for the NPC are not required.

• Help Menu: In the game, an on-screen instructional

tutorial is required. It should teach users the controls

and how to win or lose the game. Imagining friends

would play the game, they should be able to teach

themselves to play the game with this help menu.

• Game Demo: Students should prepare 10-minute live

demonstration in class on the demo day. Students are

expected to play their games during the demonstration.

We also create one midterm exam, one final exam and 2

quizzes. Those exams and quizzes alllow us to have evalu-

ations on students’ learning, particularly on the knowledge

that are not easy to be exercised through projects. Table III

shows the assessment rubrics.

V. EVALUATIONS AND RESULTS

The course was offered at undergraduate junior level in

Computer Science curriculum. 36 students were enrolled,

including 33 males and 3 females. All of them have ex-

perience in programming and have already taken a data

structure course or equivalent prior to registering this course.

3 students withdrew early due to the complications of the

projects. The remaining students successfully completed the

course. 18 students formed 2-person teams, so 9 games for

each game development project were done by teams. 26

students completed a specialized survey at the end of the

course, which is a 78.8% completion rate.

The specialized survey was designed to collect the in-

formation including student’s previous programming back-

ground, skill development, gameplay interests and career

275274

Figure 1. Weekly changes of students’ enthusiasm on game development
during the 16-week semester. The enthusiasm is measured with a value
between 1 (not interested at all) and 5 (very interested).

expectations. The survey was administered to students at

the end of the 16-week semester, along with university stan-

dard evaluations. The survey shows students were already

comfortable to write complex computer programs prior to

registering this course. Some students commented that the

reason they registered this course is because they want

to develop their own games to be similar to what they

enjoyed playing, but they could not achieve that due to the

time restriction and lack of experience. Most of students

expressed that their interests in game development were

increased after this course.

Another survey was administered weekly online to eval-

uate the changes of students’ enthusiasm during the time

of developing games. The result is shown in Fig. 1. Their

enthusiasm was influenced by the type of game they worked

on and the time and efforts they put in. Students were at

low points of enthusiasm during week 4-6 and week 13-16,

because they were under the pressure to finish 2D and 3D

game projects. Some feedbacks indicate students preferred

working on 3D games rather than 2D games. Some students

expressed that they understood that knowledge of 3D math

is required to develop video games, but they did not realize

a deep understanding of 3D vectors and transformation

operations is so important for 3D games until Project 4.

Students also mentioned that they spent much time to debug

camera and character action codes, and felt 3D animation

is more difficult to be integrated into the game than other

gameplay features. Overall, students maintained a fairly high

passion during the semester, though they experienced the

complexities and challenges to write gameplay codes. Some

students were even overworked on implementations of the

two game projects in order to meet their design goals.

Although students knew the importance of design docu-

ment, they were not really active on it and did not spent

much time to write the document. Some students held the

opinion that writing words about a non-existing game feels

maddening. They would prefer putting fingers to keyboard

and refining the gameplay mechanics while they were typing

actual codes. As instructors, we do not want students to

do such unusual developing activities. Most of students

changed the attitudes and delivered a well-prepared design

document for the 3D game project. In the survey, one student

commented that, “I had to get something on paper otherwise
I was developing in the dark.” For developing a design

document, we suggested students craft the design using

not only words but also images. We told them that words

are good but usually not enough to document a game. We

encouraged them to draw images themselves to illustrate

the ideas. One studnet commented in the survey that, “I am
not good at drawing, but what I drew helped me figure out
my level design.”. Fig. 2 shows some of 2D and 3D games

developed by the students of this course.

For Project 2 and 3, students were required to use

Autodesk Maya to model a 3D character they designed

and then animate it. About a third students used their own

characters in Project 4. Project 2 and 3 did not give much

challenges to the students as the two game projects. Students

commented that modeling and animating a 3D character

made them have a good understanding of the process of

3D asset creation.They learnt that 3D modeling is a time-

consuming process.

VI. CONCLUSION

We presented the design and implementation of an intro-

ductory game development course that has shown a great in-

tegration of many concepts of art and computing disciplines.

The course used a project-oriented pedagogy. Students were

enthusiastic to the topics and lectures and enjoyed working

on the projects. This course was an experimental course at

the moment it was offered for the first time as a special topic.

It is going to appear as a regular course in the curriculum

of Computer Science and be added to the curriculum of

the game production minor in Art department. We expect

this course to feature collaborative work with art students

in next one or two semesters. This course attracts non-CS

majors to become interested in computing as well as working

in interdisciplinary environments. In the future, we would

like to involve industry professionals to provide students

with any sort of concrete supports, working experience and

necessary skills.

REFERENCES

[1] R. M. Jones, “Design and implementation of computer games:
A capstone course for undergraduate computer science edu-
cation,” in Proceedings of the Thirty-first SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE
’00. New York, NY, USA: ACM, 2000, pp. 260–264.

[2] N. R. Sturtevant, H. J. Hoover, J. Schaeffer, S. Gouglas,
M. H. Bowling, F. Southey, M. Bouchard, and G. Zabaneh,
“Multidisciplinary students and instructors: A second-year
games course,” SIGCSE Bull., vol. 40, no. 1, pp. 383–387,
Mar. 2008.

[3] L. Konzack, “Computer game criticism: A method for com-
puter game analysis.” in CGDC Conf. Tampere University
Press, 2002, pp. 89–100.

276275

Figure 2. Games developed by the students in this course. The first row are 2D games; the second row are 3D games.

[4] D. Thomas, J. P. Zagal, M. Robertson, I. Bogost, and W. Hu-
ber, “You played that? game studies meets game criticism,”
in DIGRA Processing, Tokyo, Japan, 2009.

[5] A. Waern, “Game analysis as a signature pedagogy of game
studies.” in FDG, 2013, pp. 275–282.

[6] E. Aarseth, “Playing research: Methodological approaches to
game analysis,” in Proceedings of the Digital Arts and Culture
Conference, 2003, pp. 28–29.

[7] K. Peppler, M. Warschauer, and A. Diazgranados, “Game crit-
ics: Exploring the role of critique in game-design literacies,”
E-learning and Digital Media, vol. 7, no. 1, pp. 35–48, 2010.

[8] M. Guimaraes and M. Murray, “An exploratory overview of
teaching computer game development,” J. Comput. Sci. Coll.,
vol. 24, no. 1, pp. 144–149, Oct. 2008.

[9] A. Baytak and S. M. Land, “A case study of educational
game design¡ i¿ by¡/i¿ kids and¡ i¿ for¡/i¿ kids,” Procedia-
Social and Behavioral Sciences, vol. 2, no. 2, pp. 5242–5246,
2010.

[10] P. Sweetser and J. Wiles, “Scripting versus emergence :
issues for game developers and players in game environment
design,” International Journal of Intelligent Games and Sim-
ulations, vol. 4, no. 1, pp. 1–9, 2005.

[11] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy, J. Scha-
effer, A. Schumacher, J. Siegel, D. Szafron, K. Waugh,
M. Carbonaro, H. Duff, and S. Gillis, “Scriptease: A gen-
erative/adaptive programming paradigm for game scripting,”
Science of Computer Programming, vol. 67, no. 1, pp. 32 –
58, 2007, special Issue on Aspects of Game Programming.

[12] T. Goulding and R. DiTrolio, “Complex game development by
freshman computer science majors,” ACM SIGCSE Bulletin,
vol. 39, no. 4, pp. 92–99, 2007.

[13] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and
E. Postma, “Adaptive game ai with dynamic scripting,” Ma-
chine Learning, vol. 63, no. 3, pp. 217–248, 2006.

[14] R. Coleman, M. Krembs, A. Labouseur, and J. Weir,
“Game design & programming concentration within the
computer science curriculum,” SIGCSE Bull., vol. 37,
no. 1, pp. 545–550, Feb. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1047124.1047514

[15] E. Sweedyk, M. deLaet, M. C. Slattery, and J. Kuffner,
“Computer games and cs education: Why and how,” SIGCSE
Bull., vol. 37, no. 1, pp. 256–257, Feb. 2005.

[16] A. Ward, Game character development with maya. New
Riders, 2005.

[17] H. Jenkins, “Game design as narrative architecture,” Com-
puter, vol. 44, p. s3, 2004.

[18] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From
game design elements to gamefulness: Defining ”gamifica-
tion”,” in Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environ-
ments, ser. MindTrek ’11. New York, NY, USA: ACM,
2011, pp. 9–15.

[19] A. Calleja and G. Pace, “Scripting game ai: An alternative
approach using embedded languages,” Proceedings WICT,
2010.

[20] K. Salen and E. Zimmerman, Rules of Play: Game Design
Fundamentals. The MIT Press, 2003.

[21] M. Menard, Game development with Unity. Cengage Learn-
ing, 2012.

[22] S. Rabin, Introduction to game development. Cengage
Learning, 2010, vol. 2.

277276

