
Interstices in the Certification of Safety Critical
Avionics Software: Boeing 737-MAX MCAS Case

Study

Aiman Gannous
University of Benghazi
Benghazi, Libya

aiman.gannous@uob.edu.ly

Abstract—Two Boeing planes of the same model were crashed
in October 2018 and in March 2019. All the passengers and
crew onboard were killed. Investigations showed that an external
failure in the newly installed critical software Maneuvering
Characteristics Augmentation System (MCAS) was responsible
of these two fatal accidents. In this paper we reviewed the
reasons behind the failure of MCAS that installed in Boeing
most selling airplane and investigated engineering and certifying
such software systems. The case study revealed an urgent need
to clarify the certification elements in a more practical way and
to be linked to advancements in software engineering.
Keywords—Boeing 737-Max, MCAS, Fail-safe Testing, Soft-

ware Safety Certification, DO-178 C.

I. INTRODUCTION

In a fatal two crashed Boeing 737-Max consequently in

October 2018 and March 2019 in a similar circumstances

minutes after takeoff, a total of 346 passengers and crows

lost their life’s. As a trivial result, to avoid more life lose,

the new airplane has been grounded globally and a series

of investigations started to determine what went wrong and

caused the unfortunate accidents [1], [2].

Investigations showed that for almost the first time and

at the best of our knowledge, a software was mainly the

cause of these two crashes called Maneuvering Characteristics

Augmentation System (MCAS).

It turns out that all of this started on the ground of com-

petition. Boeing’s main competitor Airbus had announced and

started marketing their new A320 neo airplane, the updated

version of the famous A320 series that has a long history

of safety. This new A320 neo has a larger, fuel-efficient

engines that adheres to the pressure of environment regulators

to reduce Co2 emission that harms our planet. As a result,

for Boeing to stay in the market, the company decided to go

with updating their famous Boeing 737, which also has a long

and safe history record too. They also decided to upgrade the

737-NG by installing new engine that is fuel efficient as well.

However, it turns out that installing the new engine (LEAP-

1B) on the 737-NG body will pose an engineering challenge

because the 737-NG clearness from the ground is already low

and the new engine will worsen the ground clearance problem

even more. The solution that Boeing engineers came with was

to mount the engines higher and more forward on the wings

as shown in Figures 1 and 2 [3].

Fig. 1. New Leap Engine size on 737 MAX-8 (Right) vs. old engine on the
737 NG (Left) [4].

Fig. 2. New Leap Engine mount up and forward on 737 MAX-8 (Right) vs.
737 NG (Left) [3].

This solution however caused a new problem as it changes

the aerodynamics of the plane. Moving the engines up and

forward on the same body caused an extra lift generated at

high Angle of Attack (AOA) and low speed, specifically at

takeoff, hence, the handling characteristics will be different

than the previous 737 models under certain flight conditions.

Here comes the role of the MCAS system, a software that

provides a solution to these problems designed to take control

of the airplane to avoid stalling at low speed. MCAS rely

on an important external component called the AOA sensors.

AOA sensors send AOA data to MCAS and the system main

function is to bring the nose down if AOA reading was high

autonomously without the intervention of the pilots [3].

Now, what actually killed those 346 people is still debatable.

There are several technical and certification factors. The most

critical technical factor that MCAS was actually relying on

2664

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00425

one AOA sensor and does not have a mitigation action against

external failures of the AOA sensor. On the certification side,

defining the level of safety for the MCAS was the major issue.

In this paper, we present a qualitative and interpretive

investigation to understand why Boeing ignored the external

failure factors and if the use of proper safety engineering

practice could prevent this failure. The analysis is limited to

the MCAS system installed on the new Boeing 737 MAX

airplane. The paper is structured as follows: in section II,

we present a background about safety certification and testing

safety critical systems. In section III, we describe the MCAS

system. Analysis and results of the technical and certification

flaws are presented in section IV. In section V, we discuss our

findings. Conclusion and future work are presented in section

VI.

II. BACKGROUND

A. Fail-Safe Testing

In the development process of safety-critical systems

(SCSs), testing is more rigorous than regular systems. Test-

ing SCSs target is to verify that safety requirements were

implemented correctly. Possible hazards shall be identified

using safety analysis techniques such as Fault Tree Analysis

(FTA) and Preliminary Hazard List Analysis (PHLA) [5] [6].

In addition, mitigation action should be proven to be working

as intended against the identified hazards. Therefore, testing

SCSs should include testing for proper mitigation of expected

failures from internal and external system components.

B. Safety Certification

Software certification defined as the process of verifying

that software products and processes comply with the cor-

responding domain defacto standards [7]. Domain standards

certification have a set of requirements that guides the devel-

opment process towards a successful certification that proves

the safety of the system. DO-178C [8] is an example of such

a defacto standard for embedded software development and

certification in the avionics domain. DO-178C illustrates the

processes of the software life cycle through activities and

objectives. Requirement-based testing is adopted in DO-178C.

DO-178C emphasizes the development of normal test cases

to verify system functions and robustness test cases to verify

system safety [9].

III. MANEUVERING CHARACTERISTICS AUGMENTATION

SYSTEM (MCAS)

The description is covering MCAS when the crashes oc-

curred and before the updates Boeing made to resume 737-

MAX operations. MCAS is an automated system that augment

pitch flight control law without pilots interference. MCAS is

suppose to use two Angle of Attack (AOA) sensors to move

the plane’s horizontal stabilizer at 0.27 degree rate per second.

MCAS is automatically activated when the AOA reading

exceeds the allowed threshold during takeoff or crossing at

low speed [10].

Fig. 3. AOA sensors location on the plane [1]

Even Though MCAS was not developed for stalling pre-

vention in high speed, it’s main function was to handle an

undesired pitch-up action that the new engine lift causes,

therefore, prevent the pilot from pulling the yoke unwittingly

harder than usual to avoid an accidental stall [11].

Fig. 4. AOA changes as the airplane nose goes up/down [4]

With data coming from airspeed, AOA, and altitude sensors,

MCAS can detect if the AOA is higher than the safe threshold,

therefore, it will control the plane trim to lower the nose,

modify the rear stabilizer and push the yoke down [12].

Fig. 5. MCAS controls the stabilizers to bring the aircraft nose down [4]

Pilots can override the MCAS using trim controls, however,

if the the trim switcher released and AOA is still over the

threshold, MCAS will be reactivated again after 5 seconds.

To fully disengage MCAS pilots must use a CUTOUT switch

[12].

IV. ANALYSIS

In this analysis, we will investigate elements of the practice

in developing and certifying MCAS with respect to two

2665

major highly correlated aspects: certification and software

engineering.

1. Certification
The beginning was with the false identification of the MCAS

safety class. Design Assurance Level (DAL) as defined

in DO-178C is determined from the safety assessment

process by examining the effects of a failure condition in the

system. The failure conditions are categorized as follows [13]:

Catastrophic: Failure may cause deaths, usually with loss of
the airplane.

Hazardous: Failure has a large negative impact on safety or
performance, or causes serious or fatal injuries among the crew

and passengers.

Major: Failure significantly reduces the safety margin or
significantly increases crew workload. May result in passenger

discomfort or minor injuries.

Minor: Failure slightly reduces the safety margin or slightly
increases crew workload. Examples might include causing

passenger inconvenience.

No Effect: Failure has no impact on safety, aircraft operation,
or crew workload. Examples might include passenger

entertainment system or WiFi connections.

The certification authorities usually require that the correct

DAL should be established using comprehensive analyses

methods and and to be justified as well. Any software that

commands, controls, and monitors safety-critical functions

should receive the highest DAL - Level A which is the

Catastrophic class [8].

Second, it is the independence problem. The software safety

level also determines the number of objectives to be satisfied

for successful safety certification. Independence which refers

to a separation of responsibilities where the objectivity of the

verification and validation processes is ensured by virtue of

their ”independence” from the software development team.

For objectives that must be satisfied with independence, the

person verifying the item (such as a requirement or source

code) may not be the person who authored the item and this

separation must be clearly documented [8].

2. Software Engineering
Regarding software engineering, the MCAS design and im-

plementation should be escalated to obtain safety safety re-

quirements as the MCAS system correct classification is a

safety critical component in the flight control system according

to the DO-178C certification. Hence, at least three critical

elements should be respected in the software development

process: Redundancy, Fail-safe testing, Mitigation Testing and

Traceability. It is obvious that in the implementation of MCAS

redundancy was ignored as a critical safety requirement.

External failures are highly expected when the system relies on

external components such as sensors. AOA has a long history

of faulty reading, therefore MACS should rely on at least

two or three sensors as recommended in the design of such

systems. AOA reading should be received based on agreement

between multiple independent AOA sensors to avoid failures.

Unfortunately, there is no evidence that Fail-safe testing nor

Mitigation testing were executed on the MCAS. Traceability

was also ignored. In the certification of safety-critical systems,

safety requirements should be verified and evidence must be

presented by linking testing results to each and every safety

requirement.

V. DISCUSSION

In this research, we were able to determine the main reasons

behind the failure of MCAS on the two crashed Boeing 737-

MAX airplanes. The certification process was not executed

as expected starting from miss-classifying the MCAS system

level of safety up to not proving independent verification.

With respect to software engineering practice, the development

process of the MCAS system and deployment was missing

important aspects such as ensuring that the system is safe

and/or show that system failure are mitigated. An important

fact worth mention and could be surprising, is that MCAS

was not actually new. In other words, the 737-MAX aircraft

was not the first plane to use the MCAS system. MCAS

was actually implemented first on the Boeing KC-46 Pegasus

military aerial refueling tanker. It was also used to stabilize the

tanker but not for the same design issues of the 737-MAX. In

KC-46 Pegasus, MCAS used to stabilize the aircraft because

of the weight and balance shifts when the tanker dispense fuel

in the air. Suspicions raised about the possibility that Boeing

engineers or/and the FAA assumed that since the system was

used before and certified on the KC-46 Pegasus, there is no

need to re-certify it again. This could be another research

problem that could be tackled by researchers to contribute by

studying the need of re-certifying such systems when used for

the same purposes but in different circumstances. At the best

of my knowledge, there is nothing in the literature discussing

what testing methodology had been used by MCAS developers

to test their product. This raises a hard question actually as

we cannot determine if the industry is working closely with

software engineering research institutions to adopt the latest

advancement in the field of verification and validation of

safety-critical systems. Unfortunately, there are some questions

we couldn’t find an adequate answers for them: 1. Where

is DO-178C in all this? 2. What kind of safety evidence

that Boeing provided to show that MCAS is safe? 3. Since

MCAS has been used in another plane, did Boeing reused a

previous certification? Finally, we cannot ignore the fact that

safety certification documents still contain some ambiguities

regarding the guidance in obtaining certification and prove that

system is safe. Therefore, arguably, the industry of safety-

critical avionics systems could use this as an escape ticket

from a complete responsibility of these failures.

VI. CONCLUSION AND FUTURE WORK

In the two 737-MAX crashes, investigations showed that

a software was actually charged of killing 346 people. As

an avionic safety-critical system, MCAS was designed to

overcome an engineering problem caused by installing new

2666

bigger engine on the same body of the Boeing 737-NG. The

new engine is a cutting edge technology in fuel efficiency,

however, it changes the aerodynamics of the airplane, for this

reason MCAS was developed to overcome issues in controlling

the airplane and keep the passengers and crew safe. However,

this took a hard U turn into two catastrophic accidents. Ques-

tions raised about who is actually responsible? How MCAS

software actually designed? and What is the benefit of safety

certification if such systems can cause death? In this paper, we

tried to analyze the failing elements in the certification and

software engineering of MCAS. Contradictions were found

as the correct DAL was not established correctly at the

beginning. In addition, other elements in certification such

as ”independence” was not clearly reported in the validation

process. Regarding software engineering, the most surprising

part is that external failures were ignored since MCAS relies

on only one AOA sensor at a time. In future work, we will

further investigate MCAS system failures by applying different

fail-safe testing techniques and formal verification methods to

discover if such failures could be detected and how they could

be linked to certification objectives to be presented as safety

evidence.

REFERENCES

[1] H. Matt. (2020) Killer software: 4 lessons from
the deadly 737 max crashes. [Online]. Avail-
able: https://www.fierceelectronics.com/electronics/killer-software-4-
lessons-from-deadly-737-max-crashes

[2] G. Dominic. (2019) Flawed analysis, failed oversight: How
boeing, faa certified the suspect 737 max flight control system.
[Online]. Available: https://www.seattletimes.com/business/boeing-
aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-
system-implicated-in-the-lion-air-crash/

[3] J. Herkert, J. Borenstein, and K. Miller, “The boeing 737 max: Lessons
for engineering ethics,” Science and engineering ethics, vol. 26, no. 6,
pp. 2957–2974, 2020.

[4] US Department of Transportation. (2021, February) Weaknesses in faa’s
certification and delegation processes hindered its oversight of the 737
max 8.

[5] E. Clifton, Hazard Analysis Techniques for System Safety, 1st ed., 2005.
[6] I. Sommerville, Software Engineering, 10th ed. Pearson, 2015.
[7] R. T. V. Braga, O. Trindade, Jr., K. R. L. J. C. Branco, and J. Lee,

“Incorporating certification in feature modelling of an unmanned
aerial vehicle product line,” in Proceedings of the 16th International
Software Product Line Conference - Volume 1, ser. SPLC ’12. New
York, NY, USA: ACM, 2012, pp. 249–258. [Online]. Available:
http://doi.acm.org/10.1145/2362536.2362570

[8] RTCA Inc. (2013) Software Considerations in Airborne Systems and
Equipment Certification. [Online]. Available: https://www.rtca.org

[9] L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance, 1st ed., 2013.

[10] Federal Aviation Administration. (2020, November) Summary of the
faa’s review of the boeing 737 max.

[11] S. Makó, M. Pilat, P. Šváb, J. Kozuba, and M. Čičváková, “Evaluation
of mcas system,” Acta Avionica Journal, pp. 21–28, 07 2020.

[12] P. Johnston and R. Harris, “The boeing 737 max saga: lessons for
software organizations,” Software Quality Professional, vol. 21, no. 3,
pp. 4–12, 2019.

[13] S. M. H. Yelisetty, J. Marques, and P. M. Tasinaffo, “A set of metrics to
assess and monitor compliance with rtca do-178c,” in 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC), Sep. 2015, pp. 8D2–
1–8D2–6.

2667

