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Abstract—The Internet of Things (IoT) is rapidly advancing
and reshaping the whole world. Coordination models and lan-
guages, like Reo and Orc, provide connectors that interconnect
components in IoT applications and organize their interactions
in distributed environments. In this paper, we propose a method
for formally modeling and verifying the properties of timed
connectors using Z3, an SMT (Satisfiability Modulo Theories)
solver. We use Z3 Python-bindings to construct the models and
carry out experiments. The formal model in Z3 clearly reflects the
original structure of connectors. With the definition in Z3, we can
automatically verify time-related properties of connectors, and
automatically construct counter-examples when the properties
do not hold.

Index Terms—Coordination language, Reo, SMT, timed con-
nector

I. INTRODUCTION

The rapid advancement and ubiquitous penetration of the

IoT paradigm is rapidly reshaping the industries and the whole

world. Mobile applications, web-based information systems,

and software defined networking systems are distributed over

large networks of computing devices. The software compo-

nents that make up such IoT systems often do not fit together

perfectly, but leave significant interface gaps that should be

filled with additional “glue code”. Coordination models and

languages, such as Reo [2] and Orc [13], provide mechanisms

to interconnect such constituent components with connectors

/ orchestrators and organize their interactions in a distributed

processing environment.

Reo is a channel-based coordination language in which

connectors are the core concept. Connectors are composi-

tionally constructed from channels and capture the protocols

for organizing and controlling cooperation, synchronization,

communication and exclusion between their interconnected

components. Recently, Reo has been successfully applied in

multiple areas such as business processes [22], software-

defined networks [10], bioinformatics [8], quantum internet

software [5], and web services [16].

How to guarantee the correctness and trustworthiness of

timed connectors is a challenging and critical problem due

to the evolution of software systems and advancements in IoT

technologies. The structures of connectors are becoming more

and more complicated because of the rapid increase in size and

complexity of IoT applications, which makes it more difficult

to analyze and verify connector properties.
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In literature, there are some works for the formal modeling

and verification of connectors, such as the operational seman-

tics of Reo defined with constraint automata (CA) in [7], and

the symbolic model checker Vereofy [6] which can be used

to check CTL-like properties. Reo can also be coverted to

other formal models, such as mCRL2 [14] and Alloy [12],

making it possible to utilize already existing verification tools.

Recently, an attractive approach is to encode Reo connectors in

theorem provers like Coq [11], [21] and PVS [18], [19], based

on the UTP semantics for Reo [1], [17], and make reasoning

of connector properties in the theorem provers. The basic idea

of this approach is to model the behavior of a connector as

a logical predicate which describes the relation among the

timed data streams on the input and output nodes, and to verify

properties of connectors by using proof assistant like Coq and

PVS.

This work is an extension of the earlier results in [11], [21].

A family of timed channels and connectors has been provided

in [3], [15], which can be used to measure the exact time

elapsed between two events at input/output nodes and specify

timed behavior happening in coordination. The theorem prover

Coq is used in [11] to model and reason about the properties

of timed connectors. In [21], the authors showed that the SMT

solver Z3 [9] can be used to formally model and verify the

properties of untimed connectors, and automatically construct

bounded counterexamples when the properties do not hold. In

this paper we extend the method used in [21]. We build the

formal models in Z3 for timed channels and connectors and

reconstruct those for untimed channels and connectors to make

them consistent with the timed ones, and use the SMT solving

approach to formally verify properties of timed connectors.

This paper is organized as follows. After the general in-

troduction in Section I, we briefly summarize Reo and Z3

in Section II. The formal modeling of basic channels and

compositional operators in Z3 are presented in Section III.

Section IV shows how to reason about connector properties

in our framework. Finally, Section V concludes the paper and

discusses some future research directions. [20] provides the

complete source code for further reference.

II. PRELIMINARIES

We provide a brief introduction to the coordination language

Reo and Z3 here.
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A. The coordination language Reo

Reo is a channel-based exogenous coordination language in

which complex coordinators, called connectors, are composed

of simpler ones [2]. More details about Reo can be found in

[2], [4], [7].

Figure 1. Some basic channels in Reo

The simplest connectors are channels, such as synchronous

channels, FIFO1 channels, and so on. Each channel has two

ends which are divided into two types: source ends and sink

ends. The source end accepts data into the channel, while the

sink end emits the data out of the channel. Figure 1 shows the

graphical notations of some basic channels. Their behavior can

be explained as follows:

• Sync: a synchronous channel with one source and one

sink end. The pair of I/O operations on both ends can

succeed only if the writing operation at source end is

synchronized with the read operation at its sink end.

• SyncDrain: a synchronous channel with two source ends.

The pair of input operations at both ends can only succeed

at the same time, and the data items written to the channel

are lost.

• FIFOn: an asynchronous channel with one source end

and one sink end, and a bounded buffer cell of capacity

n. It can accept n data items from its source end before

its sink end emits data. The data items are kept in an

internal buffer, and allocated to the sink end in FIFO

order. In particular, the FIFO1 channel is an instance of

FIFOn with a buffer size of 1.

• LossySync: a synchronous channel with one source end

and one sink end. The source end always accepts all

data items. The written data is lost immediately if no

corresponding output operation is available at its sink

end; otherwise, the channel transmits the data item as

a Sync channel, and the output operation at the sink end

succeeds.

Different from the primitive untimed channels mentioned

above, a family of timed channels are defined as well to

measure the time between two events and produce timeout

signals.

• t-Timer: the basic t-timer channel which accepts any

input value through its source end A and returns a timeout

signal on its sink end B exactly after a delay of t time

units.

• OFF-t-Timer: a t-timer with the off-option which allows

the timer to be stopped before the expiration of its delay t
is designed in case users require the timer to stop working

as soon as possible. Under this circumstance, a special

off value whose type is also assumed to be Data can be

consumed through the source end.

• RST-t-Timer: a reset-option allows the timer to be reset

to 0 at once as the values in the stream remain unchanged.

A t-timer channel with the reset-option is activated as

soon as a special reset value is consumed through its

source end.

• EXP-t-Timer: a t-timer channel with expire-option

makes the timer produce its timeout signal through its

sink end and reset itself instantaneously once it consumes

a special expire value through its source end.
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Figure 2. Operations of channel composition

In Reo, complex connectors are built by combining simpler

connectors on the channel ends. The nodes that connect

channels are divided into source nodes, sink nodes, and mixed

nodes according to whether all the channel ends that overlap

on the node are source ends, sink ends, or a combination of the

two. Correspondingly, there are three types of channel compo-

sition operations: flow-through, merge and replicate. Figure 2

provides a graphical representation of these operations.

• flow-through: this operator which acts on mixed nodes

simply allows data items to flow from one channel to

the other through the junction node. Therefore, we do

not need to give a specific definition of the flow-through

operator because it can be implemented implicitly.

• replicate: this operator replicates the data items on a node

and transfers them through channels which are connected

to the node. Similar to the flow-through operator, the

replicate operator can also be achieved implicitly.

• merge: when the merge operator acts on two channels,

AB and CD, it causes the data items to be taken from

either AB or CD. The two timed data sequences are

merged together into one single timed data sequence

where the order of elements in the sequence is decided

by the time moments.

B. The Z3 SMT solver

Z3 [9] is an efficient SMT (Satisfiability Modulo Theories)

solver for a variety of software verification and analysis appli-

cations. It extends to determining the satisfiability (or dually

the validity) of first order formulas. Given the connectors’ data

and time constraints, Z3 can be used to verify the satisfiability

of connector properties. Z3 provides bindings for several

programming languages. In this work, we use Z3 python-

bindings to build models and conduct experiments.

The following example gives an intuitive understanding

of the Z3 solver. In this example, we define that both x
and y are real numbers. The first two constraints shows that

in addition to boolean operators like And, Or, Not, and
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Implies, Z3 also supports operators such as < and > for

comparison. The function Solver creates a solver instance

in which constraints can be asserted via the add method. The

command check evaluates the satisfiability of the asserted

constraints. The solver returns sat (unsat) if the result is

satisfiable (unsatisfiable) respectively. The solver may fail to

check the satisfiability of the constraint system and return

unknown. Each solver maintains a stack of assertions. The

method push creates a new scope. The method pop removes

all constraints asserted after the last push method.

from z3 import *
x, y = Real(’x’), Real(’y’)

s = Solver()
s.add(x > 10, Or(x + y > 3, x - y < 2))
s.add(ForAll([y],y>0))
print(s.check())
print(s.model())

s.push()
s.add(y < 11)
print(s.check())
print(s.model())

s.pop()
print(s.check())
print(s.model())

III. FORMAL MODELING OF CHANNELS AND OPERATORS

In this section, we show how both primitive untimed and

timed channels, as well as operators for connector compo-

sition, are specified in Z3 and used for modeling complex

connectors. Then in Section IV we use Z3 to automate the

verification of connectors’ properties, or produce a bounded

counterexample when the properties do not hold.

We implement the construction of connectors in a way

that fits Z3. Typically, connector construction starts with the

formal definitions of primitive channels, timed channels, and

composition operators, which are used hereafter to build and

assess more complex models. Such a framework must be

carefully developed so that further reasoning and verification

can be simplified as much as possible.

We first define an auxiliary function called Conjunction,

which is used to take the conjunction of every constraint in

the constraint lists parameterized by constraints.

def Conjunction(constraints):
assert len(constraints) > 0
result = None
for c in constraints:
if result is None:
result = c

else:
result = And(result, c)

return result

A. Formal Modeling of Primitive Channels

We use the Z3 implementation of the primitive untimed

channels which has been developed in [21] and adapt it to the

new framework.

As a starting example, we consider the Sync channel. The

constraints for Sync channel are classified into two types:

data constraints and time constraints. The definition of Sync
provides the behavior pattern it needs to follow: each item in

the timed data streams of output node specified as "node[1]"

is equivalent to the timed data items of input node specified as

"node[0]", which are exactly data and time constraints. Each

constraint in the list will be combined finally.

def Sync(nodes, bound):
assert len(nodes) == 2
constraints = []
for i in range(bound):
constraints += [ nodes[0][’data’][i] ==

nodes[1][’data’][i] ]
constraints += [ nodes[0][’time’][i] ==

nodes[1][’time’][i] ]
return Conjunction(constraints)

Similar to the Sync channel, the SyncDrain channel is

defined such that only time related constraints are needed, i.e.,

equivalence of corresponding items in two time streams of the

two inputs.

def SyncDrain(nodes, bound):
assert len(nodes) == 2
constraints = []
for i in range(bound):
constraints += [nodes[0][’time’][i] ==

nodes[1][’time’][i]]
return Conjunction(constraints)

For FIFO1 channel, data related constraints are same as for

the Sync channel, while time related constraints are different.

Since the buffer capacity is one, the relations of each item

in the input time stream and output time stream need to be

carefully dealt with, especially as the next input should be

strictly later than the present output. If the buffer contains a

data item at the beginning, i.e. the variant version FIFO1e
channel, then the constraints related to data and time are just

a little different. The data item ’e’ in the buffer should be the

first one to transit and all the differences on the constraints

result from it.

def Fifo1(nodes, bound):
assert len(nodes) == 2
constraints = []
for i in range(bound):
constraints += [ nodes[0][’data’][i] ==

nodes[1][’data’][i] ]
constraints += [ nodes[0][’time’][i] <

nodes[1][’time’][i] ]
if i != 0:
constraints += [ nodes[0][’time’][i] >

nodes[1][’time’][i-1] ]
return Conjunction(constraints)
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def Fifo1e(e):
def Fifo1eInstance(nodes, bound):
assert len(nodes) == 2
constraints = []
constraints += [nodes[1][’data’][0] == e]
for i in range(bound-1):
constraints += [nodes[0][’data’][i] ==

nodes[1][’data’][i + 1]]
constraints += [nodes[0][’time’][i] <

nodes[1][’time’][i + 1]]
for i in range(bound):
constraints += [nodes[0][’time’][i] >

nodes[1][’time’][i]]
return Conjunction(constraints)

return Fifo1eInstance

For the LossySync channel, each item of the input stream

may or may not be lost. If a timed data item is lost, then

the corresponding output gets nothing; otherwise it behaves

exactly like a successful transit of Sync channel, and the data

and time related constraints are identical with those in the

definition of Sync. What is special is that LossySync channel

is defined in a recursive way according to its own distinctive

behavior. We can see that the constraints are added recursively

which coincide with the original definition.

def LossySync(nodes, bound, idx = 0, num = 0):
assert len(nodes) == 2
if bound == num:
return True

if bound == idx:
return True

constraints_0 = []
constraints_1 = []
constraints_0 += [ nodes[0][’time’][idx] <

nodes[1][’time’][num]]
constraints_1 += [ nodes[0][’data’][idx] ==

nodes[1][’data’][num]]
constraints_1 += [ nodes[0][’time’][idx] ==

nodes[1][’time’][num]]
return Or(And(Conjunction(constraints_0),

Channel.LossySync(nodes, bound, idx + 1,
num)),

And(Conjunction(constraints_1),
Channel.LossySync(nodes, bound, idx + 1,

num + 1)))

B. Formal Modeling of Timed Channels

While the primitive channels are already well defined as

part of the basis of the whole framework, the timed channels

also need to be specified properly in order to measure the

time elapse between two events and produce timeout signals,

so that we can refine the framework and address a wider range

of coordination issues in IoT applications. In the following, we

describe the modeling of timed channels in Z3. This approach

also facilitates the analysis and proof of timed connector

properties, since we can easily use Z3 to automatically verify

the properties of a timed connector within certain bounds, and

obtain counterexamples automatically when the properties do

not hold.

We first define the signals that various types of timed

channels will generate in Z3, specifically, the timeout signal,

off signal, reset signal and expire signal.

timeout = Int(’timeout’)
off = Int(’off’)
reset = Int(’reset’)
expire = Int(’expire’)

Using these definitions, we can model timed channels in a

way similar to primitive channels.

For the t-Timer channel, the first constraint in the code is

about time and the second constraint is about data. In this

specification, the first constraint describes the relation of the

input and output streams in the time dimension. The second

constraint presents that after a delay of t time units for every

data item it receives at the source end, a timeout signal will be

generated at the sink end. The third constraint is an inequality,

requiring that an input data item cannot be accepted by the

channel when there is no timeout signal for the previous data

item it receives. This means that there should be no other input

actions during the delay of t time units.

def Timert(t):
def TimertInstance(nodes,bound):
assert len(nodes) == 2
constraints = []
for i in range(bound):
constraints += [nodes[0][’time’][i] + t

== nodes[1][’time’][i]]
constraints += [nodes[1][’data’][i] ==

timeout]
if i != 0:
constraints += [nodes[1][’time’][i-1] <=

nodes[0][’time’][i]]
return Conjunction(constraints)

return TimertInstance

The OFF-t-Timer channel needs to be defined in a recursive

way similar to the modelling of LossySync channel. First, we

deal with some edge cases, such as when the bound is very

small or when the constraints under consideration are close to

the bound. The general situation is the constraints defined in

the ‘else’ branch. constraints_0 represents one situation where

the off signal is the data element to be accepted. In this case,

the timer is stopped and we remove the data off and the current

data without any output. Then a new input stream is resumed.

constraints_1 represents another situation that complements

constraints_0, where the data element to be accepted is not

off, and a timeout signal is produced as output after a delay of

t time units. Then a new input stream is resumed. The general

idea is that there are some requirements on the inter-arrival

time of the inputs that depends on the value of incoming data,

while different actions are taken for the output in order to deal

with the data element to be accepted. The definitions of the

RST-t-Timer and the EXP-t-Timer in Z3 are similar to the

OFF-t-Timer. The input signals change from the off signal to

reset and expire, and trigger subtly different channel behaviors

respectively. In the following we only give the detailed code

of the OFF-t-Timer in Z3 while the code for other timed
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channels are omitted due to the length limitation and can be

found in [20].

def OFFTimert(t):
def OFFTimertInstance(nodes, bound, idx = 0,

num = 0):
assert len(nodes) == 2
if idx == bound:
return True

if num == bound:
return True

if idx == bound-1:
constraints_last = []
constraints_last += [nodes[0][’time’][idx

] + t == nodes[1][’time’][num]]
constraints_last += [nodes[1][’data’][num

] == timeout]
return Conjunction(constraints_last)

else:
constraints_0 = []
constraints_1 = []
constraints_0 += [nodes[0][’data’][idx+1]

== off]
constraints_0 += [nodes[0][’time’][idx+1]

< nodes[0][’time’][idx] + t]
constraints_1 += [nodes[0][’data’][idx+1]

!= off]
constraints_1 += [nodes[0][’time’][idx] +

t == nodes[1][’time’][num]]
constraints_1 += [nodes[1][’data’][num]

== timeout]
if idx == 0 and num == 0:
constraints_all = []
for i in range(bound-1):
constraints_all += [ Or(nodes[0][’data

’][i+1] == off ,
nodes[0][’time’][i+1] >= nodes[0][’

time’][i] + t )]
return And(Or(And(Conjunction(

constraints_0),
Channel.OFFTimert(t)(nodes, bound, idx

+ 2, num)),
And(Conjunction(constraints_1),
Channel.OFFTimert(t)(nodes, bound, idx

+ 1, num + 1))),
Conjunction(constraints_all))

else:
return Or(And(Conjunction(constraints_0)

,
Channel.OFFTimert(t)(nodes, bound, idx

+ 2, num)),
And(Conjunction(constraints_1),
Channel.OFFTimert(t)(nodes, bound, idx

+ 1, num + 1)))
return OFFTimertInstance

Specifying timed channels by Z3 makes the model intuitive

and concise as each constraint describes a simple relation on

time or data. Furthermore, we can easily extend the existing

model to new user-defined channels.

C. Formal Modeling of Operators

When constructing more complex connectors, it is necessary

to apply composition operators on channels and simpler ones

according to the topological structures of the connectors. As

mentioned earlier, both flow-through and replicate can be

achieved implicitly using same node names when we compose

channels to construct connectors. Therefore no additional Z3

code is needed for them.

However, the implementation of the merge operator in Z3 is

more complicated. In [21], it is specially dealt with as a special

channel Merger with three channel ends. Together with the

other two kinds of composition operators: flow-through and

replicate, they provide a complete basis for the construction

of any kinds of connectors, coinciding with the original set of

composition operations [2], [17].

The Merger channel also has a recursive definition like

the LossySync channel. The two input nodes are specified as

“node[0]” and “node[1]” respectively, while the output node is

specified as "node[2]". For each item in the output node, there

is a non-deterministic choice between the two input nodes.

If the time corresponding to the input data of "node[0]" is

earlier than time corresponding to the input data of "node[1]",

which is the case in constraints_1, then the first data and time

elements of "node[2]" are equal to the elements of "node[0]"

and vice versa. We use recursive calls to deal with these two

different cases.

def Merger(nodes, bound, idx_1 = 0, idx_2 = 0)
:

assert len(nodes) == 3
if bound == idx_1 + idx_2:
return True

constraints_1 = []
constraints_2 = []
constraints_1 += [ nodes[0][’data’][idx_1]

== nodes[2][’data’][idx_1 + idx_2]]
constraints_1 += [ nodes[0][’time’][idx_1]

== nodes[2][’time’][idx_1 + idx_2]]
constraints_1 += [ nodes[0][’time’][idx_1] <

nodes[1][’time’][idx_2]]
constraints_2 += [ nodes[1][’data’][idx_2]

== nodes[2][’data’][idx_1 + idx_2]]
constraints_2 += [ nodes[1][’time’][idx_2]

== nodes[2][’time’][idx_1 + idx_2]]
constraints_2 += [ nodes[1][’time’][idx_2] <

nodes[0][’time’][idx_1]]
return Or(And(Conjunction(constraints_1),

Channel.Merger(nodes, bound, idx_1 + 1,
idx_2)),

And(Conjunction(constraints_2),
Channel.Merger(nodes, bound, idx_1, idx_2

+ 1)))

IV. REASONING ABOUT TIMED CONNECTORS

With the formal modeling of primitive untimed and timed

channels as well as composition operators in Z3, we can easily

model a timed connector and verify its properties. In this

section, we first show how to build a connector on the existing

basis, and how to define functions and methods about its time-

related properties, followed by two examples to show how to

verify timed connector properties in our framework.

Users build the connectors to be verified with the connect
method in the class Connector, then other methods are applied

to automatically verify the properties in concern. Note that
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the attribute channels is a list whose items are tuples with

the first element as the type of the channel and the second

and third elements being the names of the source and sink

ends respectively. In particular, if the first element of a tuple

is Merger, then the other three elements are the names of the

three channel ends.

class Connector:
def __init__(self):

self.channels = []

def connect(self, channel, *nodes):
self.channels += [(channel, nodes)]
return self

In the following, we introduce methods to verify time-

related properties of connectors, such as Deq, Teq, Tneq, Tlt,
Tgt, Teqt, Tltt, Tgtt, Tlet, and Tget. These methods use two

functions as auxiliary functions: AllNodes and AllConstraints.

Calling AllNodes on an instance of Connector class returns

a list of all names of the nodes in the connector. As for

AllConstraints, it traverses each channel in the connector and

combines all time constraints and data constraints to return

a conjunctive total constraint. Note that not only constraints

for channels, but also temporal order constraints on each node

need to be considered.

With the two auxiliary functions, it is very easy to specify

the methods for verification of time-related properties. For

example, we consider the Deq function which can be used to

express that the datas of the two nodes are exactly the same

within the given bound. For robustness, we first verify that the

two nodes in the parameters are indeed nodes in this connector

by using function AllNodes. The parameter constr combines

the constraints for the equality between the datas on the two

nodes within the bound. It turns out that, this property of the

connector is correct if and only if constr can be derived from

the return value of AllConstraints. To verify that a formula is

valid, we can dually verify that the negation of the formula is

unsatisfiable, in which case the call to Z3 produces unsat.
The judgment about equality of time being defined as Teq

is analogous to the judgment of data. Teq means that the time

components of two streams taken as parameters are equal.

It behaves almost same as Deq, only to change constr from

data constraints to time constraints. And Tneq has the opposite

meaning. Tlt means that each time dimension of the first

stream is strictly less than the other stream while Tgt means

that every time dimension of the first stream is greater than

the other stream. The design of all these functions are similar

to that of Deq. Due to the length limitation we omit the Z3

code for these functions here, which can be found at [20].

There are three more definitions that serve to facilitate the

modeling of timed channels. All of them are plain and easy

to understand with one of the time streams is added by a t
time delay. An extra t is appended to the names of these new

functions about judgment of time to distinguish them from the

original ones.

Teqt means that time of the second stream is equal to time of

the first stream with an addition of t time units. Tltt represents

that time of the first stream with an addition of t is less than

the second stream and Tgtt has the opposite meaning to Tltt.
Tlet denotes that time of the first stream with an addition of t
is less than or equal to the second stream, while Tget means

the opposite.

We give the modeling of Teqt here as an example.

def Teqt(self, bound, time, *nodes):
assert len(nodes) == 2
nd_0 = nodes[0]
nd_1 = nodes[1]
allnodes = self.AllNodes()
assert nd_0 in allnodes
assert nd_1 in allnodes
constr = True
for i in range(bound):
constr = And(constr,Real(nd_0 + ’_t_’ + str

(i)) + time == Real(nd_1 + ’_t_’ + str(
i)))

solver = Solver()
solver.add(Not(Implies(self.AllConstraints(

bound), constr)))
result = solver.check()

In the following, we use some examples to illustrate our

approach instead of giving all the complex technical details.

Figure 3. Lower bounded FIFO1 channel

Example 4.1: Take the connector in Figure 3 into con-

sideration. In this connector, node A is a source node,

whereas C, D and E are mixed nodes and B is a sink

node. This connector consists of five channels AC, AD, CE,

DE and DB with channel types t-Timer, FIFO1, FIFO1,

SyncDrain and Sync respectively. We can automatically prove

that Deq(100,′ A′,′ B′) and T ltt(100, 20,′ A′,′ B′), where 100

is the bound and 20 can be changed into any given real number.

The code for the lower bounded FIFO1 and the correspond-

ing proof is as follows.

c1 = Connector()

c1.connect(’Timert(20)’,’A’,’C’)
c1.connect(’Fifo1’,’A’,’D’)
c1.connect(’Fifo1’,’C’,’E’)
c1.connect(’SyncDrain’,’D’,’E’)
c1.connect(’Sync’,’D’,’B’)

result1, counterexample1, smt1 = c1.Deq(100,’A
’,’B’)

print(result1)
print(counterexample1)
result2, counterexample2, smt2 = c1.Tltt

(100,20,’A’,’B’)
print(result2)
print(counterexample2)
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Figure 4. 2× t timed connector

Example 4.2: Figure 4 shows the topology structure of the

2 × t Timed Channel defined in [11], where A is a source

node, B is a sink node and all other nodes are mixed nodes.

The code for the 2 × t timed connector in Figure 4

and the corresponding proof are as follows. Here we try to

automatically prove the theorem stated in [11] within bound

10 with the help of Z3. The advantage of our approach is that

we do not need to semi-automatically disassemble the theorem

and prove it step by step as in Coq [11], but can directly verify

its correctness with a machine automatically and produce a

counterexample when the property does not hold.

c1 = Connector()

c1.connect(’Sync’,’A’,’G’)
c1.connect(’LossySync’,’G’,’E’)
c1.connect(’LossySync’,’G’,’F’)
c1.connect(’Sync’,’E’,’I’)
c1.connect(’Sync’,’F’,’I’)
c1.connect(’SyncDrain’,’G’,’I’)
c1.connect(’Merger’,’E’,’F’,’I’)
c1.connect(’Sync’,’E’,’C’)
c1.connect(’Sync’,’F’,’D’)
c1.connect(’Timert(20)’,’C’,’C1’)
c1.connect(’Timert(20)’,’D’,’D1’)
c1.connect(’Merger’,’C1’,’D1’,’B’)

result, counterexample, smt = c1.Teqt(10,20,’A
’,’B’)

print(result)
print(counterexample)

Figure 5. Timed FIFO2 Connector

Example 4.3: Figure 5 presents a useful timed connector,

called Timed FIFOn Connector, which is defined in [15] and

is widely used in modeling real-time networks. The function

of this connector is to delay every input for t time units, even

if the inter-arrival time of the inputs is less than t (for up

to n such inputs). The number of FIFO1 channels between

nodes A and E should be equal to n in the n × t Timed

Channel. We take Timed FIFO2 Connector as an example here.

It contains a 2 × t Timed Channel and 2 FIFO1 channels.

We try to automatically prove that Deq(10,′ A′,′ B′) and

Teqt(10, 20,′ A′,′ B′) with the bound being 10. Here 20 can

be changed into any given real number.
The code is as follows.

c1 = Connector()
c1.connect(’Fifo1’,’A’,’D’)
c1.connect(’Fifo1’,’D’,’E’)
c1.connect(’Sync’,’E’,’B’)
c1.connect(’SyncDrain’,’E’,’C’)
c1.connect(’Sync’,’A’,’G0’)
c1.connect(’LossySync’,’G0’,’E0’)
c1.connect(’LossySync’,’G0’,’F0’)
c1.connect(’Sync’,’E0’,’I0’)
c1.connect(’Sync’,’F0’,’I0’)
c1.connect(’SyncDrain’,’G0’,’I0’)
c1.connect(’Merger’,’E0’,’F0’,’I0’)
c1.connect(’Sync’,’E0’,’C0’)
c1.connect(’Sync’,’F0’,’D0’)
c1.connect(’Timert(20)’,’C0’,’C10’)
c1.connect(’Timert(20)’,’D0’,’D10’)
c1.connect(’Merger’,’C10’,’D10’,’C’)

result1, counterexample1, smt1 = c1.Teqt
(10,20,’A’,’B’)

result2, counterexample2, smt2 = c1.Deq(10,’A’
,’B’)

print(result1)
print(counterexample1)
print(result2)
print(counterexample2)

Figure 6. Expiring FIFO1 Channel

Example 4.4: Expiring FIFO1 channel [15] is an extension

of FIFO1 which behaves just like FIFO1 except that the data

item is lost if it is not taken out of the buffer through the sink

end of the channel within t time units after it enters through

the source end. Figure 6 illustrates how to construct expiring

FIFO1 from FIFO1 channel and a t-Timer.
According to the construction of expiring FIFO1 channel,

it is easy to find that the time of the stream at node A with

an addition of t is less than or equal to the time of the

stream at node B. We can automatically prove this using

T let(15, 20,′ A′,′ B′) with the bound 15. Here 20 can be

changed into any real number.
Meanwhile, we can prove that Deq(15,′ A′,′ B′) with the

bound 15, which is in fact guaranteed by the D − E −H −
D loop. Since the SyncDrain channel only allows the data

streams at both ends to be equal in time, when the LossySync
channel DE loses data, the constraints of DH channel cannot

be satisfied. Thus it is only possible for DE channel to work

like Sync.
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The code is as follows.

c1 = Connector()
c1.connect(’Sync’,’A’,’C’)
c1.connect(’Fifo1’,’C’,’D’)
c1.connect(’Sync’,’C’,’F’)
c1.connect(’Timert(20)’,’F’,’G’)
c1.connect(’LossySync’,’G’,’H’)
c1.connect(’LossySync’,’D’,’E’)
c1.connect(’SyncDrain’,’D’,’H’)
c1.connect(’Sync’,’E’,’H’)
c1.connect(’Sync’,’E’,’B’)

result1, counterexample1, smt1 = c1.Tlet
(15,20,’A’,’B’)

result2, counterexample2, smt2 = c1.Deq(15,’A’
,’B’)

print(result1)
print(counterexample1)
print(result2)
print(counterexample2)

V. CONCLUSION

In this paper we present an approach for formal modeling

of timed connectors and reasoning about timed connector

properties in Z3. The model naturally preserves the original

structure of timed connectors, which also makes the connector

description reasonably readable. All the analysis and verifica-

tion work are based on the definitions of primitive untimed

and timed channels. By the various functions defined in class

Connector, we can easily reason about temporal properties

for connectors. Some of the benefits of this approach are

inherited from Z3, especially that the verification work and

the search for possible bounded counterexamples can be done

automatically. Compared with other techniques (like theorem

proving in Coq or PVS), such automatic verification methods

may help us avoid tons of hands-written proofs. Moreover,

counterexamples can be provided as additional diagnostic

feedback while the property is not satisfied. Although here

we only focus on temporal properties checking, this approach

can be applied to verification of various properties.

Besides its benefits, this approach has some drawbacks

as well. The main limitation of Z3 solver is the failure of

providing ideally infinite timed data streams as witnesses for

connector properties. It is only possible to prove a property

within a given finite bound. A finite prefix of timed data stream

is not enough to ensure certain properties. Another flaw is that

when the given connector gets more complex and the given

bound becomes larger (such as the connector in Example 2

with the bound being 15), the running time increases rapidly.

In the future, we plan to extend our approach to a wider

range of properties which can improve the existing connector

properties verification framework, and try to speed up the

verification process within a given bound.
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